89
Digital Communications (DCOM) Master SATCOM, MoST ESECA Nathalie Thomas [email protected] 1

Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Digital Communications (DCOM)

Master SATCOM, MoST ESECA

Nathalie Thomas

[email protected]

1

Page 2: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Digital Communications: Introduction

→ Components of the basic digital communication channel

→ AWGN transmission channel

→ Baseband and carrier-modulated transmissions

→ Performance criteria

2

Page 3: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 0 1 0 1 1 …

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal : sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0

3

Page 4: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal : sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0Transmit a given bit rate Rb

= Number of bits to be

transmitted per second.

4

Page 5: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal : sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0Transmit a given bit rate Rb

= Number of bits to be

transmitted per second.

Received Binary information: 0 1 0 1 0 1 1 1 1 1BER = Number of erroneous bits

Number of transmitted bits

0 1 1 0 0 1 0 1 1 0

0 1 0 1 0 1 1 1 1 1

BER = 4/10Obtain a given Bit Error Rate:

Example:

DVB example:BER<10-10, (QEF transmission)

Rb 30 à 40 Mbps ~

5

Page 6: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 0 1 0 1 1 …

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal : sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0

6

Page 7: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

- Wired transmissions: xDSL, optical fiber, cable TV, power Line communications…

Propagation on copper, coaxial cables or optical fibers via electrical or optical signals .

- Wireless transmissions: WiFi, Terrestrial TV, Satellite transmissions, GSM, 3G, 4G …

=> Propagation in free space via radio (or Hertzian): frequencies < 3000 GHz

Transmission channel

7

Copper

Fiber

Coaxial cable

- Examples:

Page 8: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

8

Wireless transmissions => frequencies regulation

- Depending on the countries : regulatory agencies or a ministriesExamples :

→ In France : ARCEP (Autorité de Régulation des Communications Electroniques), ANRT (Agence Nationale de Régulation des Fréquences), CSA (Conseil Supérieur de l’Audiovisuel)

→ In the United States of America : FCC (Federal Communications Commission)→ In Japan: MIC (Ministry of Internal Affairs and Communications )

- Collaborations between states:Examples :

→ ORECE : Organe des Régulateurs Européens des Communications Electroniques in Europ,→ NARUC : National Association of Regulatory Utility Commissioners (regulators of individual states) in

the United States,→ ARTAC : Association des Régulateurs de Télécommunications de l’Afrique Centrale, in Africa,

- International Telecommunication Union (ITU)→ Responsible for the telecommunications regulation in the world→ 193 member states and 700 associated members (from Information and Communication Technology

sector).→ Forum in which the states and the private sector coordinate together.

- Unlicensed bandwidth→ industrial, scientific and medical (ISM) : (902-928 MHz, 2.400-2.4835 GHz)→ Unlicensed National Information Infrastructure (UNII) : 5 .15-5.25 GHz, 5 .25-5.35 GHz→ UNII-3/ISM : 5.725-5.850 GHz

Page 9: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Shared transmission channel => need for multiplexing methods

Time

FrequencyPower

Density

User 1

User 2

User 3

Time

FrequencyPower

Density

Use

r 1

Time

Frequency

Use

r 2

Use

r 3

Power

Density

Frequency

Time

User 1

User 2

User 3

Power

Density

→ Examples of multiplexing methods

FDM

(Frequency Division Multiplexing)

TDM

(Time Division Multiplexing)

CDM

(Code Division Multiplexing)MF-TDM

(Multi Frequency - Time Division Multiplexing)

Page 10: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channel => distorsions/constraints

10

- AttenuationAbsorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

cooper (Increases with increasing frequency),

- One or several paths between the transmitter and the receiver=> flat fading or frequency selective channel

- Fixed or Mobile transmission=> stationnary or non stationnary channel

- Limited allocated bandwidth: channel bandpass

- Carrier modulated or baseband transmission

- Noise→ External noise = other signals received in addition to the useful communication

signal.

→ Internal Noise = Electronic devices/components inside the receiver.

Page 11: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

→ Wireless propagation via radio waves (or Hertzian waves): frequencies < 3000 GHz, in bands

L : 1.4-1.6 GHz, C : 4-6GHz, Ku : 10.7-12.45 GHz and Ka : 20-30 GHz

→ Need for frequency regulation and multiplexing methods

Global frequency regulation: International TelecommunicationUnion (ITU)

Most commonly used multiplexing methods:TDMA, FDMA and MF-TDMA

→ Attenuation by absorption, scattering due to atmospheric gases, to clouds, to rain. Increases with

increasing frequency.

→ Additive noise: → Other signals received by the antenna in addition to the signal from the satellite:

‒ natural sources: atmosphere (lightning, thunder), Earth, sky (Sun, Milky Way)‒ artificial sources: human activity

→ Electronic devices inside the transmitter, the satellite and the receiver: amplifiers, antennas, etc.

In the desert

To speak with the planes

Off shore

In the mountains

To broadcast television

To give Internet to white spots

Line of Sight

(LOS)

11

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

Page 12: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

- Carrier-modulated transmission bands L : 1.4-1.6 GHz, C : 4-6GHz, Ku : 10.7-12.45 GHz and Ka : 20-30 GHz

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

Baseband

modulator

Frequency

transposition

Baseband

signal

Binary

information

Carrier-modulated

signal

Frequency

transposition

12

Page 13: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

Us

er1

Frequency

Us

er 2

Us

er 3

Power

Density

BW

GatewayTerrestrial stations

Bandwidth allocated to the satellite

Most commonly used multiplexing methods :

TDMA

Time

FrequencyPower

Density

BW

User

1

Time

FrequencyPower

Density

BW

User

2

Channel 2Channel 1 Channel N

Time

FrequencyPower

Density

BW

User

3

Bandwidth BW

Time

Page 14: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

FrequencyPower

Density

BW

GatewayTerrestrial stations

Bandwidth allocated to the satellite

Channel 2Channel 1 Channel N

BW

Time

Time

FrequencyPower

Density

BW

User 1

Time

FrequencyPower

Density

BW

User 2Time

FrequencyPower

Density

BW

User 3

User 1User 2

User 3

Most commonly used multiplexing methods :

FDMA

Page 15: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

Frequency

Power

Density

BW

GatewayTerrestrial stations

Bandwidth allocated to the satellite

Channel 2Channel 1 Channel N

BWTime

Time

FrequencyPower

Density

BW

Time

Frequency

Power

Density

BW Time

FrequencyPower

Density

BW

Most commonly used multiplexing methods :

MF-TDMA

Page 16: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

- Attenuation:

example of the attenuation effect on a DVB-S transmission

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

16

Page 17: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

- Additive White Gaussian Noise (AWGN) channel

y(t) = a x(t - t) + n(t)

x(t)

y(t)

(a , t) , n(t)

Noise,

assumed to be additive,

white and Gaussian

Attenuation and delay

introduced by the channel

Line of Sight

(LOS)

hc(t)

n(t)

x(t) y(t)

→ Channel modelling: filter + noise

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

|Hc(f)|

f

Arg(Hc(f))

f

17

Page 18: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

y(t) = a x(t - t) + n(t)

x(t)

y(t)

(a , t) , n(t)

Noise,

assumed to be additive,

white and Gaussian

Attenuation and delay

introduced by the channel

Line of Sight

(LOS)

hc(t)

n(t)

x(t) y(t)

→ Channel modelling: filter + noise

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

• White, with PSD = N0/2 whatever is the frequency, and N0=k(Te+Ti) k = Boltzmann constant, Te = external noise temperature, Ti = internal noise temperature

• Additive and Gaussian, with power s2

• Added upstream of the receiver, considering then ideal components,

- Additive White Gaussian Noise (AWGN) channel

18

Page 19: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

→ A degradation measurement : the signal to noise ratio (SNR)

SNRdB = 10 log Puseful signal

Pnoise

NRZ-type transmitted signal Noisy signal, SNRdB = 10 dB Noisy signal, SNRdB = 0 dB

Examples :

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

19

- Additive White Gaussian Noise (AWGN) channel

Page 20: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

- Limited allocated bandwidth = channel bandpass BW

Transmission channelExample of free space propagation for fixed satellite telecommunication systems

-BW BW

|Hc(f)|

f

Arg(Hc(f))

f-BW BW

hc(t)

n(t)

x(t) y(t)

20

BW

|Hc(f)|

f

Arg(Hc(f))

fp

BW

-fp

BW

ffp

BW

-fp

Carrier-modulated transmission:Baseband transmission:

Page 21: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channelExample of multi paths transmission channel (WiFi, Digital Terrestrial TV, 4G…)

Transmitted image

100 200 300 400 500

100

200

300

400

500

0 0.5 110

-20

10-10

100

1010

PSD of the transmitted image (SRRC shaping)

Received image

100 200 300 400 500

100

200

300

400

500

0 0.5 110

-20

10-10

100

1010

PSD of the received image

Transmitted image

100 200 300 400 500

100

200

300

400

500

0 0.5 110

-20

10-10

100

1010

PSD of the transmitted image (SRRC shaping)

Received image

100 200 300 400 500

100

200

300

400

500

0 0.5 110

-20

10-10

100

1010

PSD of the received image

21

Page 22: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 1 0 0 1 0 1 1 0

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal: sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0

22

Page 23: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Basic digital transmission channel

23

t

V

- V

Example :

t

V

- V

SNR = 10 dB :

t

V

- V

SNR = 0 dB :

Analog signal:

Corrupted analog signal:

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received binary information: 0 1 0 1 0 1 1 1 1 1

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0

SNR

BER = 0.0784

BER = 2.38 10-6

Analo Signal : sound, image …

BER

B

A

S

I

C

C

H

A

N

N

E

L

Page 24: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 1 0 0 1 0 1 1 0

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal: sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0

Transmission quality is improved:Quality criterion is the Bit Error Rate (BER) which

can be very low even with corrupted receivedanalog signals. Of course BER is a function of SNR.

24

Page 25: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 1 0 0 1 0 1 1 0

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal: sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0

Transmission quality is improved:Quality criterion is the Bit Error Rate (BER) which

can be very low even with corrupted receivedanalog signals. Of course BER is a function of SNR.

Price to pay: occupied bandwidth is larger for digital transmissions.

But source coding will help on this point !25

Example : fixed phone digitizationBanalog = 3.1 kHz

Bdigital 64 kHz (Fe=8kHz, nb=8 bits) ~

Page 26: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channel

Analog signal

B

A

S

I

C

C

H

A

N

N

E

L

Source codingTRANSMITTER

Physical layer

Binary information to transmit: 0 1 1 0 0 1 0 …

Disturbed analog signal

Source decoding

RECEIVER

Physical layer

Received Binary information: 0 1 0 1 0 1 1 …

Basic digital transmission channel

26

Page 27: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Message to transmit: EMMENE MOI A LA MER

E M Espace A N I O R L

4/19 4/19 4/19 2/19 1/19 1/19 1/19 1/19 1/19

0000 0001 0010 0011 0100 0101 0110 0111 1000

Natural binary coding:9 different characters = > 4 bits per character (24=16)

19x4 = 76 bits to be sent, example with 2G transmission (9,6 kbps) : 0,79 ms

Smarter code (Huffman) :

12x2+3x4+4x5 = 56 bits to be sent, example with 2G transmission (9,6 kbps) : 0,58 ms

E M Espace A N I O R L

4/19 4/19 4/19 2/19 1/19 1/19 1/19 1/19 1/19

01 10 11 0000 0011 00100 00101 00010 00011

Gain : 26,32 %

Example of source coding : Huffman coding

27

Page 28: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 1 0 0 1 0 1 1 0

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal: sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0Transmission quality is improved:

Quality criterion is the Bit Error Rate (BER) whichcan be very low even with corrupted received

analog signals. Of course BER is a function of SNR.

Of course there is a price to pay: occupiedbandwidth is larger for digital transmissions.

But source coding will help on this point !

28

Page 29: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Digitization

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information: 0 1 1 0 0 1 0 1 1 0

B

A

S

I

C

C

H

A

N

N

E

L

Analog signal: sound, image …

Basic digital transmission channel

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0Transmission quality is improved:

Quality criterion is the Bit Error Rate (BER) whichcan be very low even with corrupted received

analog signals. Of course BER is a function of SNR.

New functions (digital functions) can be used in the transmission channel, like channel codingallowing to obtain the same BER with a lower

transmitted power.

Of course there is a price to pay: occupiedbandwidth is larger for digital transmissions.

But source coding will help on this point !

29

Page 30: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channel

Analog signal

B

A

S

I

C

C

H

A

N

N

E

L

Channel coding

Source codingTRANSMITTER

Physical layer

Binary information to transmit: 0 1 1 0 0 1 0 …

Disturbed analog signal

Source decoding

RECEIVER

Channel decoding

Physical layer

Received Binary information: 0 1 0 1 0 1 1 …

Basic digital transmission channel

30

Page 31: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

RECEIVER

Physical layer

TRANSMITTER

Physical layer

Example of channel coding

Binary information to transmit: 0 1 1 0

Channel coding

Coded Binary information: 0 0 0 1 1 1 1 1 1 0 0 0

Transmission channel

Modulation

Demodulation

Analog signal

Corrupted analog signal

Decoded Binary information: 0 0 1 1

Channel decoding

Corrupted coded binary information: 0 0 1 1 0 0 1 1 1 1 1 1

Adding redundancyCoding rate = 1/3

Correction ability: 1 error

Detection ability: 2 errors

31

Page 32: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channel

B

A

S

I

C

C

H

A

N

N

E

L

Channel coding

Source codingTRANSMITTER

Physical layer

Modulation

Binary information to transmit: 0 1 1 0 0 1 0 …

Source decoding

RECEIVER

Demodulation

Channel decoding

Physical layer

Received Binary information: 0 1 0 1 0 1 1 …

Basic digital transmission channel

32

Analog signal

Disturbed analog signal

Page 33: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

TRA

NSMIT

TER

Physical layer

Binary information to transmit: 0 1 1 0

Channel coding

Coded Binary information: 0 0 0 1 1 1 1 1 1 0 0 0

BasebandModulation

Analog signal

Example of Modulation

Digital signal

tV

-V

( FrequencyTransposition )

DI

GITAL

MODULATI

ON

Digital to Analog Convertor

Modulation

Example : NRZ signal

RECEIVER

Physical layer

Retrieved binary information: 0 0 1 1

Channel decoding

Corrupted coded Binary information: 0 0 1 1 0 0 1 1 1 1 1 1

BasebandDemodulation

Corrupted Analog signal

Corrupted Digital signal

tV

-V

( Downconversion)

DIGITAL

DE

MODULATION

Analog To Digital Concvertor

Demodulation

Transmission channel

0 0 0 1 1 1 1 1 1 0 0 0

SNR=0 dB

BER=2/4

33

Page 34: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channel

Analog signal

W

H

O

L

E

B

A

S

I

C

C

H

A

N

N

E

L

Channel coding

Source codingTRANSMITTER

Physical layer

Modulation

Binary information to transmit: 0 1 1 0 0 1 0 …

Corrupted analog signal

Source decoding

RECEIVER

Demodulation

Channel decoding

Received Binary information: 0 1 0 1 0 1 1 …

Basic digital transmission channel

Synchronization

DAC

ADC

34

Page 35: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

!! Need for synchronization !!

tV

-V

Binary information to transmit: 0 1 1 0

Signal:

Ts : symbol duration

Time 0

- On the clock

- On the carrier for carrier-modulated transmissions

35

Page 36: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmitter

Transmission channel

Analog signal

Corrupted analog signal

Receiver

Received Binary information:0 1 0 1 0 1 1 …

B

A

S

I

C

C

H

A

N

N

E

L

Performance criteria

Binary information to transmit: 0 1 1 0 0 1 0 1 1 0- Transmit a given bit rate Rb

= Number of bits to betransmitted per second.

- Achieve a given Bit Error Rate

Channel transmission is

designed to:It will cost in terms of:

- Needed bandwidth in the

transmission channel.

- Needed SNR at the receiver

input=> needed transmitted power.

BER = <1Number of erroneous bits

Number of transmitted bits 36

Page 37: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Performance criteria

Channel transmission is

designed to:It will cost in terms of:

- Needed bandwidth B

in the transmission

channel

Spectral Efficiency:

needed bandwidth B to transmit wanted Rb

Power Efficiency:

needed SNR per bit at the receiver input to

achieve wanted BER

- Transmit a given bit

rate Rb = Number of

bits to be transmitted

per second.

- Achieve a given Bit

Error Rate

BER = <1Number of erroneous bits

Number of transmitted bits

- Needed SNR at the

receiver input => needed

transmitted power.

Two main transmission

channel performance criteria

37

Page 38: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Transmission channel

Analog signal

W

H

O

L

E

B

A

S

I

C

C

H

A

N

N

E

L

Channel coding

Source codingTRANSMITTER

Physical layer

Modulation

Binary information to transmit: 0 1 1 0 0 1 0 …

Corrupted analog signal

Source decoding

RECEIVER

Demodulation

Channel decodingPhysical layer

Received Binary information: 0 1 0 1 0 1 1 …

Basic digital transmission channel

Synchronization

DAC

ADC

Bit rate Rb

Needed transmission

bandwidth B

Needed SNR

Bit Error Rate (BER)

Spectral Efficiency:

needed bandwidth B to transmit wanted Rb

Power Efficiency:

needed SNR per bit at the receiverinput to achieve wanted BER

38

Page 39: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Channel transmission is designed to: It will cost in terms of:

- Needed bandwidth B

in the transmission

channel

- Transmit a given bit rate

Rb = Number of bits to

be transmitted per

second.

- Achieve a given Bit

Error Rate

BER = <1Number of erroneous bits

Number of transmitted bits

- Needed SNR at the

receiver input => needed

transmitted power.

39

Rb SNRB

DVB-S example: satellite broadcasting for muti-media contentsQuasi Error Free (QEF) transmission:

BER < 10 -10

Basic digital transmission channel: example

Page 40: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Modulation/demodulation:

joint optimization

→ Signal generation, Spectral efficiency→ Inter Symbol Interference(ISI), Nyquist criterion

→ Matched filtering,

→ BER computation, Power efficiency

40

Page 41: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Binary information: 0 1 1 0 0 1 0 1 1 0

BasebandModulation

Baseband Digital Modulation/Demodulation

x(t) Retrievedbinary information: 0 1 0 1 0 1 1 1 1 1

BasebandDemodulation

Transmission channel

hc(t)

n(t)

r(t)

Bit rate Rb =1/Tb

BER

SNR per bit:

Eb/N0 ?

Occupied

bandwidth B ?

Baseband signal :

Spectrum aroundfrequency0

0

Sx(f)

Performance criteria:

→ Spectral Efficiency: Needed bandwidth B to transmit wanted bit rate Rb

→ Power Efficiency: Needed SNR per bit at the receiver input to achieve wanted Bit

Error Rate (BER)

→ Robustness to non linearities; Signal with constant envelop ?

41

Page 42: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

→ Elementary coding with independent symbols→ Coding using a level :

→Unipolar NRZ :

→Polar NRZ :

→ Coding with an edge→Biphase :

→ Bloc coding with independent symbols→ Coding using a level :

→ Several levels NRZ :

1 0 1 0 1 1 0 0 1 1

Ts

t

+V

0

t

+V

0-V

t

+V

0

-V

Baseband Digital ModulationSome signal examples

Ts=2Tb

t

+3V

0-V

+V

-3V42

Page 43: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Binary information: 0 1 1 0 0 1 0 1 1 0

BasebandModulation

Bit rate Rb =1/Tb

Example (NRZ, M=4):

t

-3

-1

+1

+3

h (t)

t

+1

sT

200 250 300 350-4

-2

0

2

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 50000

500

1000

1500

2000

Bit Rate (bits/s)Symbol rate

(symbols/s or bauds)

Baseband Digital ModulationGeneral model

Binary information 0 1 1 0 0 1 0 1 1 0

M-ary Symbols Shaping filterh(t)

Mapping

Baseband Modulation

x(t)

Symbol rate = number of symbolstransmitted per seconds:

M=number of possible symbols

Occupied

bandwidth B ?

sT43

Page 44: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital ModulationExample on Matlab

Generation of a polar NRZ

%Symbol duration in number of samplesTs=4; %Number of generated bitsnb_bits=100; %Bit generationbits=randint(1,nb_bits);%Symbol generation : 0->-1, 1->1Symboles=2*bits-1;%Weighted Dirac delta function seriesDiracs=kron(Symboles, [1 zeros(1,Ts-1)]); %Shaping filter impulse response (for NRZ)h=ones(1,Ts)%Shaping filteringy=filter(h,1,Diracs);%Signal display plot(y);axis([0 nb_bits-1 -1.5 1.5]);

44

Page 45: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Binary information: 0 1 1 0 0 1 0 1 1 0

BasebandModulation

Bit rate Rb =1/Tb

Baseband Digital ModulationGeneral model

Binary information 0 1 1 0 0 1 0 1 1 0

M-ary Symbols Shaping filterh(t)

Mapping

Baseband Modulation

x(t)

Occupied

bandwidth B ?

where : ; ;

Cyclostationnarysignal

f

Example (NRZ, M=4):

Baseband Pulse Amplitude Modulation : M-PAM = Linear Modulation, spectrum around frequency 0

45

Page 46: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital ModulationSome spectrum examples

→ Two level NRZ (GPS waveform)

x(t)

TS

h (t)

+1

t

46

Page 47: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital ModulationSome spectrum examples

→ Biphase or Manchester (Ethernet waveform : IEEE802.3)

x(t)

h(t)

TS

+1

-1t

47

Page 48: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital ModulationSome spectrum examples

→ Square root raised cosine shaping (DVB-C, DVB-S waveform)

x(t)

TS

h(t)

- TSt

48

Page 49: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital ModulationSpectral efficiency

→ Bandwidth definition:

▪Definition 1 : frequency bandwidth B concentrating x % of the signal energy (typical

values : 95 à 99 %)

▪ Definition 2 : frequency bandwidth beyond which the minimum rejection is of x dB

(typical values: 20 à 30 dB)

→ Spectral Efficiency (bits/s/Hz):

49

M-ary symbols

Page 50: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

Binaryinformation 0 1 1 0 0 1

M-ary Symbols Shaping filterh(t)

Mapping

Baseband Modulation

x(t)

RetrievedBinary

information 0 1 0 1 0 1

Receiver filterhr(t)Mapping-1

Baseband Demodulation

r(t)Decisions

Sampling

Transmission channelhc(t)

n(t)

Decisions

ISI at sampling

instantsNoise

(filtered and sampled)

Term of

Interest

(Inter Symbol Interference)50

Page 51: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

→ Interference visualization at the sampler input : example

t0 2TS

t

TS

-Ts

0

Ts

TS

Ts

Interference (ISI)

on the following symbolInstants where ISI=0

-1 +1 -1 -1 +1 +1 -1

On the signal :

Eye diagram

TFwith

→ Interference suppression at t0+mTs : Nyquist criterion

▪ Time domain expression:

▪ Frequency domain expression:

51

Page 52: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

→ Interference suppression at t0+mTs : frequency domain Nyquist criterion

▪ Example

▪ Nyquist bandwidth

f

……

f

……

⇒ Maximum symbol rate without interferences

at time sampling instants : 52

Nyquist Bandwidth

Page 53: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

→ Example of Nyquist filter : raised cosine filter

53

Page 54: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

→ Example of Nyquist filter : raised cosine filter

Some typical values: α=0.22 (UMTS), α=0.35 (DVB-S), α=0.15 (DVB-C) 54

Page 55: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

→ Example of Nyquist filter : raised cosine filter

Some eyediagrams without noise (on 2Ts)

Without noise, different roll off at the transmitter and receiver:

55

Page 56: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationJoint optimization with the modulation

Decisions

ISI at sampling

instantsNoise

(filtered and sampled)

Term of

Interest

(Inter Symbol Interference)

→ Interference suppression at t0+mTs: Nyquist criterion

Maximize ⬄Maximize

Matched FilterFT-1

→ SNR maximisation at t0+mTs: matched filter (to the received waveform)

Filtered and sampled noise:wm, variance σ2

Term of Interest

( Cauchy-Schwarz inequality: , equality for )

for

56

Page 57: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital DemodulationDecision block

→ Decision rule: Maximum A Posteriori

Binary case:

Nyquist criterion is fulfilled:

(Threshold detector or slicer)

4-ary case:

for equally likely symbols

57

Page 58: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital M-PAM TransmissionPerformance

→ Symbol Error Rate (SER)Matched filtering

▪ Binary case:

▪ M-ary case:

Obtained for a M-PAM modulation (Baseband), in a Nyquist channel, with matched filtering

One erroneous symbol = 2 erroneous bits

One erroneous symbol = 1 erroneous bit

« Natural » mapping: GRAY Mapping

P1>P2

Matched filtering

→ Bit Error Rate (BER): Mapping optimization

D

Example for V=1, N0=10-3 V2/Hz, Rb=1kbps:

58

Page 59: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Baseband Digital M-PAM Transmission

→ BER = f(Eb/N0) for M-PAM transmissions

Obtained results for a M-ary baseband modulations (PAM), in a Nyquist channel, with matched filtering and Gray mapping

BER0

Power efficiency Spectral efficiency

Power efficiency

59

Page 60: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier Modulations:

→ One or two dimensional modulations, → Complex envelop,

→ Equivalent lowpass channel,

→ Performance

The complex envelop associated to the transmitted signal linearly depends

on the message

60

Page 61: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

BasebandModulation

Linear Carrier ModulationOne-dimensionnal

Frequency transposition

Coherent

demodulation

Down conversion

LPF

M-ASK (Amplitude Shift Keying)

Binaryinformation:

0 1 1 0 0

BasebandDemodulation

RetrievedBinary

information: 0 0 1 0 1

61

Page 62: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationOne-dimensionnal

M-ASK (Amplitude Shift Keying)

Example : 4-ASK, rectangular shaping

f

Signal modulated on fp :

62

Page 63: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

BasebandModulation

Linear Carrier ModulationTwo-dimensionnal

Frequency transposition

Binaryinformation:

0 1 1 0 0 BasebandModulation

+

-

BasebandDemodulation

Downconversion

Binaryinformation:

0 1 1 0 0 BasebandDeodulation

LPF

LPF

Coherent demodulation Orthogonal signals

63

Page 64: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

BasebandModulation

Linear Carrier ModulationComplex envelop

Binaryinformation:

0 1 1 0 0 BasebandModulation

I(t)In Phase Component

Q(t)Quadrature Component

Complex envelop associated to x(t)

Frequency transposition

+

-

64

Page 65: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

BasebandModulation

Linear Carrier ModulationComplex envelop

Frequency transposition

Binaryinformation:

0 1 1 0 0 BasebandModulation

+

-

h (t)

Complex envelop

associated to x(t):Complex symbols

Bits Mapping

Complex baseband modulationFrequency

transposition

65

Page 66: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationComplex envelop

h (t)

Complex envelop

associated to x(t):Complex symbols

Bits Mapping

Complex message generation with a baseband modulatorFrequency

transposition

→ The PSD of the carrier-modulated signal:

is obtained from the PSD of its associated complex envelop (known baseband spectrum):

→ But also :

Re-use the results obtained for baseband modulations

66

Page 67: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationTwo main classes of two-dimensionnal modulations

h (t)

Complex envelop

associated to x(t):Complex symbols

Bits Mapping

Complex baseband modulationFrequency

transposition

→ ak and bk:: M-ary independent symbols {+/- 1, +/- 3, …, +/- ( M-1)}

square M-QAM (Quadrature Amplitude Modulation)

M-PSK (Phase Shift Keying)

67

Page 68: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationConstellation

ak

bk

0 1 3 5 7 …… -7 -5 -3 -1

1

3

5

7

.

.

.

-7

-5

-3

-1

.

.

.

ak

bk

Representation of possible dks in the (ak, bk) plane = « constellation » of the modulation

QAM ConstellationsPower efficient

(DVB-C, DVB-T, xDSL)

PSK ConstellationsRobust to non linearities

(DVB-S)

Hybrid modulations : APSK(DVB-S2, DVB-S2X)

68

Page 69: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationExamples

→ Two-dimensionnal linear modulations : M-QAM

Independent and

Example : 4-QAM or QPSK (DVB-S)

I(t) Q(t)

x(t)

69

Page 70: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationExamples

→ Two-dimensionnal linear modulations : M-QAM

Independent and

Example : 16-QAM (DVB-C)

x(t)

* *0111

*0110

0101

*0100

+1 +3

*0010

*0011

*0000

*0001

-3 -1

*

1110

*1111

*

1101

*1100

-1

-3

+3

+1

*1010

*1011

*1000

*1001

ak

bk

I(t) Q(t)

70

Page 71: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationExamples

→ Two-dimensionnal linear modulations : M-PSK

and are linked

Example : 8-PSK (DVB-S2)

x(t)

I(t) Q(t)

Zoom

71

Page 72: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationExamples

→ Hybrid modulations : M-APSK (DVB-S2)

16-QAM

32-APSK (4-12-16 APSK)

M-APSK

16-APSK (4-12 APSK)

ak

* *0111

*0110

0101

*0100

+1 +3

*0010

*0011

*0000

*0001

-3 -1

*

1110

*1111

*

1101

*1100

-1

-3

+3

+1

*1010

*1011

*1000

*1001

72

Page 73: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationExamples

→ Hierarchical modulations : DVB-T and T2, DVB-H, DVB-S2

Example 1 : hierarchical 16-QAM (DVB-T or H)

Internalinterleaver

Mapping

I

Q

HP

BP

* *0111

*0110

0101

*0100

+2 +4

*0010

*

0011

*0000

*

0001

-4 -2

*

1110

*1111

*

1101

*1100

-4

-2

+4

+2

*1010

*1011

*1000

*1001

I

Q

Example 2 : hierarchical 8-PSK (DVB-S2)

73

Page 74: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

h (t)

Complex symbols

Bits Mapping

→ M-ASK:

→ M-QAM:

→ M-PSK:

74

Linear Carrier ModulationTransmitter

Complex baseband modulationFrequency

transposition

Complex envelop associated to :

Page 75: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationReceiver

LPF

LPF

j

Bits Receiver filterhr(t)Mapping-1

Baseband Demodulation

Decisions

Sampling

Downconversion

M-ASK :

M-QAM :

M-PSK :

j

75

Page 76: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Downconversion

jBits

h (t)

Symboles complexes

Bits Mapping

Baseband modulation

Transmissionchannel

hc(t)

n(t)

Receiverfilterhr(t)

Demapping Decisions

SamplingBandPassfilter

Fe > 2 Fmax

Fmax = 2fp +Be

Example of used bandwidth for satellite broadcasting:L: 1.4-1.6 GHz, C: 4-6 GHz, Ku: 10.70-12.75 GHz, Ka: 20-30 GHz.

76

Lowpass

Lowpass

Linear Carrier ModulationEquivalent lowpass channel to reduce the processing time for digital implementations

Baseband Demodulation

Frequency transposition

(Bande Be)

Complex envelop associated to :

Page 77: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Downconversion

jBits

h (t)

Symboles complexes

Bits Mapping

Baseband modulation

Receiverfilterhr(t)

Demapping Decisions

SamplingBandPassfilter

77

Lowpass

LowpassBaseband Demodulation

Frequency transposition

Fmax = Be

Lower sampling frequencies

Equivalent lowpasschannel

(Bande Be)

Complex envelop associated to :

Linear Carrier ModulationEquivalent lowpass channel to reduce the processing time for digital implementations

Page 78: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

ffp-fp

2

ffp-fp

1

(remark: the channel is assumed to be ideal in the figure)

→ Complex envelop associated to the bandpass channel:

78

Linear Carrier ModulationEquivalent lowpass channel: construction

Transmissionchannel

hc(t)

n(t)

Equivalentlow pass channel

Carrier modulated signal:

Associated complex envelop:

Page 79: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

HBPF(f)

f

N0

f2

N0

2

Sn(f)

-fp fp

fp-fp

2N0

ffp-fp

→ Bandpass filtering:

→ Complex envelop associated to the filtered noise:

79

Linear Carrier ModulationEquivalent lowpass channel: construction

f

Equivalentlow pass channel

Page 80: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Equivalent low pass channel

80

Linear Carrier ModulationEquivalent lowpass channel: construction

h (t)

Symboles complexes

Bits Mapping

Baseband modulationFrequency

transposition

Downconversion

jBits

Receiverfilterhr(t)

Demapping Decisions

SamplingBandPassfilter

Lowpass

LowpassBaseband Demodulation

(Bande Be)

Complex envelop associated to :

Page 81: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

h (t)Bits Mapping

Baseband SER computations can be re-used

Symboles complexes

81

Bits

Recieverfilterhr(t)

Demapping Decisions

Sampling

Matched filtering

Fullfill Nyquist criterion on:

Equivalent low pass channel

Baseband modulation

Baseband Demodulation

(Bande Be)

Complex envelop associated to :

Linear Carrier ModulationEquivalent lowpass channel

Page 82: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationPerformance (Hypothesis : Nyquist + Matched filtering)

hr(t)h (t)Bits Mapping Mapping-1

⬄ two independent M- -PAM transmissions

But !! Es = physical parameter = average symbol energy at the receiver input (M symbols dk) !!

Bits

hr(t)h (t)Bits Mapping Mapping-1 Bits

→ M-ASK

→ Squared M-QAM

→ M-PSK

82

Page 83: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Linear Carrier ModulationBER comparison for M-QAM and M-PSK

BER0

Power efficiency for PSKSame spectral efficiency

PSK

QAM

83

Page 84: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Example of physical layer on an AWGN channel:

Satellite Digital Video Broadcasting : DVB-S (1994)

84

Page 85: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Mux Adaptationand energydispersal

Outercode Interleaver Mapper

Shapingfilter

PhysicalInterface

Video Coder

Audio Coder

Data Coder

Source coding and multiplexing

ES PES

Program 1

Video Coder

Audio Coder

Data Coder

ES PES

Program N

PCRSTC 1

PCRSTC N

Program Information

Transport Stream

Reed SolomonRS(204,188, t=8)

Forney ConvolutionnalInterleaving

QPSK SRRCF α = 0.35

MPEG-2 SystemTransport stream

generation

Innercode

Convolutional Code (7,1/2)

To RF Satellite Channel

Physical layer

85

Satellite Digital Video Broadcasting : DVB-SPhysical layer

Bitrates

Digital TV transmission must be « Quasi Error

Free » (QEF) TEB < 10-10

Page 86: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Mux Adaptationand energydispersal

Video Coder

Audio Coder

Data Coder

Codage source et multiplexage

ES PES

Program 1

Video Coder

Audio Coder

Data Coder

ES PES

Program N

PCRSTC 1

PCRSTC N

Program Information

Train transport

Satellite Digital Video Broadcasting : DVB-SPhysical layer

Scrambling

Example on an image

PSD of theunscramble signal :

PSD of thescramble signal :

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

-10

10-8

10-6

10-4

10-2

100

102

104

Fréquences normalisées

DS

P

Partie positive de la DSP du signal émis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

-12

10-10

10-8

10-6

10-4

10-2

100

102

Fréquences normalisées

DS

P

Partie positive de la DSP du signal émis

86

Page 87: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Mux Adaptationand energydispersal

Outercode Interleaver

Video Coder

Audio Coder

Data Coder

Codage source et multiplexage

ES PES

Program 1

Video Coder

Audio Coder

Data Coder

ES PES

Program N

PCRSTC 1

PCRSTC N

Program Information

Train transport

Reed SolomonRS(204,188, t=8)

Forney ConvolutionnalInterleaving

Innercode

Convolutional code

(7,1/2)

A digital TV transmission must be « Quasi Error Free » (QEF) :

TEB < 10-10

Satellite Digital Video Broadcasting : DVB-SPhysical layer

Forward Error Correction (FEC)

-4 -3 -2 -1 0 1 210

-5

10-4

10-3

10-2

10-1

100

Eb/N

0 (dB)

TE

B

TEB théorique non codé

TEB simulé non codé

TEB simulé, codage convolutif

TEB simulé, codes concaténés sans entrelaceur

TEB simulé, codes concaténés avec entrelaceur

87

Page 88: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

Mux Adaptationand energydispersal

Outercode Interleaver Mapper

Shapingfilter

PhysicalInterface

Video Coder

Audio Coder

Data Coder

Codage source et multiplexage

ES PES

Program 1

Video Coder

Audio Coder

Data Coder

ES PES

Program N

PCRSTC 1

PCRSTC N

Program Information

Train transport

Reed SolomonRS(204,188, t=8)

Forney ConvolutionnalInterleaving

QPSK SRRCF α = 0.35

Innercode

Convolutional code

(7,1/2)

To RF Satellite Channel

Satellite Digital Video Broadcasting : DVB-SPhysical layer

Modulation

)(1fpour

pour

pour

N

a

aaa

a

f

fffFf

f

ff

fH NN

N

N

N

0

)1()1(2

sin2

1

2

1

)1(1

)(

2/1

AWGN channelwith non linearities

88

Page 89: Digital Communications (DCOM)thomas.perso.enseeiht.fr/Slides_DCOM_2018_2019_V4.pdf- Attenuation Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for

References

→ Digital Communications, J. G. Proakis, Mac Graw Hill Book Cie

→ Telecommunications system engineering, Lindsay and Simon, Prentice Hall

→ Digital communication by satellite, J.J. Spilker, Prentice Hall

→ Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for 11/12 GHz satellite services, norme ETSI EN 300 421.

→ Digital Video Broadcasting (DVB): User guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2), norme ETSI EN 102 376.

89