30
MOS AK DEVICE MODELING FOR NEUROMORPHIC APPLICATIONS L.E. Calvet, C. Bennett, D. Querlioz, Center for Nanoscience and Nanotechnology, Université Paris-Sud, France T. Krauss, U. Schwalke, TU Darmstadt, Germany A. Kloes and M. Schwarz NanoP, Technische Hochschule Mittelhessen, Germany

DEVICE MODELING FOR NEUROMORPHIC APPLICATIONS€¦ · L.E. Calvet, C. Bennett, D. Querlioz, Center for Nanoscience and Nanotechnology, Université Paris-Sud, France T. Krauss, U

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • MOS AK

    DEVICEMODELINGFORNEUROMORPHICAPPLICATIONS

    L.E.Calvet,C.Bennett,D.Querlioz,CenterforNanoscienceandNanotechnology,

    UniversitéParis-Sud,France

    T.Krauss,U.Schwalke,TUDarmstadt,Germany

    A.KloesandM.Schwarz

    NanoP,TechnischeHochschuleMittelhessen,Germany

  • MOS AK DresdenSept.3,2017 2/29

    Outline

    •  Introduction•  Architecturesimulations•  DeviceModeling•  Combiningdevicemodelingandarchitectures•  Conclusions

  • MOS AK DresdenSept.3,2017 3/29

    TheBrainvs.TheCluster3

    Brain~20W~10-3m3

    Cluster>105W>1m3

  • MOS AK DresdenSept.3,2017 4/29

    ThebiologicaladvantageBRAIN

    Microelectronics Biology

    Ultrafastbasicdevices(

  • MOS AK DresdenSept.3,2017 5/29

    NeuralComputing

    •  Signalstravelelectro-chemically•  Neuronscomputeandcommunicate•  Synapsestransferandstoreinformation

    IonChannelsarethecurrentsource

    ~5nm

  • MOS AK DresdenSept.3,2017 6/29

    Neural-inspiredComputing

    Neurons: Decidewhethertotransmitinformation

    Synapses:Memoryelementthatcanlearn

  • MOS AK DresdenSept.3,2017 7/29

    Electronicidealization:Neuron

    WinnerTakesAll

    MAXΣ+

    NEURON1 NEURON2

  • MOS AK DresdenSept.3,2017 8/29

    Typesofsynapticdevices 8

    FilamentarydevicesBarbaraetalACSNano2015

    FerroelectricSynapsesChanthboualaetalNatMat2012

    AtomicSwitchesOhnoetalNatMat2011

    PhaseChangeSynapsesTumaetalNatNano2016

    SpintorqueSynapsesVincentetalIEEETransBiomedCirSys2015

    FloatingGatetransistorsMeadetalIEEETrans1996

  • MOS AK DresdenSept.3,2017 9/29

    LearningRules

    SynapticLearning:δrule

    ? Donothing

    ? CHANGEBYδ

  • MOS AK DresdenSept.3,2017 10/29

    II.Architectures

  • MOS AK DresdenSept.3,2017 11/29

    Thecrossbararrayforneuralcomputing

    Synapse

    CMOSinputneurons

    •  CMOSNeuronsinputdata

    •  Synapsesstoretheweights

    •  Kirchoff’slawprovidessummation

    •  CMOSwinnertakesallneuroncircuitcalculatestheoutput

    ANSWER=max(∑↑▒𝑤↓𝑖 𝑥↓𝑖 +𝑏 )

    X1X2X3X4b

    C1C2C3

    WinnerTakesAll

  • MOS AK DresdenSept.3,2017 12/29

    Learning

    •  Computethegradientdescentofthesquareerrortogetthedeltarule:

    •  SUPERVISED:TeacherprovidesadatasetXwithknowntargetsT

    •  TRAINING:Compute(∑↑▒𝑤↓𝑖 𝑥↓𝑖 +𝑏 )jforeachsample𝑥↓𝑖 andeachcategorycj

    X1X2X3X4b

    C1C2C3

    WinnerTakesAll

    δ=η(w⋅x-t)

    •  ‘adaptivelinearneuron’(adalinerule)

    SINGLELAYERNETWORKSKNOWNAS‘PERCEPTRONS’

  • MOS AK DresdenSept.3,2017 13/29

    Nopropagationmultilayerperceptron

    WTA

    X1X2X3X4b

    h1 h2h3h4 h5h6

    C1C2C3

    β-matrix:min/maxvaluesrandomlyassignedandfixedthroughoutlearning

    Uselearningrule:δ=η(wj⋅h-tj)

    ANSWER=max(∑↑▒𝑤↓𝑖 ℎ↓𝑖  )

    •  Inspiredby‘ExtremeLearningMachine’Algorithm•  Avoidsbackpropagationcircuitryattheexpenseofhavingalargernumberofhiddenlayers

    β

    w

  • MOS AK DresdenSept.3,2017 14/29

    IrisClassification

    •  150samplesfrom3speciesofIris•  4Features:Lengthandwidthofthesepalsandpetals(incm)

    Classificationresultsusingsoftwareandideallearning:•  Perceptron:97%

  • MOS AK DresdenSept.3,2017 15/29

    IrisClassification

    Classificationresultsusingsoftwareandideallearning:•  Perceptron:97%

    BACKPROP

    •  Back-prop:98%at4hiddennodes

  • MOS AK DresdenSept.3,2017 16/29

    IrisClassification

    Classificationresultsusingsoftwareandideallearning:•  Perceptron:97%

    η=0.001

    OnlineELMAverage:92.4%

    BACKPROP

    98%

    •  Back-prop:98%at4hiddenlayers•  OnlineELM:92.4%average

  • MOS AK DresdenSept.3,2017 17/29

    TransferingToHardware

    Softwarelearningrule:δ=η(wj⋅h-tj)η  =0.02

    Hardwarelearningrule:δ  =ΔG*sign(wj⋅h-tj)levels=200

    AVERAGE:86.8% AVERAGE:83.0%

  • MOS AK DresdenSept.3,2017 18/29

    TransferingToHardware

    Softwarelearningrule:δ=η(wj⋅h-tj)η  =0.02

    Hardwarelearningrule:δ  =ΔG*sign(wj⋅h-tj)levels=200

    AVERAGE:86.8% AVERAGE:83.0%

  • MOS AK DresdenSept.3,2017 19/29

    III.DeviceModeling

  • MOS AK DresdenSept.3,2017 20/29

    SONOSTransistorasasynapse

    G

    S D

    FloatingGate

    •  SONOSallowssuperiornumberofread/writecyclesthanconventionalfloatinggateMOSFETs

    •  Engineerstructuretooptimizethetiming

  • MOS AK DresdenSept.3,2017 21/29

    ModelingusingTCADSynopsys

    •  ChargeinjectedintothegateviaFowlerNordheimtunneling

    •  Finddevicecharacteristicsanddeviceoperationalrange

    •  Determineconductancerangeofsynapses,compactmodelofdevicebehavior

    DEVICEPARAMETERS:Tunneloxide:18ÅSi3N4layer: 80Å Topoxide: 40ÅLg: 130 nm

  • MOS AK DresdenSept.3,2017 22/29

    DeviceCharacteristics

    •  Togeneratetwocurves:300pulses+6V(+charge)300pulses-3.75V(-charge)•  ChooseVgrange

    •  Find:GmaxGmin,#levels

    Gmax

    Gmin

  • MOS AK DresdenSept.3,2017 23/29

    SimulationofPulses

    Ateachpulse±6V,anIdvsVgistaken.ThisgraphplotsthefractionchangeoftheevolutionofVg=0.75V

  • MOS AK DresdenSept.3,2017 24/29

    IV.CombiningDeviceandArchitectureSimulations

  • MOS AK DresdenSept.3,2017 25/29

    Overiewofmethodology

    DeviceSimulationstoobtainGmax,Gmin,ΔG,

    Architecturesimulationstoobtainpulsesequences

    DeviceSimulationstoobtainweight

    matrices

    Architecturesimulationswith

    weightsfromdevicesimulations

    Compactmodel

    Pulsesequencessimulatedweights

  • MOS AK DresdenSept.3,2017 26/29

    LearningwithaSONOStransistor(linear)

    UseLinearRegime

    Takeweights=Vt

    WTA

    X1X2X3X4b

    h1 h2h3h4 h5h6

    C1C2C3

    β

    w

    InputsappliedtoVds

    Learning:•  EachpulsechangesbyΔVt.•  ΔG=ΔVt.

    𝐼↓𝑑 = 𝜇𝐶↓𝑜𝑥 𝑤/𝐿 (𝑉↓𝑔𝑠 − 𝑉↓𝑡 − 𝑉↓𝑑𝑆 /2 )𝑉↓𝑑 

    linear

    Highpowerconsumption

  • MOS AK DresdenSept.3,2017 27/29

    LearningwithaSONOStransistor(exponential)

    𝐼↓𝑑 = 𝐼↓𝑜 𝑒𝑥𝑝[𝛼[𝑉↓𝑔 − 𝑉↓𝑡 ]]Subthresholdcurrent:

    Takew=Vt

    WTA

    X1X2X3X4b

    h1 h2h3h4 h5h6

    C1C2C3

    β

    w

    InputsappliedtoVg

    Learning:•  EachpulsechangesbyΔVt.•  ΔG=𝑒𝑥𝑝[−𝛼∆𝑉↓𝑡 ]

    Exponentialweights

    Lowpowerconsumption

  • MOS AK DresdenSept.3,2017 28/29

    FirstResults

    DeviceSimulationstoobtainGmax,Gmin,ΔG,

    Architecturesimulationstoobtainpulsesequences

    DeviceSimulationstoobtainweight

    matrices

    Architecturesimulationswith

    weightsfromdevicesimulations

  • MOS AK DresdenSept.3,2017 29/29

    Conclusions

    •  Devicemodelingofsynapsesinneuromorphicarchitecturescanoptimizeclassification

    •  Floatinggatedevicesbasedonalayeroftraps/defectsareidealforsuchsimulationsbecausewidevariationsinthetrappingpropertiesofdifferentmaterials

  • MOS AK DresdenSept.3,2017 30/29

    Thankyouforyourattention!