21
1/21 Differentiation DPP-1 First Principle, Basic & Chain Rule Subjective Section : 1. Find the derivative of the following functions w.r.t. x from the first principle: (i) ), cos(ln x (ii) x x cos ) (sin (iii) C a log where x x a & C is constant (iv) x sin (v) ) x ( cos 2 1 (vi) ). 1 x sin( 2 (vii) If f(x) = x ) 1 ( ' f find , x tan 1 . (viii) x e x (ix) x e sin . 2. Let f, g and h are differentiable functions. If 3 ) 0 ( ; 2 ) 0 ( ; 1 ) 0 ( h g f and the derivatives of their pair wise products at x = 0 are 4 ) 0 ( )' gh ( ; 6 ) 0 ( )' fg ( and 5 ) 0 ( )' hf ( then compute the value of (fgh)’(0). 3. Find the derivative with respect to x of the function: 2 1 x sin x cos x 1 x 2 arcsin ) x cos )(log x sin (log at 4 x . 4. If 1 x x ln 1 x x 2 1 2 x y 2 2 2 prove that 2y = xy’ + ln y’. where’ denotes the derivative. 5. If 3 2 3 x Kx 3 )] x ( f [ then 0 )] x ( f [ nx ) x ( " f 5 2 . Find the value of n in terms of K. 6. If 2 x tan b a b a tan b a 2 y 1 2 2 , then show that 2 2 2 ) bcox a ( x sin b dx y d 7. Given ) 1 2 ( cos ) 1 ( 3 5 2 2 x x x y find dx dy 8. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x) and h(x) are differentiable functions. At som point ), x ( f 4 ) x ( ' f ), x ( F 21 ) x ( ' F , x 0 0 0 0 0 ). x ( kh ) x ( ' h and ), x ( g 7 ) x ( ' g 0 0 0 0 Then k= ………… 9. If f(x)=|x–2| and g(x)=f(f(x)) then g’(x)=…..for x>20. 10. If x x x x x x y cos 10 3 cos 5 5 cos 10 2 cos 15 4 cos 6 6 cos , then find dx dy . 11. If 1 3 sin ln 2 x y , then find dx dy .

Differentiation DPP-1 First Principle, Basic & Chain Rule

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differentiation DPP-1 First Principle, Basic & Chain Rule

1/21

Differentiation

DPP-1

First Principle, Basic & Chain Rule

Subjective Section :

1. Find the derivative of the following functions w.r.t. x from the first principle:

(i) ),cos(ln x (ii) xx cos)(sin (iii) Calog where xxa & C is constant

(iv) xsin (v) )x(cos 21 (vi) ).1xsin( 2

(vii) If f(x) = x )1('ffind,xtan 1 . (viii)x

e x

(ix) xesin .

2. Let f, g and h are differentiable functions. If 3)0(;2)0(;1)0( hgf and the derivatives of their pair wise

products at x = 0 are 4)0()'gh(;6)0()'fg( and 5)0()'hf( then compute the value of (fgh)’(0).

3. Find the derivative with respect to x of the function:

2

1xsinxcos

x1

x2arcsin)xcos)(logxsin(log

at

4x

.

4. If 1xxln1xx2

1

2

xy 22

2

prove that 2y = xy’ + ln y’. where’ denotes the derivative.

5. If 323 xKx3)]x(f[ then 0)]x(f[

nx)x("f

5

2

. Find the value of n in terms of K.

6. If

2

xtan

ba

batan

ba

2y 1

22, then show that

22

2

)bcoxa(

xsinb

dx

yd

7. Given )12(cos

)1(3

5 2

2

x

x

xy find

dx

dy

8. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x) and h(x) are differentiable functions. At som point

),x(f4)x('f),x(F21)x('F,x 00000 ).x(kh)x('hand),x(g7)x('g 0000 Then k= …………

9. If f(x)=|x–2| and g(x)=f(f(x)) then g’(x)=…..for x>20.

10. Ifxxx

xxxy

cos103cos55cos

102cos154cos66cos

, then find

dx

dy.

11. If

1

3sinln

2xy , then find

dx

dy.

Page 2: Differentiation DPP-1 First Principle, Basic & Chain Rule

2/21

Objective Section

1. If |,x|lny then dx

dy

(a) 1/x (b) – 1/x (c) |x|/1 (d) None of these

2. The differential coefficient of )x(logf e with respect to x, when ,xlog)x(f e is

(a) xlog

x

e

(b) x

xloge (c) xlogx

1

e

(d) None of these

3. If )x(lnlog)x(f x , then at x = e, f’(x) equals

(a) – 1/e (b) 1/e (c) – e (d) e

4. If )ee(2

ay a/xa/x and y4

dx

yd

2

2

, then a equals

(a) 2 (b) 1 (c) 1/2 (d) 2/1

5. The derivative of the function ))x2((coscos 2/11 at 6

x

is

(a) 2/1)3/2( (b) 2/1)3/1( (c) 2/13 (d) 2/16

6. d.c. of 202 x.t.r.wxsin is

(a) x

xcosxsin 00

(b) x

x2sin

90

0 (c)

x

x2sin

360

0 (d) None of these

7. If x16cos.x8cos.x4cos.x2cos.xcos)x(f then

4'f is

(a) 2 (b) 2

1 (c) 1 (d) None of these

8. If 1x2)x('f 2 and )x(fy 2 then dx

dy at x = 1 is

(a) 2 (b) 1 (c) – 2 (d) None of these

9. If ,)x(cos)x(siny 211 then dx

dyx

dx

yd)x1(

2

22

(a) 0 (b) 1 (c) 4 (d) 3

10. If )x(fn

1ne)x(f for all Nn and x)x(f0 then )}x(f{dx

dn is equal to

(a) )}x(f{dx

d).x(f 1nn (b) )x(f).x(f 1nn

(c) )x(f).x(f).....x(f).x(f 121nn (d) None of these

11. If dx

dy,10logxlog10logxlogy 10xx10

(a) })10(log1{x

elog 2x

10 (b) })10(log1{x

1 2x

(c) })x(log1{elog

1 210

10

(d) })10(log1{x

0log 2x

10

12. If y = ))(( bxxa - (a - b) tan-1

dx

dythen

bx

xa,

(a) 1 (b) bx

xa

(c) bxxa (d) )[

1

xbxa

Page 3: Differentiation DPP-1 First Principle, Basic & Chain Rule

3/21

13. If 1

1tan 1

x

xy , then

dx

dy is equal to :

(a) 1x|x|2

1

2

(b)

1xx2

1

2

(c)

1xx2

1

2

(d) None of these

14. If f(x) = ln (ln sin x) then

6'

f has the value :

(a) 2l3

1

n (b)

2l

3

n (c)

2l

3

n (d) None of these

15. Let R)1,1(:f be a differentiable function with f(0)= –1 and f’(0) = 1. Let 2)]2)(2([)( xffxg . Then g’(0)=

(a) 4 (b) –4 (c) 0 (d) –2.

16. If y = sec(tan-1 x), then dx

dy at x = 1 is

(a) 2

1 (b)

2

1 (c) 1 (d) None of these

17. A function f, defined for all positive real numbers, satisfies the equation f(x2) = x3 for every x > 0. Then the value of

f’(4) =

(a) 12 (b) 3 (c) 3/2 (d) Cannot be determined

18. xx ee)x(f - 2 sin x - 3

2x3, then the least value of n for which

0x

n

n

)x(fdx

d

is non – zero is

(a) 5 (b) 6 (c) 7 (d) 8

19. If 1x3x

1xxy

2

24

and

dx

dy = ax + b, then the value of a – b is

(a) 8

cot

(b) 12

5cot

(c)

12

5tan

(d)

8

5tan

20. If f(x) = x4tan (x3) – x ln (1 + x2), then the value of 4

4

dx

))x(f(dat x = 0 is

(a) 0 (b) 6 (c) 12 (d) 24

21. If ,bxa

xlogxy

then

2

23

dx

ydx equals to

(a) ydx

dyx (b)

2

ydx

dyx

(c) x

dx

dyy (d)

2

xdx

dyy

22. If y = logcos

2

eetan

xx1 then y’ (0) is equal to

(a) e + e-1 (b) e – e-1 (c) 2

ee 1 (d) None of these,.

23. If y = eax sin bx, thendx

dya2

dx

yd2

2

is equal to

(a) y)ba( 22 (b) y)ba( 22 (c) –y (d) none of these.

24. Differential coefficient of

n

1

nm

m

x .m

1

ln

nm

x

.nm

1

m

n

x

w.r.t. x is

(a) 1 (b) 0 (c) -1 (d) mnx

Page 4: Differentiation DPP-1 First Principle, Basic & Chain Rule

4/21

25. If y = f

65

43

x

x& f' (x)= tan x2 then

dx

dy

(a) tan x3 (b) 2

2

)65(

1.

65

43tan2

xx

x

(c) 2

2

2

tan6tan5

4tan3x

x

xf

(d) None

26. If y = log5 log5 x, then dx

dy is equal to

(a) xlogx

1

)5(log

12

(b) )x)(log5(log

1

e

(c) x)5(log

1 (d) none of these.

27. If u = ax + b then ))bax(f(dx

dn

n

is equal to

(a) ))u(f(du

dn

n

(b) ))u(f(du

da

n

n

(c) ))u(f(du

da

n

nn (d) ))u(f(

dx

da

n

nn

28. If xxxy , x > 0, then dy/dx at x = 1 is

(a)

24

243

212

1 (b)

24

243

21

1(c)

28

243 (d)

21

243

DPP-2 (Logarithm)

Subjective Section:

1. If dx

dyfindxxy xx )(ln)(cos ln .

2. If xeexxe exx xeey . Find

dx

dy.

3. If x

yx ya.exlny

find dx

dy.

4. If f(x) =

2cot

21

xxx, then the value of f’(1).

5. If ]a)axln[(xy 11 , prove that 1ydx

dyx

dx

yd)1x(x

2

2

.

6. Find the differential coefficient of the function xlog22x

exsinxsinlog)x(f w.r.t. 1x

7. If 1)cx(

c

)cx)(bx(

bx

)cx)(bx)(ax(

axy

2

, Prove that

xc

c

xb

b

xa

a

x

1

y

'y

8. Let xxsinx )x(taney3

find dx

dy

9. If y = ))((cos)(sin ln bxaeecx xx and a + b = e2

then the value of

dx

dy at x = 1.

10. If f(x) = (x + 1) (x + 2) (x + 3) …. (x + n) men find f’(0). .

Page 5: Differentiation DPP-1 First Principle, Basic & Chain Rule

5/21

11. If f(x) =

100

1

)101()(n

nnnx then find )101('

)101(

f

f.

12. Let f(x) = h

xhx xhx

h

ln)ln(

0

)(sin))(sin(lim

, then find

2

f .

13. If 2

. xx

exy find y’(1)

14. If x

x xy

x 4

log

4tan2

22

then find

1

xdx

dy.

15. Let y =

x

x

xx

111

1 then find y’(1)

Objective Section:

1. (a) If dx

dy,xy )x( x

(a) )xxlog).ex(logx(y xx (b) )xxlog).ex(logx(y x

(c) )xxlog).ex(logx(y 1xx (d) )xxlog).x(logx(y 1xe

x

2. If k)y(sin)x

2sin(

, then at x = 1, dx

dy equals

(a) (b) 2/ (c) kln)2/( (d) None of these

3. If |xsin||x|)x(f ; then )4/('f equals

(a)

224ln

2

2

4

2/1

(b)

224ln

2

2

4

2/1

(c)

22

4ln

2

2

4

2/1

(d)

22

4ln

2

2

4

2/1

4. If ),nx(f))x(f( n then )x('f

)nx('f

(a) )nx(f

)x(f (b)

)x(f

)nx(f (c) )x(f).nx(f (d) None of these

5. If dx

dythenxy x ,)(sin tan is equal to

(a) )xsinlogxsec1()x(sin 2xtan (b) xcos.)x(sinxtan 1xtan

(c) xsinlogxsec)x(sin 2xtan (d) 1xtan)x(sintan

6. If dx

dythenyxyx nmnm ,)( is

(a) xy

yx (b) xy (c)

y

x (d)

x

y

7. If 0))2tan(log(2)2(sec2

3)(sin 1)2/sin( xxy xx then dy/dx at x = -1 is

(a) 3

32

(b) 3

12

(c) 3

32

(d) 3

32

Page 6: Differentiation DPP-1 First Principle, Basic & Chain Rule

6/21

DPP-3 (Implicit)

Subjective Section:

1. If .eyx22 yx

yarcsin

22 Prove that 0x,

)yx(

)yx(2

dx

yd3

22

2

2

.

2. If

................x

1x

1x

1xy

, prove that

..............x

1x

1x

x2

1

dx

dy

3. If )yx.(ay1x1 33366 , prove that 6

6

2

2

x1

y1

y

x

dx

dy

.

4. Let

.................x2

1x2

1x2

1x)x(f .

Compute the value of ).100('f).100(f

5. If ,xy24y9yx7x 34224 show that x

y

dx

dy .

6. If ,xsinyxe 2xy then at x=0, dx

dy………

7. If 02 22 byhxyax then prove that x

y

byhx

hyax

dx

dy

.

8. Find

dx

dyif sin y = xx coslogsin .

9. If 2 xy yx then find dx

dy.

10. If 0)1()( xyyxx , then show that 2)1(

1

xdx

dy

.

11. If ................ xxxxyyyy , prove that 1

1

yx

yx

dx

dy.

12. If

........1

cos

1

sin

1

cos

1

sin xxxxy then find y’(0).

13. If

xxxxy find y’.

14. Find ,dx

dy if 1)(tan cot1 xy yx .

15. If x =

toyy

y

y

....

1

1

1, prove that xyyx

dx

dy32 22 .

Page 7: Differentiation DPP-1 First Principle, Basic & Chain Rule

7/21

Objective Section:

1. If yxy ex then dx

dy

(a) )xln1(

xln

(b)

2)xln1(

xln

(c)

2

2

)xln1(

xln

(d) None of these

2. If .............yxyxy , then dx

dy equals to

(a) 1xy2y2

xy

3

2

(b)

1xy2y2

xy

3

2

(c)

1xy2y2

yx

3

2

(d) None of these

3. If 1yx 22 , then

(a) 01)'y(2"yy 2 (b) 01)'y("yy 2 (c) 01)'y("yy (d) 01)'y(2"yy 2

4. If ,ae)yx( )x/y(tan22 1

a > 0 then )0("y is

(a) 2/e2

a (b) 2/ae (c) 2/ea

2 (d) None of these

5. The value of y” if 05yx5yx2x 223 and y = 1 at x = 1

(a) 27

228 (b)

27

164 (c)

27

166 (d)

27

228

6. If y = y(x) and it follows the relation x cos y + y cos x = π, then y”(0)

(a) 1 (b) – 1 (c) π (d) – π

7. If )yasin(xysin and acosx2x1

A

dx

dy

2 then the value of A is

(a) 2 (b) cos a (c) sin a (d) None of these

8. If sin (x + y) = ex+y –2, thendx

dy is equal to

(a) 1 (b) 2 (c) -1 (d) N.O.T.

9. If x2 + y2 = t

1t and x4 + y4 =

2

2

t

1t , then x3y

dx

dy=

(a) 0 (b) 1 (c) – 1 (d) None of these

10. If

22

221

yx

yxsin = log a, then

dx

dyis equal to

(a) y

x (b)

2x

y (c)

22

22

yx

yx

(d)

x

y

11. If (sin x) (cos y) = ½, then d2y/dx2 at ( )4/,4/ is

(a) – 4 (b) – 2 (c) – 6 (d) 0

12. If x2 + y2 = a2 and k = a

1, then k is equal to

(a) 'y1

"y

(b)

32 )'y1(

|"y|

(c)

2'y1

"y2

(d)

32 )'y1(2

"y

13. Let y be an implicit function of x defined by 01cot22 yxx xx . Then y’(1) equals:

(a) –1 (b) 1 (c) log 2 (d) –log 2

14. If xy2)yxln( , then y’(0) =

(a) 1 (b) – 1 (c) 2 (d) 0

Page 8: Differentiation DPP-1 First Principle, Basic & Chain Rule

8/21

DPP-4 (Parametric Form & Function of Function)

Subjective Section:

1. Differentiate 22

22

x1x1

x1x1

w.r.t. 4x1 .

2. If ,sineccosy;sineccosx nn then show that 0)4y(ndx

dy)4x( 22

22

3. If ttx 2coscos2 & t2sintsin2y , find the value of )dx/yd( 22 when )2/(t .

4. If x4secy and )t(tanx 1 , prove that .)tt61(

)t1(t16

dx

dy242

4

5. A function y of x is represented parametrically as x = a cos t, y = b sin t Find 2

2

dx

yd.

6. Find 22 /dxyd (independent of t), of the function defined parametrically as x = sin (ln t), y = cos

(ln t).

Objective Section:

1. If ),tcos1(ay),tsint(ax then dx

dy

(a) 2

ttan (b)

2

tcot (c)

2

tsec (d)

2

teccos

2. If 2

2

2 1

3,

1

3

t

ty

t

tx

, then dy/dx at t = 2 is

(a) 3

2 (b)

3

2 (c)

3

4 (d)

3

4

3. If ,cossecy,cossecx 22 then yy’ equals

(a) )x2(x2 2 (b) )x2(x2 2 (c) )2x(x2 2 (d) None of these

4. Let the function )x(fy be given 7t20t5tx 35 and ,3t18t3t4y 23 where ).2,2(t Then )x('f at t = 1 is

(a) 5/2 (b) 2/5 (c) 7/5 (d) None of these

5. The differential coefficient of 1x2

1eccos

2

1

with respect to 2x1 at 2

1x is

(a) – 4 (b) 4 (c) -1 (d) None of these

6. If tlogy,tcosx e then at 2

2

2

dx

dy.

dx

yd,2/t

equals

(a) 1 (b) – 1 (c) 0 (d) 2

7. If bxcos)x('g,axsin)x('f),x(gv),x(fu ba then at x = 1, dv

du equals (a > 0, b > 0)

(a) bsecasinb

a (b) baec

a

bcoscos (c)

a

b (d)

b

a

8. If t1t1

t1t1e x

and

t1

t1

2

ytan

, then

dx

dyat

2

1t is :

(a) – 1/2 (b) 1/2 (c) 0 (d) None of these

Page 9: Differentiation DPP-1 First Principle, Basic & Chain Rule

9/21

9. Let y = t10 + 1 and x = t8 + 1, then 2

2

dx

yd is

(a) t2

5 (b) 20 t8 (c)

6t16

5 (d) None of these

10. If x = 3 cos t, y = 4 sin t, then dy/dx at the point (x = 23 /2, y = 22 ) is

(a) 3

2 (b)

3

2 (c)

3

4 (d)

3

4

11. Differential coefficient of log10x with respect to logx 10 is

(a) 2

2

)(log

)10(log

x (b)

2

2

)10(log

)10(log x (c) 2

210

)10(log

)(log x (d)

2

2

)10(log

)(log x

12. If a function is represented parametrically by the equations tt

yt

tx

2

2

3,

123

then

(a) dx

dy

dx

dyx

1

2

(b) dx

dy

dx

dyx

1

3

(c) dx

dyx

dx

dy

3

(d) dx

dyx

dx

dyx

1

3

DPP-5 (Inverse) Subjective Section:

1. Let 2x,3x4x)x(f 2 and let g be the inverse of f. Find the value of g’ where f(x) = 2

2. If 2

1

u1

utany

&

1,

2

1

2

1,0u,

1u2

1secx

2

1 prove that 01dx

dy2

3. If ,xsin1xsin1

xsin1xsin1coty 1

find

dx

dy if

,

220x .

4. If

x1

x1tan2sin

x11

xtany 1

2

1 , then find dx

dy for )1,1(x .

5. If ..........13x7x

1tan

7x5x

1tan

3x3x

1tan

1xx

1tany

2

1

2

1

2

1

2

1

to n terms. Find dy/dx, expressing

your answer in 2 terms

6. (a) Find the derivative of

2

21

x1

x1cos when 0x , using the substitution x = tan θ.

(b) If ,x1

x1sin)x(f

2

21

find Rx)x('f , clearly stating the point(s) where f(x) is not derivable . Also draw the graph of

y = f(x) and state its range and monotonic behavior.

7. If the function 2

x2 ex)x(f and g(x)= ),x(f 1 then the value of g’(1) is

8. Let ,2cos

sintansin)(f 1

where .

44

Then the value of ))(f(

)(tand

d

is

9. If y = f(x) = 53 xx and g is the inverse of f then find g’(2) (i.e. dx/dy when y = 2).

Page 10: Differentiation DPP-1 First Principle, Basic & Chain Rule

10/21

10. If the function 32

14)(32

2

1xx

xexf

x

and g(x) = )(1 xf , then find the value of g’

6

7.

11. Differentiate )1()1(

)1()1(tan 1

xx

xx

.

12. Find the derivative of y =

2

1

1

2sin

x

x and mention the points of non-differentiability. Also find (i)

f’(2) (ii) f’

2

1 (iii) f’(1).

13. Find the derivative of

2

1

1

2tan

x

xy .

14. Find the derivative of y = )34(cos 31 xx .

Objective Section:

1. If

abx

baxtany 1 then

dx

dy

(a) )x1(

1

2 (b)

)x1(

1

(c)

22 )x1(

1

(d) None of these

2. If

1x

x1

21

2tany , then

dx

dy at x = 0 is

(a) 1 (b) 2 (c) 2log)5/3( (d) 10

2log

3. Let ),0[),0[:f be a function defined by 2x)x(fy then

2

2

2

2

dy

xd.

dx

yd is equal to

(a) 1 (b) 2x2/1 (c) 3x2/1 (d) 3x2/1

4. If .xlog61

xlog23tan

)exlog(

)x/elog(tany 1

2

21

then

2

2

dx

yd is

(a) 2 (b) 1 (c) 0 (d) – 1

5. xcoscosdx

d 1 is equal to

(a) xsec12

1 (b) xsec1 (c) xsec1

2

1 (d) xsec1

6.

x1

x1cotsin

dx

d 12 is equal to

(a) – 1 (b) 2

1 (c)

2

1 (d) 1

Page 11: Differentiation DPP-1 First Principle, Basic & Chain Rule

11/21

7. The function f(x) = ex + x, being differentiable and one to one, has a differentiable inverse f-1(x_. the value of dx

d(f-

1) at the point f(log2) is

(a) 2ln

1 (b)

3

1 (c)

4

1 (d) None of these

8. The derivative of

x

1x1tan

21 with respect to

2

21

x21

x1x2tan at x = 0 is

(a) 1/8 (b) 1/4 (c) 1/2 (d) 1

9.

x31

)x3(xtan

dx

d 1 =

(a) x)x1(2

1

(b)

x)x1(

3

(c)

x)x1(

2

(d)

x)x1(2

3

10. If xexy then

2

2

dy

xd is :

(a) xe (b) 3x

x

e1

e

(c)

2xx

e1

e

(d)

2x)e1(

1

11. If g is the inverse of f & f’(x)=5x1

1

then g’(x)=

(a) 1+[g(x)]5 (b) 5)]x(g[1

1

(c)

5)]x(g[1

1

(d) None

12. 2

2

dy

xdequals

(a)

1

2

2

dx

yd (b)

31

2

2

dx

dy

dx

yd (c)

2

2

2

dx

dy

dx

yd (d)

3

2

2

dx

dy

dx

yd

13. Let f(x) = x + sin x. Suppose g denotes the inverse function of f. The value of g’

2

1

4

has the value

equal to

(a) 12 (b) 2

12 (c) 22 (d) 12

14. If y = cos-1(cos x), then dx

dy at x =

4

5 is

(a) 1 (b) – 1 (c) 2

1 (d) None of these

15. If f(x) = sin-1 cos x, then the value of f(10) + f’(10) is

(a) 2

711

(b) 11

2

7

(c) 11

2

5

(d) None of these

16. If f(x) = 2 sin-1 x1x2sinx1 1 , where

2

1,0x , then f’(x) is

(a) x1x

2

(b) zero (c)

x1x

2

(d)

Page 12: Differentiation DPP-1 First Principle, Basic & Chain Rule

12/21

17. If

2

1

x1

x2cosy , then

dx

dy is

(a) 2x1

2

for all x (b)

2x1

2

for all |x| < 1 (c)

2x1

2

for |x| > 1 (d) None of these

18. If y = cos-1

13

xsin3xcos2, then

dx

dy is equal to

(a) 1 (b) 0 (c) constant (1) (d) none of these.

DPP-6 (Determinant)

Subjective Section:

1. If

1)cx()cx(

1)bx()bx(

1)ax()ax(

)x(f34

34

34

then

1)cx()cx(

1)bx()bx(

1)ax()ax(

.)x('f24

24

24

. Find the value of λ.

2. If 2

222

222

x2sin0x2sin

)xxsin()xxcos()xxsin(

)xxcos()xxsin()xxcos(

)x(f

then find f’(x).

3. If α be a repeated root of a quadratic equation f(x) = 0 & A(x), B(x), C(x) be the polynomials of degree 3, 4, & 5

respectively, then show that

)('C)('B)('A

)(C)(B)(A

)x(C)x(B)x(A

is divisible by f(x), where dash denotes the derivative.

4. Let .

xrxqxp

xnxmml

xcxbba

)x(f

Show that f”(x) = 0 and that f(x) = f(0) + kx where k denotes the sum of all the co-factors of

the elements in f(0).

5. If Y = sX and Z = tX, where all the letters denotes the functions of x and suffixes denotes the differentiation w.r.t. x then

prove that 22

113

222

111ts

tsX

ZYX

ZYX

ZYX

6. If f, g, h are differentiable functions of x and (x) = ,

)"()"()"(

)'()'()'(222 hxgxfx

xhxgxf

hgf

prove that

)'"()"()'"(

''')(

333 hxgxfx

hgf

hgf

dx

xd

.

7. If f(x) = 32

)2/cos()2/sin(!

cossin

aaa

nnn

xxxn

then find the value of n

n

dx

d (f(x)) at x = 0 for n = 2m + 1.

Page 13: Differentiation DPP-1 First Principle, Basic & Chain Rule

13/21

Objective Section:

1. If

1x21xx

x3x22x

xlx

432

2

find the value of dx

d at x =0

(a) 2 (b) -2 (c) 4 (d) -4

2. If 32

32

32

)1x()1x(x

)1x(x1x

x)1x(1x

)x(D

the coefficient of x in D(x) is-

(a) 5 (b) -1 (c) 6 (d) 0

3. Let 32

3

016

cossin

)(

ppp

xxx

xf where p is a constant. Then 0))((3

3

xatxfdx

d is

(a) p (b) 2pp (c) 3pp (d) independent of p.

DPP-7 (L-Hospital Rule) Subjective

1.

2

2

10x x

x1

xsinx

1Lim 2.

20x x

)x1ln(xcosxLim

3.

xsin

1

x

1Lim

220x 4. If 1

ax

xaLim

ax

ax

ax

find ‘a’

5. xtan.x

)x1ln(xcosxsin1Lim

20x

6. )x2(tanlogLim 2

xtan0x2

7. Determine the values of a, b and c so that 1x

xsincx)xcosba(Lim

50x

8. )xln(sinxsin1

)x(sinxsinLim

xsin

2x

9. )xcos1)(xsinx(

xx

xsinlnx3

Lim

32

0x

10. )xx2cos(.ln

)x3sin(Lim

2

2

0x

11. If 432

32

0x xx2)x1ln(.x2

xcxbxxsinaLim

exists & is finite, find the values of a, b, c & the limit.

12. Find the values of constants a, b & c so that 2xsinx

cxe)x1ln(baxeLim

2

xx

0x

.

Page 14: Differentiation DPP-1 First Principle, Basic & Chain Rule

14/21

Objective Section:

1. The value of x

xx

x2sin1

)sin(cos22lim

3

4

is

(a) 2

3 (b)

3

2 (c)

2

1 (d) 2 .

2. ||

2cos2cos

21 xx

xLimitx

=

(a) 2cos 2 (b) -2cos2 (c) 2sin2 (d) -2sin 2

3. If g(x) = - 225 x , then 1

)1()(lim

1

x

gxg

x is equal to

(a) 24

3 (b)

24

1 (c) -

24

1 (d) none of these.

4. If function f(x) is differentiable at x = a then ax

xfaafx

ax

)()(lim

22

is

(a) )(')( 2 afaaaf (b) )(')(2 2 afaaaf (c) )(')(2 2 afaaaf (d) )('2 afa

5. If )(),( agaf nn exist and are not equal for some n. Further if f(a)=g(a)=k and

,4)()(

)()()()()()(lim

xfxg

agxfagafxgaf

ax then the value of k is equal to

(a) 4 (b) 2 (c) 1 (d) 0

6. Let f(2)=4 and f’(2)=4. Then 2

)(2)2(lim

2

x

xfxf

x is given by

(a) 2 (b) –2 (c) –4 (d) 3.

7. For x > 0, xsinx/1

0x)x1()x(sinLim

is

(a) 0 (b) – 1 (c) 1 (d) 2

DPP-8 (Miscellaneous)

Subjective Section:

1. If |,xsin||x4cos|logy u where x2secu , find 6/xdx

dy

2. If f: R → R is a function such that )3('")2(")1(')( 23 fxffxxxf for all ,Rx then prove that

)0(f)1(f)2(f .

3. Show that the substitution

2

xtanlnz changes the equation 0cos4cot 2

2

2

xecydx

dyx

dx

yd to

.0y4)dz/yd( 22

4. Prove that IK,Kx,xsin2

nx2sinx)1n2cos(.........x5cosx3cosxcos and deduce from this:

xsin4

]x)1n2sin()1n2(x)1n2sin()1n2[(x)1n2sin()1n2(.....x5sin5x3sin3xsin

2

5. Find a polynomial function f(x) such that )x("f)x('f)x2(f .

Page 15: Differentiation DPP-1 First Principle, Basic & Chain Rule

15/21

Objective Section:

1. If |xsin||xcos|y then dx

dy at

3

2x

is

(a) 2

31 (b) 0 (c)

2

13 (d) None of these

2. Let )x(f)x(f , hence f(x) is an even function. Then f’(x) must be

(a) an even function (b) an odd function (c) a periodic function (d) either even nor odd

3. If |x|1

x)x(f

then f’(x) equals

(a) |)x|1(

1 (b)

|x|1

1

(c)

|x|1

x

(d) None of these

4. If }x]x[3

sin{ 2

for 2 < x < 3 and [x] denotes the greatest integer less than or equal to x then )3/('f is

equal to

(a) 3

(b)

3

(c)

2

(d) None of these

5. If a)x(Py2 polynomial of degree 3 then

dx

ydy

dx

d2

23 equals

(a) )x('P)x('"P (b) )x('"p).x("p (c) )x("'P).x(P (d) None of these

6. If 21

3)(5

x

xfxf and )x(xfy then

1xdx

dy

is equal to

(a) 14 (b) 7/8 (c) 1 (d) None of these

7. If )x(g)x('f and )x(f)x('g for all x and f(2) = 4 = f’(2) then )19(g)19(f 22 is

(a) 16 (b) 32 (c) 64 (d) None of these

8. If n)x1()x(f then the value of !n

)0('f........

!2

)0("f)0('f)0(f is

(a) n (b) n2 (c) 1n2 (d) None of these

9. If P(x) be a polynomial of degree 4, with 12)2('"P,2)2("P,0)2('P,1)2(P and 24)2(P iv then P”(1)

is equal to

(a) 22 (b) 24 (c) 26 (d) 28

10. If x3+3x2y-6xy2+2y3=0 then the value of 2

2

dx

yd at (1,1) is:

(a) 1 (b) -1 (c) 6 (d) None of these

11. Assume that h(x) = fog (x), where both f and g are differentiable functions. If 3)1('g.2)1(g and

4)2('f then the value of h’(-1) is

(a) – 6 (b) 6 (c) – 12 (d) 12

12. If ,x2yy m

1

m

1

then the value of y

'xy"y)1x( 2 is equal to value equal to

(a)4m2 (b) 2m2 (c) m2 (d) –m2

Page 16: Differentiation DPP-1 First Principle, Basic & Chain Rule

16/21

13. Let f(x) be a polynomial function of the second degree. If f(1) = f(-1) and 321 a,a,a are in AP then

)a('f),a('f),a('f 321 are in

(a) AP (b) GP` (c) HP (d) None of these

14. If )x1)........(x1)(x1)(x1)(x1(yn2442 then

dx

dy at x = 0 is

(a) 1 (b) – 1 (c) 0 (d) None of these

15. If xcosxsiny then 17

17

dx

yd equals

(a) xcosxsin (b) xsinxcos (c) xcosxsin (d) xcosxsin

16. If )x1x(y 2n/1 , then 122 xyy)x1( is equal to

(a) yn 2 (b) 2ny (c) 22 yn (d) None of these

17. Suppose f(x) = eax + ebx, where a b, and that f’’(x) – 2f’(x) – 15 f(x) = 0 for all x. Then the product ab is

(a) 25 (b) 9 (c) – 15 (d) – 9

18. A function f satisfies the condition, f(x) = f’(x) + f’’(x) + f’’’(x) + …….. where f(x) is a differentiable

function indefinitely and dash denotes the order of derivative. If f(0) = 1, then f(x) is

(a) ex/2 (b) ex (c) e2x (d) e4x

19. Instead of the usual definition of derivative Df(x), if we define a new kind of derivative, D*F(x) by the

formula D*(x) = h

xfhxf

h

)()(lim

22

0

, where f2(x) means [f(x)]2. If f(x) = x log x, then

D*f(x)|x = e has the value

(a) e (b) 2e (c) 4e (d) None of these

20. If f(x) = |x2 – 5x + 6|, then f’(x) equals

(a) 2x – 5 for 2 < x < 3 (b) 5 – 2x for 2 < x < 3 (c) 2x – 5 for 2 x 3 (d) 5 – 2x for 2 x 3

21. If f(0) = 0, f’(0) – 2, then the derivative of y= f(f(f(f(x)))) at x = 0 is,

(a) 2 (b) 8 (c) 16 (d) 4

22. n

n

dx

d(log x) =

(a) nx

)!1n( (b)

nx

!n (c)

nx

)!2n( (d)

n

1n

x

)!1n()1(

23. Let h(x) be differentiable for all x and let f(x) = (kx + ex) h(x), where k is some constant. If h(0) = 5,

h’(0) = - 2 and f’(0) = 18, then the value of k is

(a) 5 (b) 4 (c) 3 (d) 2.2

Page 17: Differentiation DPP-1 First Principle, Basic & Chain Rule

17/21

24. 20

20

dx

yd(cosx cos3x) is equal to

(a) 219(cos2x – 220cos 3x) (b) 219 (cos 2x + 220 cos 4x)

(c) 219 (sin 2x + 220 sin 4x) (d) 219 (sin 2x – 220 sin 4x)

25. Suppose the function f(x) – f(2x) has the derivative 5 at x = 1 and derivative 7 at x = 2. The derivative

of the function f(x) - f(4x) at x = 1 ahs the value equal to

(a) 19 (b) 9 (c) 17 (d) 14

26. If f(x) = |loge |x||, then f’(x) equals

(a) ,|x|

1 where x 0 (b)

x

1for |x| > 1 and

x

1 for |x| < 1

(c) x

1 for |x| > 1 and

x

1for |x| < 1 (d)

x

1for x > 0 and

x

1 for x < 0

27. If 2

2

),(),(dx

ydthentytx is

(a) 2)'(

''''''

(b)

3)'(

''''''

(c)

''

''

(d)

''

''

28. If f(x) satisfies the relation

Ryxyfxfyx

f

,

2

)(3)(5

2

35, and f(0) = 3 and f’(0) = 2, then the period of sin(f(x)) is

(a) 2 (b) (c) 3 (d) 4

29. The nth derivative of xex vanishes when

(a) x = 0 (b) x = - 1 (c) x = - n (d) x = n

30. If y2 = ax2 + bx + c, then 2

23

dx

ydy is

(a) a constant (b) a function of x only

(c) a function of y only (d) a function of x and y

31. If 1 is a twice repeated root of the equation ax3 + bx2 + bx + d = 0, then

(a) a = b = d (b) a + b = 0 (c) b + d = 0 (d) a = d

32. If f(x – y), f(x) f(y) and f(x + y) are in A.P. for all x, y, and f(0) 0, then

(a) f(4) = f(-4) (b) f(2) + f(-2) = 0 (c) f’(4) + f’(4) = 0 (d) f’(2) = f’(-2)

33. If F(x)=22

22

xg

xf where f”(x)=–f(x) and g(x)=f’(x) and given that F(5)=5, then F(10) is equal to

(a) 5 (b) 10 (c) 0 (d) 15

Page 18: Differentiation DPP-1 First Principle, Basic & Chain Rule

18/21

34. Let f(x) be a quadratic expression which is positive for all real values of x if g(x)=f(x)+f’(x)+f”(x), then for any real x

(a) g(x)<0 (b) g(x)>0 (c) g(x)=0 (d) g(x)0

35. Let f and g be differentiable functions such that f (3) = 5. g(3) = 7, f'(3) = 13, g'(3) = 6, f'(7) = 2 and g'(7)

= 0. If h(x) = ( gf ) (x), then h'(3) is equal to

(a) 14 (b) 6 (c) 12 (d) 10

36. Let f (x) = 2/(x + 1) and g(x) = 3x. It is given that )( gf )( 0x = )()( 0xfg . Then )()'(o

xfg equals

(a) 32 (b) 3

32 (c)

9

32 (d)

3

32

37. If f (x) and g(x) are two functions from R to R such that 823 )2()()( xxxgf , then f'(1) g'(1) is

(a) 8 (b) 16 (c) 12 (d) 24

38. If f (x) = x ( 0x ) and g(x) = 21 x , then )1()'( gf is equal to

(a) 1 (b) 2

1 (c)

2

1 (d) 2

39. S1: If f(x) = |2| x , f'(f(x)) = 1 for x > 20

S2: If f(x) = ||1 x

x

, then f'(-1) =

4

1

S3: If f(0) = a, f'(0) = b, g(0) = 0 and (fog)'(0) = c, then g'(0) = b

c

S4: Differential coefficient of x1tan2 w.r.t. 2

1

1

2sin

x

x

at 2

1x is 1

(a) FTTT (b) TFTT (c) TTFF (d) TTTT

40. Let f (x) be a polynomial with positive degree satisfying the relation

f (x) f (y) = f (x)+ f (y) + f (xy) – 2

For all real x and y. suppose f (4) = 65. Then

(a) f'(x) is a polynomial of degree two (b) roots of the equation f' (x) = 2x + 1 are real

(c) xf' (x) = 3[f (x) – 1] (d) f' (-1) = 3

41. Given f(x) = sin3

23

xx

1.5 a – x sin a. sin 2a - )178(sin5 21 aa then:

(a) f'(x) = 8sin4sin6sin22 xx (b) f' (sin 8) > 0

(c) f' (x) is not defined at x = sin 8 (d) f' (sin 8) < 0

42. Let f(x) = x[x], x I, where [.] denotes the greatest integer function, then f’(x) is equal to (a) 2x (b) [x] (c) 2[x] (d) None of these

43. Let f : R R be a differentiable function satisfying f(y) . f(x – y) = f(x) Ryx , and f’(5) = q and

pf

f 1

)0('

)0( then f(5) is

(a) q

p2

(b) q

p (c)

p

q (d) q

44. Let f(x) = Wnxn , . The number of values of n for which f’(p + q) = f’(p) + f’(q) is valid for all positive

p and q is (a) 0 (b) 1 (c) 2 (d) none

Page 19: Differentiation DPP-1 First Principle, Basic & Chain Rule

19/21

Answer Key (Differentiation)

DPP – 1

Subjective Section

1. (i) x

xlnsin (ii) xxxxx

xcoscotsinlnsinsin

cos (iii)

2ln

ln1ln

xx

cx

(iv) xx

x

sin4

cos (v)

41

2

x

x

(vi) 1cos2 2 xx (vii)

2

1

4

(viii)

2x

exe xx

(ix) .cossin xe x

2. 16

3. 2ln

8

16

322

4. --

5. 2K2n

6. --

7. 1),24sin(2)1(

1.

3

52

xxx

8. k=24

9. 1

10. xsin2

11.

3

2

2

13

sin

13

cot

xIn

xx

Objective Section 1. a 2. c 3. b 4. c 5. c 6. c

7. a 8. a 9. c 10. a,c 11. a 12. b

13. b 14. c 15. b 16. a 17. b 18. c

19. b 20. a 21. b 22. d 23. a 24. b

25. b 26. d 27. c 28. a

DPP – 2

Subjective Section

1.

)ln(ln

ln

1)(ln)(coslntan

)ln(cos)(ln)(cos lnln x

xxxxx

x

xxxDy xxxx

2.

xlne

x

1ex]xlne1[xxexlne

x

ex.e

dx

dy xeex1exxx

ex xxeeexxxe

3. )alnyx1(xln

1yln.xlnxxlnx.

x

y

4. – 1

5. - -

6. )]xln(sin)x(cotxln.x2))xln(sinxcot.xlnx2()x).(sinx([lnxlnx

1x2 222222xln22

2

7. - -

8. –

9. 1sinln

10.

100

1........

4

1

3

1

2

11!100

Page 20: Differentiation DPP-1 First Principle, Basic & Chain Rule

20/21

11. 5050

1

12. 0

13. 2/5e

14. 4

15. )4ln( e

Objective Section 1. c 2. d 3. d 4. b 5. a 6. d 7. c

DPP – 3 Subjective Section 1. - - 2. - - 3. - - 4. 100 5. – 6. – 7. –

8.

2sinlncos

coslncotsinlntan

xy

xxxx

9.

y

xynxy

x

yxnyy

xy

yx

.

.

10. 21

1

x

11. - - 12. ½

13. xx

xyy

y

ln1

. 1

14.

xyxxn

xyxxecyny

xy

yx

cot.tantan

1.tancos

1cot11

12112cot

15. --

Objective Section 1. b 2. a

3. b 4. c

5. d 6. c

7. c 8. c

9. d 10. d

11. a 12. b

13. a 14. a

DPP – 4 Subjective Section

1. 6

4

x

x11

2. - - 3. 2

3 4. - -

5. ta

b32 sin

1 6.

3

1

y

Objective Section 1. a 2. c

3. a 4. b

5. a 6. c

7. a 8. a

9. c 10. d

11. d 12. b

DPP – 5 Subjective Section 1. 1/6

2. - -

3. 2

1

4. 2x12

x21

5. 22 x1

1

)nx(1

1

6. (a) 2x1

2

; (b) {0}, range

2,

2

7. 2 8. 1

9. 8

1

10. 5

1

11. 212

1

x

Page 21: Differentiation DPP-1 First Principle, Basic & Chain Rule

21/21

12. (i) f’(2) = - 5

2 (ii) f’

5

8

2

1

13.

1,1,

1,1,1

22

xexistnotdoes

Rxx

14.

2

1||

2

1||

1||2

1

,1

3

,1

3

2

2

x

x

x

x

existnotdoesx

Objective Section 1. a 2. d

3. d 4. c

5. a 6. b

7. b 8. b

9. d 10. b

11. a 12. d

13. c 14. b

15. a 16. b

17. b 18. d

DPP – 6 Subjective Section 1. 3 2. )xx(2cos).x21(2 2 6. 0

Objective Section 1. a 2. a 3. d

DPP – 7 Subjective Section 1.

6

5

2. 2

1

3. 3

1

4. a = 1

5. 2

1

6. 1 7. a = 120; b = 60; c = 180 8. 2 9. – 2/5 10. – 6

11. a = 6, b = 6, c = 0 ; 40

3

12. 9c,12b,3a

Objective Section 1. a 2. c 3. b 4. b 5. a 6. c 7. c

DPP – 8 Subjective Section

1. 4ln

)2ln12(3

dx

dy

2. - - 3. - - 4. - -

5. 9

x4 3

Objective Section 1. c 2. b 3. a 4. d 5. c 6. b 7. b 8. b 9. c

10. d 11. c 12. c 13. a 14. a 15. d 16. a 17. c 18. a

19. c 20. b 21. c 22. d 23. c 24. b 25. a 26. b 27. b

28. b 29. c 30. a 31. c,d 32. a,c 33. a 34. b 35. c 36. d

37. a 38. c 39. d 40. a,b,c,d 41. a,d 42. b 43. c 44. c