50
Discover PHYSICS for GCE ‘O’ Level Science Unit 1: Measurement

Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

Embed Size (px)

Citation preview

Page 1: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

Discover PHYSICS for GCE ‘O’ Level Science

Unit 1: Measurement

Page 2: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.1 What is Physics?

• Physics is the study of Matter and Energy.

• This includes sub-topics like:› General Physics› Thermal Physics› Light› Waves› Sound› Electricity› Magnetism

Page 3: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

Figure 1.1 What is Physics - a pictorial overview

Page 4: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

In this section, you’ll be able to:

• understand that all physical quantities consist of a numerical magnitude and a unit

• recall the seven base quantities and their units• use prefixes and symbols to indicate very big or very

small SI quantities

Page 5: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

What is a Physical Quantity?

A physical quantity is a quantity that can be measured. Itconsists of a numerical magnitude and a unit.

Page 6: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

The 7 base quantities and 7 base SI units are shown in the table below.

Table 1.1 The seven base quantities and their SI units

Page 7: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

All other physical quantities can be derived from theseseven base quantities. These are called derived quantities.

Table 1.2 Some common derived quantities and units

Page 8: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

Some common SI prefixes are listed in the table below.

Table 1.3 Common SI prefixes

Page 9: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

Worked Example 1.1

Donovan Bailey broke the 100 m sprint world recordat the 1996 Atlanta Olympics, with a time of 9.84 s. In contrast, a dog runs at a speed of 30 km h–1. Ifthe dog chases Donovan Bailey, will the dog catchup with him?

Page 10: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

Solution

First, we calculate the average speed of Donovan Bailey.

1sm10.2

s9.84

m100

timedistancespeedAverage

-=

=

=

Page 11: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

Solution (Continued)

In order to make meaningful comparisons of speed,the units must be the same. So Bailey’s speedshould be converted to km h–1.

Since Bailey’s speed of 36.7 km h– 1 > 30 km h– 1, Bailey will outrun the dog over a distance of 100 m.

11

hkm36.7

h1min60×

min1s60×

m1000km1×

s1m1×10.2

sm1×10.2sm10.2

=

=

=- -

1-

Page 12: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

Key Ideas

• A physical quantity has a numerical magnitude and a unit.

• The are seven base quantities: length, mass, time, electric current, temperature, luminous intensity and amount of substance.

• The units of these seven base quantities are known as the SI base units:m, kg, s, A, K, cd, mole

Page 13: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

Test Yourself 1.2

1. Express the weight of a ‘Quarter Pounder’ in grams, given that 2.205 pounds (lb) is equal to 1 kilogram (kg).

2. The world’s smallest playable guitar is 13 μm long. Express the length in standard form.

1.2 Physical Quantities and SI units

Figure 1.6 Nanoguitar

Figure 1.5 Quarter Pounder

Page 14: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.2 Physical Quantities and SI units

Solutions

1.

g113.3=

kg1g1000

×lb2.205

kg1×lb4

1lb4

1=

2. 13 μm = 13 ×

10-6 m= 1.3 ×

10-7 m (in standard form)

Page 15: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

In this section, you will be able to:• Have a good sense of the orders of magnitude• Describe how to measure a variety of lengths using the

appropriate instruments (e.g. metre rule, vernier calipers, micrometer)

• Use a vernier scale

Page 16: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

The SI unit for length is the metre (m).

Figure 1.7 There is a wide range of lengths in the natural world.

Page 17: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Some of the common instruments that we use tomeasure lengths are the:• Metre rule• Tape measure• Calipers• Vernier Calipers• Micrometer screw gauge

Page 18: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Metre rules can measure lengths up to 1 m.

Tape measures can measure lengths up to a few metres.

Figure 1.11 Using a metre rule to measurethe depth of a pond

Figure 1.10 Using a tape measureto measure the width of a pond

Figure 1.9 Tape measure

Page 19: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Precision of an Instrument

The precision of an instrument is the smallest unitthat the instrument can measure.

What is the precision of the metre rule? The smallestunit the metre rule can measure is 0.1 cm or 1 mm.Hence, we say that the metre rule has a precision of0.1 cm.

Page 20: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Avoiding Reading Errors

When using the metre rule, position your eye directlyabove the markings to avoid parallax errors. Bytaking several readings and taking the average, youwill minimise reading errors.

Figure 1.12(a) No parallax errors Figure 1.12(b) Inaccurate measurement due to parallax errors

Page 21: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Calipers – An instrument for measuring the diametersof cylinders or circular objects.

Figure 1.13(a) Inverting the jaws of the calipers to measureinner diameters

Page 22: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Figure 1.13(b) Calipers used to measure outer diameters.

Page 23: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Vernier Calipers

A useful instrument to measure both internal andexternal diameters of objects. It consists of a mainscale and a sliding vernier scale.

The vernier calipers has a precision of 0.01 cm.

Page 24: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Figure 1.14 Parts and uses of the vernier calipers

Page 25: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Using the Vernier Calipers

Before using the vernier calipers, it is important tocheck the instrument for zero error.

This is to check that the zero mark on the main scalecoincides with the zero mark on the vernier scalewhen not measuring anything between the jaws.

Table 1.4 of the textbook shows how to deal withzero errors.

Page 26: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Guide to Using Vernier Calipers

Figure 1.15 Using the vernier calipers to measure the diameter of a ball bearing.

Page 27: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Table 1.4 Checking and correcting zero errors when using vernier calipers

Page 28: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

Micrometer Screw Gauge

This instrument can measure to a precision of 0.01 mm. Itis used to measure the diameters of wires or ball bearings.

1.3 Measurement of Length

Page 29: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Figure 1.16 Step by step guide to using the micrometer screw gauge

Page 30: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of LengthTable 1.5 Checking and correcting zero errors when using the micrometer screw gauge

Page 31: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

Key Ideas

1. Instruments with their range and precision.

Page 32: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

2. Errors to take note for each instrument

Page 33: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

Test Yourself 1.3

1. Figure 1.17 shows a voltmeter with a strip of mirror mounted under the needle and near the scale. Suggest how this may help to reduce errors when taking a reading.

Answer: When taking a reading, ensure that yourvision is placed directly above the needle so that theimage of the needle coincides with the needle. Thishelps to reduce parallax error.

1.3 Measurement of Length

Figure 1.17 Voltmeter scale with mirror mounted under the needle

Page 34: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

2. Vernier calipers are used to measure the diameter of a ball bearing. What is the reading of the vernier scale?

Answer:Step 1: Main scale reading: 2.5 cmStep 2: Vernier coincides with 3rd line. Vernier reading

is 0.03 cm.Step 3: Reading of diameter = 2.5 + 0.03 cm

= 2.53 cm

Page 35: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.3 Measurement of Length

3. The diameter of a wire is measured using a micrometerscrew gauge. A student takes an initial zero readingand then a reading of the diameter. What is thecorrected diameter of the wire in mm?

A 3.37 B 3.85 C 3.89 D 3.87

Answer:The zero reading Z = +0.02 mmThe diameter reading D = 3.87 mmHence the corrected diameter reading: Dcorrected = D – Z = 3.87 – (+0.02)

= 3.85 mm

Therefore the answer is B.

Page 36: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

In this section, you’ll be able to:• Describe how to measure periods of time using the

pendulum, stopwatch and other appropriate instruments.

Page 37: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Using a Pendulum to Measure Time

A simple pendulum consists of a bob attached to astring.• A complete to-and-fro motion from R to S and back to

R is one complete oscillation.• The period T is the time taken for one complete

revolution.

Figure 1.22 A pendulum completes one full oscillation when the bob moves from R to S and back to R.

Page 38: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Instruments for Telling Time

All instruments use some kind of periodic motion totell time e.g. mechanical watches or clocks use theoscillations of springs, quartz watches use thenatural vibrations of crystals.

• Stopwatches can measure time to a precision of 0.1 s.

• Digital stopwatches can show readings to two decimal places of a second. However, human reaction time introduces an error of about 0.3–0.5 s.

Page 39: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Experiment 1.1

Objective: To calibrate a simple pendulum to measuretime in seconds.

Apparatus: pendulum, stopwatch, metre rule, retort stand and clamp

Page 40: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Procedure:

1. Fasten the metre rule vertically.

2. Tie the pendulum to the clamp and measure the length of thestring, l in metres.

3. Measure the time taken t for thependulum to make 20 oscillations.

4. Vary the length l between60 cm and 100 cm.

Figure 1.24

Page 41: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Complete the table below.

Plot a graph of period T/s against l/m and find thelength of pendulum with a period of one second.Plot also a graph of T2/s2 against length l/m.

Page 42: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Results:

The length of pendulum with a period of 1 second can beread off the graph.

Figure 1.25(a) Graph of T/s vs. l/m Figure 1.25(b) Graph of T2/s2 vs. l/m

Page 43: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Question 1: Why do we need to take the averagetime of 20 oscillations?

Answer: We take the average to account for humanreaction time. Human reaction time is about 0.3 s formost people. It would not be accurate to stop astopwatch to measure the time taken for just oneoscillation.

Page 44: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Question 2: What can you observe about thegraph of T/s vs. l/m?

Answer: The period of the pendulum, T, increaseswith length l, but not linearly.

Page 45: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Question 3: What does the plot of T2/s2 vs. l/m tell us?

Answer: It tells us that the square of the period, T2

is directly proportional to the length, l. This gives rise to the straight line graph when we plot T2/s2 againstl/m. By extending the straight line graph, we can easily predict the period of the pendulum for lengthsthat are not included in the graph we have plotted.

Page 46: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Key Ideas

• Time intervals are measured by observing events that repeat themselves.

• Clocks can be used to measure time intervals in minutes or hours.

• Stopwatches can be used to measure time intervals to a precision of 0.1 s.

• The period T is the time taken for the pendulum to swing from one end to the other and back again to its starting position.

Page 47: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

Test Yourself 1.4

1. How can you measure the average time taken by a bus to travel from home to school?

Answer: At the beginning of the week e.g. Monday,recordthe time on your watch when you board the bus. Record thetime when you alight the bus. The difference between thetwo times is the time taken for the journey. Repeat steps 2-3 over the course of the week until Friday. Take theaverage of the time taken during the journey over the 5 days.

Page 48: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

2. How can you determine the period of the swing in the playground?

Answer: Start the swing in its to-and-fro motion.When the motion is steady, start the stopwatch whenthe swing is at one end of its motion. Stop thestopwatch after 20 oscillations. Record the time t1 .Repeat steps 2-3 for another set of reading t2 .

Take average t =

The period T is given by T =2

(t1 + t2 )

20t

Page 49: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.

1.4 Measurement of Time

3. Figure 1.26 shows an oscillating pendulum. If the time taken for the pendulum to swing from A to C to B is 3 s, what is the period of the pendulum?

Answer:Moving from A to C to B only covers three-quarters of the oscillation. Hence,

Figure 1.26

s434×3T

3 sT43

==

=

Page 50: Discover PHYSICS for GCE ‘O’ Level Science - …lawzchiasciphy.wikispaces.com/file/view/Unit+1+-+Measurement.pdf• A physical quantity has a numerical magnitude and a unit. •

28 April 2010Copyright © 2006-2011 Marshall Cavendish International (Singapore) Pte. Ltd.