DIFFEQU5_2 vsasda

Embed Size (px)

Citation preview

  • 7/29/2019 DIFFEQU5_2 vsasda

    1/19

    Second Order Homogeneous Linear Differential Equation with Constant Coefficients

    The equation 0d

    d

    d

    d2

    2 cyx

    yb

    x

    ya , where 0a , b and c are constants is called a second order

    homogeneous linear differential equation with constant coefficients.

    By a convenient change of notation, writing Dyx

    y d

    d, yDDyD

    x

    y

    xx

    y 22

    2

    .d

    d

    d

    d

    d

    d , where xD dd is

    an operator which act on y.

    Thus, 0d

    d

    d

    d2

    2 cyx

    yb

    x

    ya becomes 02

    ycbDaD or 0yDF , where cbDaDDF 2 . DF is a polynomial of degree 2 in variable D is called the characteristics function and 0DF is

    called the characteristics equation of 0d

    d

    d

    d2

    2 cyx

    yb

    x

    ya .

    If 21

    DDaDF , then1

    and2

    are called the characteristic roots of the characteristic

    equation 0DF .

    1

  • 7/29/2019 DIFFEQU5_2 vsasda

    2/19

    The solution of the second order homogeneous linear differential equation with constant coefficients,

    0d

    d

    d

    d2

    2 cyx

    yb

    x

    ya or 0yDF , is as follows:(A) If

    1and

    2are real and

    21 , then the general solution of the equation 0yDF is

    xxeCeCy 21

    21

    .(B) If

    1and

    2are real and

    21 , then the general solution of the equation 0yDF is x

    exCCy 121

    .

    (C) If1

    and2

    are complex, ie i1

    and i2

    , then the general solution of the equation 0yDF is xCxCey x sincos21

    .

    2

  • 7/29/2019 DIFFEQU5_2 vsasda

    3/19

    Example: Find the general solution each of the following differential equations.

    (a) 09d

    d2

    2 yx

    y(b) 04

    d

    d4

    d

    d2

    2 yx

    y

    x

    y

    (c) 013d

    d8

    d

    d4

    2

    2 yxy

    x

    y(d) 09'12''4 yyy

    (e) 06'7''3 yyy (f) 07'4'' yyy Solution

    (a) 09d

    d2

    2 yx

    y, 03392 DDDDF 3,3 D

    The solution isxx

    eCeCy3

    2

    3

    1

    .(b) 04

    d

    d4

    d

    d2

    2 yx

    y

    x

    y, 0244

    22 DDDDF 2,2 D The solution is xexCCy 221 .

    3

  • 7/29/2019 DIFFEQU5_2 vsasda

    4/19

    (c) 013d

    d8

    d

    d4

    2

    2 yx

    y

    x

    y, 09141184 22 DDDDF iD

    231

    The solution is xCxCey x 23sin23cos 21 .(d) 09'12''4 yyy , 0329124 22 DDDDF 23,23D

    The solution is xexCCy 2321

    .(e) 06'7''3 yyy , 0323673 2 DDDDDF

    3,32D

    The solution isxx

    eCeCy3

    232

    1 .

    (f) 07'4'' yyy , 03274 22 DDDDF iD 32 The solution is xCxCey x 3sin3cos

    21

    2 .

    4

  • 7/29/2019 DIFFEQU5_2 vsasda

    5/19

    Example: Find the particular solution of 04d

    d4

    d

    d2

    2 yx

    y

    x

    y, given that 3)0( y and 4)0(' y .

    Solution

    04dd4

    d

    d2

    2 yxy

    xy , 0244

    22 DDDDF 2,2D The general solution is xexCCy 2

    21 .

    3)0( y , 31C . xx eCexCCy 2

    2

    2

    212'

    4)0(' y , 42 21 CC 22 C .The particular solution is xexy 223 .

    5

  • 7/29/2019 DIFFEQU5_2 vsasda

    6/19

    Example: Solve the differential equation 04'2'' yyy , given that 1)0( y and 321)0(' y .Solution

    04'2'' yyy , 03142 22 DDDDF iD 31 The general solution is xCxCey x 3sin3cos

    21 .

    1)0( y , 11C .

    xCxCexCxCey xx 3cos33sin33sin3cos' 2121 321)0(' y , 3213 21 CC 22 C .

    The particular solution is xxey x 3sin23cos .

    6

  • 7/29/2019 DIFFEQU5_2 vsasda

    7/19

    Example: Find the solution of 025'8'' yyy , given that 24

    y and 34' y .Solution

    025'8'' yyy , 094258 22 DDDDF iD 34 The general solution is xCxCey x 3sin3cos 214 .

    24

    y , 243sin43cos 21 CCe eCC 22121 21 eCC 22

    21---------------(1) xCxCexCxCey xx 3cos33sin33sin3cos4'

    21

    4

    21

    4 3

    4' y , 3232321214 2121 CCeCCe

    eCC 23721

    ----------------(2)

    (1)+(2) eC 262

    eC6

    22

    eeCC 6 2112221 The particular solution is

    xexeey x 3sin

    6

    23cos

    6

    2114.

    7

  • 7/29/2019 DIFFEQU5_2 vsasda

    8/19

    Second Order Non-Homogeneous Linear Differential Equation with Constant Coefficients

    The equation )(d

    d

    d

    d2

    2

    xQcyx

    yb

    x

    ya , where 0a , b and c are constants and 0)( xQ is called a

    second order non-homogeneous linear differential equation with constant coefficients.

    The equation can be written as )()( xQyDF .The general solution of the equation is pc yyy , where cy is the general solution of thehomogeneous equation 0)( yDF , and py is any particular integral of )()( xQyDF .Using the method of finding general solution of 0)( yDF , cy can be obtained. Thus, our problem isreduces to one of finding py .

    Solving Second Order Non-Homogeneous Linear Differential Equation with Constant CoefficientsUsing Undetermined Coefficients Method

    For the equation )()( xQyDF , the general solution is pc yyy , where cy is the general solution of0)( yDF and )(..........)()()( 321 xpKxpCxpBxApy tp , where A, B, C, ...., Kare arbitrary

    constants. The function )(.,,.........)(,)(,)( 321 xpxpxpxp t are the terms in )(xQ and the terms arising

    from differention of the terms in )(xQ . The values of the constant A, B, C, ...., Kcan be obtained using

    )()( xQyDF p .

    8

  • 7/29/2019 DIFFEQU5_2 vsasda

    9/19

    Example (How to define py ) ( Remember xc exCCy 121 or xxc eCeCy 21 21 or xCxCey xc

    sincos21

    a) If the equation is xxyDF 2)(3 , and the solutions of 0)( DF is 0D , then

    DCxBxxAyp 23 .b) If the equation is

    23

    32)( xxeyDF

    x , and the solutions of 0)(

    DF is 0D and 3D , then

    EDxCxBexeAy xxp 233 .c) If the equation is xeaxyDF

    x 23sin)( , and the solutions of 0)( DF is aiD , 0D and 3D , then EDxCeaxBaxAy

    xp 3cossin .

    d) If the equation is xxyDF 2)(3 , and one of the solutions of 0)( DF is 0D , then

    EDxCxBxxAyp 234 .e) If the equation is

    2332)( xxeyDF

    x , and one of the solutions of 0)( DF is 0D and theother solution of 0)( DF is 3D (i.e xc eCCy 321 ), then

    ExDxCxBexeAyxx

    p 2333 .f) If the equation is

    2332)( xxeyDF

    x , and the solutions of 0)( DF are 0D and 3D (i.e xc eCCy

    321 ), then ExDxCxBxeexAy xxp 23332 .

    g) If the equation is23

    32)( xxeyDFx , and the solutions of 0)( DF are 0D and 0D

    (i.e xCCyc 21 ), then 23433 ExDxCxBexeAy xxp .h) If the equation is

    2332)( xxeyDF

    x , and the solutions of 0)( DF are 3D and 3D (i.e xc exCCy 321 ), then EDxCxeBxexAy xxp 23233 .

    9

  • 7/29/2019 DIFFEQU5_2 vsasda

    10/19

    Example Find the solution ofx

    xexxy22

    632''3 .Solution

    03)(2 DDF 0,0D

    Then xCCyc 21 .Since

    x

    xexxxQ

    22

    632)( andox

    e also a term of cy corresponding to the roots 0 withmultiplicity 2,

    Letxx

    p EeDxeCxBxAxy22234

    The constants A, B, C, D and E can be determined usingx

    p xexxy22''

    6323 xxx

    p EeDxeDeCxBxAxy22223'

    22234 xxx

    xxxx

    p

    EeDxeDeCBxAxEeDxeDeDeCBxAxy

    2222

    22222''

    444261244222612

    Substitute intox

    pxexxy 22'' 6323 , xxxx xexxEeDxeDeCBxAx 222222 63244426123

    xxx xexxeEDDxeCBxAx 22222 63212121261836 Equating the coefficients of like terms

    181236 AA ; 61318 BB ; 166 CC ; 121112 DD

    12101212 EED

    xxp exexBxxy

    22234

    121

    121

    61

    181

    The general solution ofx

    xexxy22

    632''3 isxx

    exexBxxxCCy22234

    21 12112161181 10

  • 7/29/2019 DIFFEQU5_2 vsasda

    11/19

    Example Find the general solution of xxyx

    y

    x

    ysin232

    d

    d

    d

    d2

    2 .Solution 0122)( 2 DDDDDF 1,2 D

    Thenxx

    c eCeCy 221 .

    Since xxxQ sin23)( and the terms in Q(x) are totally different from the terms in cy take xDxCBAxyp cossin

    xDxCAyp sincos'

    xDxCyp cossin''

    Substitute into xxyyy ppp sin232''' xDxCBAxxDxCAxDxC cossin2sincoscossin xx sin23 xxBAAxxCDxCD sin2322cos3sin3 Equating the coefficients of like terms

    2332 AA ;

    4302 BBA ;

    CDCD 3223 ; 53032303 CCCCD ; 51D Therefore xxxyp cos5

    1sin53

    43

    23 .

    The general solution of the equation is xxxeCeCyxx

    cos51sin

    53

    43

    23

    22

    1

    11

  • 7/29/2019 DIFFEQU5_2 vsasda

    12/19

    Example Find the general solution ofx

    xexyx

    y

    x

    y 22

    2

    232d

    d3

    d

    d .Solution 01223)( 2 DDDDDF 1,2D

    Then

    xx

    c eCeCy 22

    1 .Since

    xxexxQ

    223)( , and the term xe2 in Q(x) also a term in cy corresponding to single root 2 ,

    then

    Let xxxp eDxCxBAxDxeeCxBAxy 22222 xxp eDxCxeDCxAy 222' 22 xeDxDCCxA 22 222

    xxp eDxDCCxeDCCxy 222'' 2222224 xeDCxDCCx 22 42484 Substitute into

    xppp xexyyy

    2'''2323

    xeDCxDCCx 22 42484 xeDxDCCxA 22 2223 xx xexeDxCxBAx 222 232 xx xexeDCCxABAx 22 2322322

    Equating the coefficients of like terms

    2332 AA ;

    49032 BAB

    122 CC ; ; 202 DDC Therefore xp exxxy 22 24923 .The general solution of the equation is xx exxCeCxy 2221 24923 12

  • 7/29/2019 DIFFEQU5_2 vsasda

    13/19

    Example: Solve xxyy 2sin4'' Solution: iDDDF 204)(

    2 Thus xCxCyc 2sin2cos 21

    xxxQ 2sin)( and x2sin also a term in cy corresponding to the a root i2 of multiplicity one.Let xDxxCxxBxxAxyp 2cos2sin2cos2sin

    22 xCxBxxBxxAxxAxyp 2sin2sin22cos22cos22sin2

    22' xDxDxCx 2sin22cos2cos2 xxCBxBxxAx 2cos)22(2sin22cos2

    22 xCxDxxDA 2sin2cos2sin)22( xBxxBxxAxxAxyp 2cos42sin42sin42cos4

    22'' xDAxxCBxCB 2sin)22(2sin)22(22cos)22(

    xCxDxxDA 2cos22sin22cos)22(2 xxCBxBxxAx 2sin)48(2cos42sin4 22

    xCBxDAxxBA 2cos)42(2sin)42(2cos)48( Substitute into xxyy pp 2sin4

    '' xxxCBxDAxxAxxBx 2sin2cos)42(2sin)42(2cos82sin8

    Equating the coefficients of like terms

    18 B ; 08 A ; 042 DA ; 042 CB So 0A ,

    81B ,

    161C and 0D

    Therefore xxxxyp 2sin1612cos

    81 2

    The general solution of the equation is pc yyy xxxxxCxCy 2sin

    1612cos

    812sin2cos

    221

    13

  • 7/29/2019 DIFFEQU5_2 vsasda

    14/19

    Example: Find the particular solution ofx

    exyyy 834'5'' given that 0)0('and1)0( yy .

    Solution:

    4,10)4)(1(45)(2 DDDDDDDF

    Thus xxc eCeCy4

    21 x

    exQ 8)( and xe also a term ofc

    y corresponding to the single root 1D .

    We takex

    p CxeBAxy xxx

    p eCxCACxeCeAy )('

    xxxx

    p eCxCCxeCeCey )2(

    ''

    Substitute into

    xppp exyyy 8345

    ''' We get xxxx exCxeBAxeCxCAeCxC 834)(5)2( xxxx exCxeBAxeCxCAeCxC 834)(5)2(

    xx exCeABAx 833544 4334 AA ;

    1615054 BAB ;

    3883 CC

    Thereforex

    p xexy 38

    1615

    43

    14

  • 7/29/2019 DIFFEQU5_2 vsasda

    15/19

    The general solution of the equation is pc yyy xxx

    xexeCeCy38

    1615

    434

    21 xxxx xeeeCeCy

    38

    38

    434'

    4

    21

    Given 1)0( y ,161

    21 CC 0)0(' y ,

    12234 21 CC

    14489

    2 C and 951 C The particular solution is

    xxx xexeey38

    1615

    43

    14489

    95 4

    15

  • 7/29/2019 DIFFEQU5_2 vsasda

    16/19

    Example: Solve the equationx

    xeyyy2

    2'3'' , given that 2)0('and1)0( yy .Solution:

    2,10)2)(1(23)(2 DDDDDDDF

    Thusxx

    c eCeCy2

    21 xxexQ 2)( and xe2 also a term in cy corresponding to the single root 2D .

    We takexxx

    p eBxAxBxeeAxy22222

    )( xxx

    p eBBxAxAxeBxAxeBAxy22222'

    )222()(2)2( xxp eBBxAxAxeBAAxy 222'' )222(2)224(

    xeBABxAxAx

    22)42484(

    Substitute intox

    ppp xeyyy2'''

    23 We get

    x

    eBABxAxAx22

    )42484( xxx

    xeeBxAxeBBxAxAx22222

    )(2)222(3 xx

    xeeBAAx22

    )22( Equating the coefficients of like terms

    12 A 02 BA

    16

  • 7/29/2019 DIFFEQU5_2 vsasda

    17/19

    So

    21A and 1B

    Thereforexx

    p xeexy222

    21

    The general solution of the equation isxxxx xeexeCeCy 2222

    21 21

    xxxxxx xeeexxeeCeCy 22222221

    22' Given 1)0( y , 1

    21CC

    2)0(' y , 3221CC

    22

    C and 11

    C The particular solution is

    xxxx xeexeey 2222212

    17

  • 7/29/2019 DIFFEQU5_2 vsasda

    18/19

    Example: Find the general solution of xxeyyyx

    sin232'''2 , given that

    1)0('and1)0( yy .Solution: 1,20)1)(2(2)(

    2 DDDDDDDF Thus

    xxc eCeCy

    221 xxexQ x sin23)( 2 , the term xe2 in Q(x) also a term in cy correspiding to single root

    2D .

    Let xDxCBxeeAxyxx

    p cossin222

    xDxCBxeBeeAxAxeyxxxx

    p sincos22222222'

    xDxCBxeBeBeeAxAxeAxeAeyxxxxxxx

    p cossin422444222222222''

    xDxCBxeBeeAxAxeAe xxxxx cossin44482 222222 Substitute into xxyyy ppp sin232

    ''' We find

    xDxCBxeBeeAxAxeAexxxxx

    cossin44482222222

    )sincos222(22222

    xDxCBxeBeeAxAxexxxx

    xxexDxCBxeeAx xxx sin23cossin2 2222 xeAxBA 2632 + xxexCDxDC x sin23cos)3(sin)3( 2 Equating the coefficients of like terms

    36 A ; 032 BA ; 23 DC ; 03 CD ;So

    21A ,

    31B ,

    53C and

    51D

    18

  • 7/29/2019 DIFFEQU5_2 vsasda

    19/19

    Therefore

    xxxeexy xxp

    cos51sin

    53

    31

    21 222

    The general solution of the equation is

    pc yyy xxxeexeCeCy xxxx cos

    51sin

    53

    31

    21 222

    2

    2

    1

    xxxeeexxeeCeCy xxxxxx sin51cos

    53

    32

    312' 22222

    2

    2

    1

    xxeexxeeCeC xxxxx sin51cos

    53

    31

    312 2222

    2

    2

    1

    1)0( y , 5421 CC 1)0(' y ,

    1512

    21CC

    4511

    1C ,

    95

    2C

    The particular solution of the equation is

    xxxeexeey xxxx cos51sin

    53

    31

    21

    95

    4511 2222

    19