24
Development Pattern and Prediction Error for the Stochastic Bornhuetter-Ferguson Claims Reserving Method Annina Saluz, Alois Gisler, Mario V. W¨ uthrich ETH Zurich ASTIN Colloquium Madrid, June 2011

Development Pattern and Prediction Error for the Stochastic

  • Upload
    dokien

  • View
    219

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Development Pattern and Prediction Error for the Stochastic

Development Pattern and Prediction Error for theStochastic Bornhuetter-Ferguson Claims Reserving

Method

Annina Saluz, Alois Gisler, Mario V. Wuthrich

ETH Zurich

ASTIN Colloquium Madrid, June 2011

Page 2: Development Pattern and Prediction Error for the Stochastic

Overview

1 Notation

2 Bornhuetter-Ferguson Method (BF)

3 Normal Model

4 Estimation of the Parameters and their Correlations

5 Prediction Uncertainty

6 Conclusions and Remarks

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 2 / 12

Page 3: Development Pattern and Prediction Error for the Stochastic

NotationAccident years i, 0 ≤ i ≤ I

Development years j, 0 ≤ j ≤ J ≤ IIncremental claims Xi,j

Cumulative claims Ci,j

Observed claims at time I: DI = {Xi,j ; i+ j ≤ I}Goal: Predict Dc

I = {Xi,j ; i+ j > I, i ≤ I, j ≤ J}

Table: Claims development triangle

accident development year jyear i 0 . . . j . . . J

0... observations DI

i... Dc

I

I

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 3 / 12

Page 4: Development Pattern and Prediction Error for the Stochastic

NotationAccident years i, 0 ≤ i ≤ IDevelopment years j, 0 ≤ j ≤ J ≤ I

Incremental claims Xi,j

Cumulative claims Ci,j

Observed claims at time I: DI = {Xi,j ; i+ j ≤ I}Goal: Predict Dc

I = {Xi,j ; i+ j > I, i ≤ I, j ≤ J}

Table: Claims development triangle

accident development year jyear i 0 . . . j . . . J

0... observations DI

i... Dc

I

I

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 3 / 12

Page 5: Development Pattern and Prediction Error for the Stochastic

NotationAccident years i, 0 ≤ i ≤ IDevelopment years j, 0 ≤ j ≤ J ≤ IIncremental claims Xi,j

Cumulative claims Ci,j

Observed claims at time I: DI = {Xi,j ; i+ j ≤ I}Goal: Predict Dc

I = {Xi,j ; i+ j > I, i ≤ I, j ≤ J}

Table: Claims development triangle

accident development year jyear i 0 . . . j . . . J

0... observations DI

i... Dc

I

I

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 3 / 12

Page 6: Development Pattern and Prediction Error for the Stochastic

NotationAccident years i, 0 ≤ i ≤ IDevelopment years j, 0 ≤ j ≤ J ≤ IIncremental claims Xi,j

Cumulative claims Ci,j

Observed claims at time I: DI = {Xi,j ; i+ j ≤ I}Goal: Predict Dc

I = {Xi,j ; i+ j > I, i ≤ I, j ≤ J}

Table: Claims development triangle

accident development year jyear i 0 . . . j . . . J

0... observations DI

i... Dc

I

I

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 3 / 12

Page 7: Development Pattern and Prediction Error for the Stochastic

NotationAccident years i, 0 ≤ i ≤ IDevelopment years j, 0 ≤ j ≤ J ≤ IIncremental claims Xi,j

Cumulative claims Ci,j

Observed claims at time I: DI = {Xi,j ; i+ j ≤ I}

Goal: Predict DcI = {Xi,j ; i+ j > I, i ≤ I, j ≤ J}

Table: Claims development triangle

accident development year jyear i 0 . . . j . . . J

0... observations DI

i... Dc

I

I

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 3 / 12

Page 8: Development Pattern and Prediction Error for the Stochastic

NotationAccident years i, 0 ≤ i ≤ IDevelopment years j, 0 ≤ j ≤ J ≤ IIncremental claims Xi,j

Cumulative claims Ci,j

Observed claims at time I: DI = {Xi,j ; i+ j ≤ I}Goal: Predict Dc

I = {Xi,j ; i+ j > I, i ≤ I, j ≤ J}

Table: Claims development triangle

accident development year jyear i 0 . . . j . . . J

0... observations DI

i... Dc

I

I

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 3 / 12

Page 9: Development Pattern and Prediction Error for the Stochastic

Bornhuetter-Ferguson Method (BF)

BF predictor for the outstanding loss liabilities (IBNR and IBNeR in case ofincurred claims data) Ri = Ci,J − Ci,I−i at time I

Ri = µi(1− βI−i),

where

µi a prior estimate for µi = E[Ci,J ]

1− βI−i estimated still to come factor at the end of development year I − i,βJ = 1, ((βj)j=0,...,J estimated cumulative development pattern)

γ0 = β0, γj = βj − βj−1, 1 ≤ j ≤ J , (estimated incremental developmentpattern)

Assumption of a cross-classified model E[Xi,j ] = µiγj

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 4 / 12

Page 10: Development Pattern and Prediction Error for the Stochastic

Bornhuetter-Ferguson Method (BF)

BF predictor for the outstanding loss liabilities (IBNR and IBNeR in case ofincurred claims data) Ri = Ci,J − Ci,I−i at time I

Ri = µi(1− βI−i),

where

µi a prior estimate for µi = E[Ci,J ]

1− βI−i estimated still to come factor at the end of development year I − i,βJ = 1, ((βj)j=0,...,J estimated cumulative development pattern)

γ0 = β0, γj = βj − βj−1, 1 ≤ j ≤ J , (estimated incremental developmentpattern)

Assumption of a cross-classified model E[Xi,j ] = µiγj

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 4 / 12

Page 11: Development Pattern and Prediction Error for the Stochastic

Bornhuetter-Ferguson Method (BF)

BF predictor for the outstanding loss liabilities (IBNR and IBNeR in case ofincurred claims data) Ri = Ci,J − Ci,I−i at time I

Ri = µi(1− βI−i),

where

µi a prior estimate for µi = E[Ci,J ]

1− βI−i estimated still to come factor at the end of development year I − i,βJ = 1, ((βj)j=0,...,J estimated cumulative development pattern)

γ0 = β0, γj = βj − βj−1, 1 ≤ j ≤ J , (estimated incremental developmentpattern)

Assumption of a cross-classified model E[Xi,j ] = µiγj

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 4 / 12

Page 12: Development Pattern and Prediction Error for the Stochastic

Bornhuetter-Ferguson Method (BF)

BF predictor for the outstanding loss liabilities (IBNR and IBNeR in case ofincurred claims data) Ri = Ci,J − Ci,I−i at time I

Ri = µi(1− βI−i),

where

µi a prior estimate for µi = E[Ci,J ]

1− βI−i estimated still to come factor at the end of development year I − i,βJ = 1, ((βj)j=0,...,J estimated cumulative development pattern)

γ0 = β0, γj = βj − βj−1, 1 ≤ j ≤ J , (estimated incremental developmentpattern)

Assumption of a cross-classified model E[Xi,j ] = µiγj

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 4 / 12

Page 13: Development Pattern and Prediction Error for the Stochastic

Motivation for the Estimation of the PatternOften the chain ladder (CL) development pattern is used for γj

γCLj =

J−1∏k=j

f−1k −J−1∏

k=j−1

f−1k , fk =

∑I−k−1i=0 Ci,k+1∑I−k−1i=0 Ci,k

.

Issue: In the BF method we are given a priori estimates of the µi. The CLpattern ignores any prior information.Goal: Incorporate the a priori estimates in the estimation of the developmentpattern.

If the µi were known then the best linear unbiased estimate of γj would be

γ(0)j =

∑I−ji=0 Xi,j∑I−ji=0 µi

, 0 ≤ j ≤ J.

⇒ A first candidate is the raw estimate

γ(0)j =

∑I−ji=0 Xi,j∑I−ji=0 µi

,

However, they do not sum up to 1.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 5 / 12

Page 14: Development Pattern and Prediction Error for the Stochastic

Motivation for the Estimation of the PatternOften the chain ladder (CL) development pattern is used for γj

γCLj =

J−1∏k=j

f−1k −J−1∏

k=j−1

f−1k , fk =

∑I−k−1i=0 Ci,k+1∑I−k−1i=0 Ci,k

.

Issue: In the BF method we are given a priori estimates of the µi. The CLpattern ignores any prior information.Goal: Incorporate the a priori estimates in the estimation of the developmentpattern.

If the µi were known then the best linear unbiased estimate of γj would be

γ(0)j =

∑I−ji=0 Xi,j∑I−ji=0 µi

, 0 ≤ j ≤ J.

⇒ A first candidate is the raw estimate

γ(0)j =

∑I−ji=0 Xi,j∑I−ji=0 µi

,

However, they do not sum up to 1.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 5 / 12

Page 15: Development Pattern and Prediction Error for the Stochastic

Intuitive Estimation of the Pattern

If the full rectangle was known an obvious estimate is given by

γj =

∑Ii=0Xi,j∑Ii=0 Ci,J

, 0 ≤ j ≤ J.

If only the upper trapezoid and the µi are known, replace the unknown Xi,j

by predictors µiγj

γj =

∑I−ji=0 Xi,j +

∑Ii=I−j+1 µiγj∑I−J

i=0 Ci,J +∑I

i=I−J+1

(Ci,I−i +

∑Jl=I−i+1 µiγl

) , 0 ≤ j ≤ J.

In an over-dispersed Poisson model the maximum likelihood estimates(MLE’s) satisfy these equations.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 6 / 12

Page 16: Development Pattern and Prediction Error for the Stochastic

Intuitive Estimation of the Pattern

If the full rectangle was known an obvious estimate is given by

γj =

∑Ii=0Xi,j∑Ii=0 Ci,J

, 0 ≤ j ≤ J.

If only the upper trapezoid and the µi are known, replace the unknown Xi,j

by predictors µiγj

γj =

∑I−ji=0 Xi,j +

∑Ii=I−j+1 µiγj∑I−J

i=0 Ci,J +∑I

i=I−J+1

(Ci,I−i +

∑Jl=I−i+1 µiγl

) , 0 ≤ j ≤ J.

In an over-dispersed Poisson model the maximum likelihood estimates(MLE’s) satisfy these equations.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 6 / 12

Page 17: Development Pattern and Prediction Error for the Stochastic

Intuitive Estimation of the Pattern

If the full rectangle was known an obvious estimate is given by

γj =

∑Ii=0Xi,j∑Ii=0 Ci,J

, 0 ≤ j ≤ J.

If only the upper trapezoid and the µi are known, replace the unknown Xi,j

by predictors µiγj

γj =

∑I−ji=0 Xi,j +

∑Ii=I−j+1 µiγj∑I−J

i=0 Ci,J +∑I

i=I−J+1

(Ci,I−i +

∑Jl=I−i+1 µiγl

) , 0 ≤ j ≤ J.

In an over-dispersed Poisson model the maximum likelihood estimates(MLE’s) satisfy these equations.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 6 / 12

Page 18: Development Pattern and Prediction Error for the Stochastic

Normal Model

Model Assumptions (Normal Model)

N1 The Xi,j are independent and normally distributed and there exist parameters

µ0, µ1, . . ., µI and γ0, γ1, . . . , γJ with∑J

j=0 γj = 1 and σ20 , . . . , σ

2J such that

E[Xi,j ] = µiγj ,

Var(Xi,j) = µiσ2j ,

where σ2j > 0, 0 ≤ j ≤ J .

N2 The a priori estimates µi for µi = E[Ci,J ] are unbiased and independent ofall Xl,j .

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 7 / 12

Page 19: Development Pattern and Prediction Error for the Stochastic

Maximum Likelihood Estimation (MLE) of the γj’s

We calculate the MLE’s assuming that the true µi’s and σ2j ’s are known and

then replace the µi’s by the a priori estimates µi and the σ2j ’s by estimates

σ2j .

In the Normal Model we obtain

γj =

∑I−ji=0 Xi,j∑I−ji=0 µi︸ ︷︷ ︸

raw estimate

+σ2j /∑I−j

i=0 µi∑Jl=0

(σ2l /∑I−l

i=0 µi

) (1− J∑l=0

∑I−li=0Xi,l∑I−li=0 µi

)︸ ︷︷ ︸

correction term

,

where

σ2j =

1

I − j

I−j∑i=0

µi

(Xi,j

µi−∑I−j

i=0 Xi,j∑I−ji=0 µi

)2

, 0 ≤ j ≤ J, j 6= I.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 8 / 12

Page 20: Development Pattern and Prediction Error for the Stochastic

Maximum Likelihood Estimation (MLE) of the γj’s

We calculate the MLE’s assuming that the true µi’s and σ2j ’s are known and

then replace the µi’s by the a priori estimates µi and the σ2j ’s by estimates

σ2j .

In the Normal Model we obtain

γj =

∑I−ji=0 Xi,j∑I−ji=0 µi︸ ︷︷ ︸

raw estimate

+σ2j /∑I−j

i=0 µi∑Jl=0

(σ2l /∑I−l

i=0 µi

) (1− J∑l=0

∑I−li=0Xi,l∑I−li=0 µi

)︸ ︷︷ ︸

correction term

,

where

σ2j =

1

I − j

I−j∑i=0

µi

(Xi,j

µi−∑I−j

i=0 Xi,j∑I−ji=0 µi

)2

, 0 ≤ j ≤ J, j 6= I.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 8 / 12

Page 21: Development Pattern and Prediction Error for the Stochastic

Covariance matrix of the γj’s

We use the asymptotic properties of MLE’s (Fisher Information matrix) toestimate the covariance matrix of the γj ’s.:

Cov(γj , γk) =σ2j∑I−j

i=0 µi

1{j=k} −

(σ2k/∑I−k

i=0 µi

)∑J

l=0

(σ2l /∑I−l

i=0 µi

) .

Remarks:

For the best linear unbiased estimate γ(0)j (in the case of known µi) we have

Cov(γ(0)j , γ

(0)k ) = 1{j=k}

σ2j∑I−j

i=0 µi

,

(compare with first summand).

Because of the side constraint∑J

j=0 γj = 1 the off-diagonal correlationsmust be negative (compare with second summand).

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 9 / 12

Page 22: Development Pattern and Prediction Error for the Stochastic

Prediction Uncertainty

Given all information II (i.e. DI and all µi), the conditional MSEP of the

predictor Ri = µi(1− βI−i) is given by

msepRi|II (Ri) = E

[(Ri − Ri

)2∣∣∣∣ II]

= E

J∑

j=I−i+1

Xi,j − µi(1− βI−i)

2∣∣∣∣∣∣∣II

=J∑

j=I−i+1

Var(Xi,j)︸ ︷︷ ︸Process Variance (PVi)

+(µi(1− βI−i)− µi(1− βI−i)

)2︸ ︷︷ ︸

Estimation Error (EEi)

.

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 10 / 12

Page 23: Development Pattern and Prediction Error for the Stochastic

MSEPWe estimate the conditional MSEP given II as follows

msepRi|II (Ri) =J∑

j=I−i+1

Var(Xi,j) + Var(µi)(1− βI−i)2

+ µ2i

I−i∑j=0

Var(γj) + 2∑

0≤j<k≤I−i

Cov(γj , γk)

,

msep∑Ii=I−J+1 Ri|II

(I∑

i=I−J+1

Ri

)=

I∑i=I−J+1

msepRi|II

(Ri

)+ 2

∑I−J+1≤i<k≤I

((1− βI−i)(1− βI−k)Cov(µi, µk)

+ µiµk

I−i∑j=0

I−k∑l=0

Cov(γj , γl)

).

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 11 / 12

Page 24: Development Pattern and Prediction Error for the Stochastic

Conclusions and Remarks

Under distributional assumptions we have derived

estimates for the development pattern taking all relevant information intoaccount

formulas for the smoothing from the raw estimates γ(0)j to the final estimates

γj

estimates for the correlations of these estimates.

We recommend to use these formulas also in the distribution-free case (currentlythere are no estimators available from which we know that they perform better).

A. Saluz, A. Gisler, M. V. Wuthrich (ETH Zurich) Pattern and MSEP for BF June, 2011 12 / 12