23
The MRV system of greenhouse gaseous emission in the world high-carbon reservoirs Hironori Arai Masayoshi Mano Naoko Saitoh Kazuyuki Inubushi Development of MRV system of Methane emissions from Rice paddies in the Mekong delta Hironori Arai 1,3) , Wataru Takeuchi 1) , Kei Oyoshi 2) , Lam Dao Nguyen 4) , Towa Tachibana 5) , Ryuta Uozumi, Koji Terasaki 3) , Takemasa Miyoshi 3) , Hisashi Yashiro 3) , Kazuyuki Inubushi 5)

Development of MRV system of Methane emissions from ......The MRV system of greenhouse gaseous emission in the world high-carbon reservoirs Hironori Arai Masayoshi Mano Naoko Saitoh

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • The MRV system of greenhouse gaseous emission

    in the world high-carbon reservoirs

    Hironori AraiMasayoshi ManoNaoko SaitohKazuyuki Inubushi

    Dr. Takeuchi Lab. IIS Tokyo Univ. xx

    Development of MRV system of Methane emissions from

    Rice paddies in the Mekong delta

    Hironori Arai1,3), Wataru Takeuchi1),Kei Oyoshi2), Lam Dao Nguyen4),Towa Tachibana5), Ryuta Uozumi,

    Koji Terasaki3), Takemasa Miyoshi3),Hisashi Yashiro3), Kazuyuki Inubushi5)

  • Modified from Yasuoka 2015

    Cycle from Observation to Countermeasure

    To target To solution To target

    Observ.Survey

    ModellingSimulation

    Forcast・eval.Solutiondesign

    optimization

    management

    Evaluation

    DATAinformation

    Estimation

    Strategy Policy

    EffectObservation of the effect

    GOSAT K-computer,Fugaku

    Each country must submit INDC (Intended Nationally Determined Contributions) to UNFCCC before 2020

  • 3

    Yan et al.2009 Xuan and Matsui, 1998

    alluvial soil

    1.1 Mha, 28%

    acid sulfate soil

    1.1 Mha, 28%potentially acid sulfate

    0.5 Mha, 13%

  • 431st / Oct / 2011

  • Rice farmers participatory field observation

  • 6

    Characteristics of the Mekong delta

    Arai et al., 2018

  • 0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100% そのまま圃場等に放置

    家畜飼料

    その他作物の栽培

    キノコ栽培(自身が栽

    培)

    知人に譲渡

    売却(売却先では主にキ

    ノコ栽培に用いられる)

    焼却Winter-Spring

    *n=50Straw use in TL2, Can Tho

    (ha ha-1)

    Spring-Summer

    Summer-Autumn Burned

    Sold to mushroom farmers

    Free transfer to mushroom farmers

    Compost for Mushroom cultivation

    Compost forvegetable cropping

    Feedstuffs forlivestocks

    Left on soil

    n=50

    Greenhouse gas emission derived from rice straw use

  • 8

    0

    1

    2

    3

    4

    04

    69

    21

    38

    18

    42

    30

    27

    63

    22

    36

    84

    14

    46

    0

    CO flux

    CO2 flux

    Times after ignition (minutes)

    Em

    issi

    on r

    ate

    (gC

    / h)

    CO

    CO2

    Straw 40kg Moisture 20%

    ・CH4・N2O・VOC・O2・LEL

    40kg 10kg Inlet

    Outlet

    Greenhouse gas emission derived from straw burning - Comparison among different straw size and moisture -

  • 0

    4

    8

    12

    16

    20

    土壌還元 焼却 持ち出し

    0

    30

    60

    90

    120

    - CF AWD CF AWD CF AWD

    0

    700

    1400

    2100

    2800

    3500

    土壌還元 焼却 持ち出し

    ■Conventional ■ Straw-use■AWD

    - Reduction of irrigation rate & GHGs (2012-2016)- Increase of rice grains and its quality

    GH

    Gs

    em

    issi

    on

    (t- C

    O2

    eq.h

    a-1

    year

    -1)

    60%reduction

    30%reduction

    Irrigation r

    ate

    (mm

    ha-

    1ye

    ar-1

    )

    Gra

    in y

    ield

    (t- 1

    4%

    mo

    istu

    re h

    a-1

    Year

    -1)

    C/N

    ratio o

    f gra

    ins

    0

    7

    14

    21

    28

    3510%increase

    ImprovedRice quality

    Strawincorporation

    Strawburning

    StrawTaken out

    Strawincorporation

    Strawburning

    StrawTaken out

    Strawincorporation

    Strawburning

    StrawTaken out

    Strawincorporation

    Strawburning

    StrawTaken out

    Philippines CF

    Philippines AWD

    Arai et al., 2018

  • PALSAR-2 Lv.1.1

    quadruple6m

    Volumediffusion

    Coherency matrix [T3] generation

    Speckle filtering

    Lee-refined (7×7)

    Field water level & cropping calendar

    CH4 flux data & Soil map

    Sampling (25-30 pixel)from each ROI

    ・Statistical analysis

    CH4 emission estimation

    model

    Inundated / non-

    inundated paddies

    characterization

    Freeman-Durden

    decomposition

    Single scattering

    Doublebounce

    Field data collection

    Hierarchical bayesian modelling

    MODIS (MOD13Q1)Normalized Vegetation/Water index,

    Days after sowing, 1km

    AMSR-218.7 & 23.8 GHz (V), 10km

    Normalized frequencyIndex

    Local Maximum Fitting-Kalman filter

    Validation&

    Data Fusion

    HH, HV σ0Enhanced Lee filter (3×3)

    PALSAR-2 Lv.1.1

    SCAN-SAR25-100m

    Multi-looking

    Co-registration

    De-Grandimulti-temporalspeckle filtering

    Geocoding,Radiometric calibration

    HH, HV σ0

    Local Incidence

    angles

    Inundated / non-

    inundated paddies

    classification

    Flow chart

    CH4 emission map

    ValidationGOSAT

    (Retrieval)10km

    NICAM-TM(LETKF)

    Field observation & flux modeling

    Remote sensing on field water & vegetation

    Validation & integration

    with daily EO data

    Verification with GOSAT

  • Straw incorporation timeand amount

    Water regime prior to rice cultivation

    Water regime duringrice cultivation

    A. ①

    B.

    CROPflood

    CROPNon-flood

    CROPNon-flood

    >30 days

    180 days

    IPCC guideline (Tier1)[Emission factor × Scaling factor in IPCC guideline]

  • Sow

    ing

    day

    s (d

    ays

    afte

    r 2

    00

    1/0

    1/0

    8)

    The ad

    jacent fallo

    w’s len

    gth (d

    ays)Cropping calendar evaluation with

    MODIS-NDVI (LMF-KF) for GCOM-C

    Samples of paddies

    Paddy A (x:184, y:229)Double cropping → Triple cropping

    Paddy B (x:185, y:220):Triple cropping

    Arai et al., 2018

  • DAS←days after sowing

    β ←acid sulfate・coastal sandy soil coefficient

    CH4 emission on a specific date= γ * carbon_management / non-inundated_fallow / inundated_fallow * water_management *α*β

    carbon_management (Michaelis-Menten KINETICS)=[exp(-DAS*δ)-exp(-DAS*(δ+ω))+κ]

    non-inundated_fallow (OXYDATION CAPACITY)

    = [1+EXP(-1* ζ *(DAS – ι* days of nonflooding days of the former fallow))]

    inundated_fallow= EXP(ε * days of flooding days of the former fallow)

    water_management= EXP(η * inundated days during the last 10days)

    γ, η, δ, ε , ω , ζ , ι, κ←constant (>0)

    α ←straw incorporation coefficient

    Semi-empirical daily CH4 flux (mg C m-2 hr-1) Model

    0 days non-flooding fallow 5 days non-flooding fallow

    30 days non-flooding fallow 60 days non-flooding fallow

    Ob

    serv

    ed 100

    100101

    10

    1

    0.1

    0.01

    0.001

    0.01

    Estimated

    Da

    ily C

    H4

    fluxe

    s(k

    g C

    km

    -2h

    -1)

    0

    50

    100

    0 20 40 60 80100Days after sowing

    CH

    4fl

    ux

    Days after sowingCH

    4fl

    ux

    Arai et al., 2018

  • ALOS-2/PALSAR-2– Lband-Synthetic Aperture Radar –

    Xuan and Matsui, 199830paddies × 1village

    5paddies × 4villages

    Alluvial soils

    1.1 Mha, 28%

    Acid sulfate soils

    1.1 Mha, 28%potential acid sulfate soils

    0.5 Mha, 13%

    Strip map

    SCAN SAR

    Coherency matrix [T3] generation

    Polarimetric decomposition

    Speckle filteringLEE refined

    (7×7)

    Sampling (25-30pixel)from each ROI

    &Statistical analysis

    Modified from Avtar et al. 2012

    Freeman-Durden

    Cloud-Pottier

    PALSAR-2 Lv.1.1(quad. CEOS)

    23 scenes

    PALSAR-2 Lv.1.1(SCANSAR CEOS)

    105 scenes

    Multilooking

    Co-registration

    De Grandimulti-temporal

    filtering

    Geocoding&

    Radiometriccalibration

    HH HVIncidence

    angle

    Rice paddy masking&

    Statistical analysis

    Classification of inundated paddies and non-inundated paddieswhich is covered by rice plants

  • Inundated(fallow)

    Inundated(cropping)

    Non-inundated (cropping)

    Non-inundated (fallow)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Single scattering(%)1009080706050403020100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    Dry fallow (+rice stumps)

    Fallow after plowing or flooding fallow

    0-20 days after sowing

    21-40 days after sowing

    Inundated Non-inundated

    41-60 days after sowing

    61-100 days after sowing

    -Freeman-Durden decomposition-

    0

  • Full-polarimetry (3m)SCAN-SAR (25m)

    Fallow paddies

    0-20 days after sowing

    21-40 days after sowing

    41-60 days after sowing

    61-100 days after sowing

    Inundated Non-inundated

    HV

    (d

    B)

    HH (dB)

    -40

    -30

    -20

    -10

    -40 -30 -20 -10 0

    (a) Quadruple-polarimetry

    Arai et al., 2018

  • HV

    +H

    H t

    hre

    shold

    (d

    B*1000)

    HH

    thre

    shold

    (d

    B*1000)

    cosine(incidence angle)

    cosine(incidence angle)

    HH threshold (dB) = 0.550*HV +12.9*cosine(IA) -11.2

    y = 242983x2 - 360742x + 77749R² = 0.7936

    -60000

    -57000

    -54000

    -51000

    -48000

    0.6 0.7 0.8 0.9 1

    R² = 0.9321

    -20000

    -15000

    -10000

    -5000

    0

    0.6 0.7 0.8 0.9 1

    HV -25dB

    Arai et al., 2018

    SCAN-SAR (25m)

  • Truth (Unknown)

    Prediction

    Analy-sis

    Anal.

    Pred.

    Estimate actual irrigation practice

    Irrigation/field water-level

    Model simulation

    Our data integration scheme

  • Simulation scheme with 25m-spatial resolution- Hysteresis of soil matric potential energy-

    flood flood

    Fie

    ld w

    ate

    r le

    vel (

    cm)

    0-10

    -20

    10

    20

    30

    40

    50

    https://slideplayer.com/slide/5038747/

    Irrigation, potential energy >> Side flow, ground water flow

  • Implicit RK4 integration model

    Irrigation (init./boundary)

    inundated

    Not-inundated

    Matric-potential at irrigation index (Di) = Σ(soil inundation rate before the irrigation, days after sowing, clay content)・αi

    t = days after irrigation

    𝑾𝑳 = field water level

    Gravitational-potential at irrigation index (G) = field water level after irrigation *β

    𝑑𝑾𝑳

    𝑑𝑡= 𝜸∗exp δ ∗ 1 − log exp Di ∗ t − G + 2 + exp −Di ∗ t − G ∗ Di ∗ t − G

    −δ ∗ exp Di ∗ t − G − exp −Di ∗ t − G ∗ Di ∗ t − G

    exp Di ∗ t − G + 2 + exp −Di ∗ t − G

    + Di ∗ 1 − log exp Di ∗ t − G + 2 + exp −Di ∗ t − G + rain-fall

    Irrigation functionif 𝑾𝑳 < threshold :

    irrigate (i.e., 𝑾𝑳 += X)

    Irrigation (init./boundary)

    Parameter update by the analysis with EO data

    https://slideplayer.com/slide/5038747/

    Irrigationthreshold

    Irrigationthreshold

    constraint

    Modelstructure

    Estimated (cm)

    Ob

    serv

    ed (

    cm)

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    -20 -10 0 10

    cal

  • NICAM-TM(Chem)-LETKFwith AMSU, PREPBUFR and GOSAT/Sentinel-5P

    Direct comparison between GOSAT and emission data is meaningless…

    →GOSAT data assimilation with NICAM-TM!

    Nonhydrostatic ICosahedral

    Atmospheric Model-TM(Chem)

    Local Ensemble Transform

    Kalman Filter

    Miyoshi., 2005

    Terasaki et al., 2014

    Observation operator

    development

    for GOSAT

  • Implementation of variable localization scheme in NICAM-TM-LETKF (PREPBUFR&GOSAT)

    Back ground covariance matrices

    Kang et al., 2012 → Flux parameter estimation!2014051718-1803 Glevel 6, Inflation with RTPS=1

    Increment of XCH4 (ppb, 950 hpa) w/ VL

    Increment of XCH4 (ppb, 950 hpa) w/o VL

  • Economic assessment of GHG mitigation under various uncertainties

    Kalnay et al. 2017

    0

    50,000

    100,000

    150,000

    200,000

    250,000

    300,000温室効果ガス(キノコ栽培)

    温室効果ガス(野焼き)

    温室効果ガス(水田)

    菌種購入費

    灌漑費

    レベリング

    脱穀

    種(OM4218)

    種(Jasmine 85)

    Kali肥料

    NPK肥料

    DAP肥料

    尿素肥料

    0

    50,000

    100,000

    150,000

    200,000

    250,000

    300,000

    常時湛水

    常時湛水

    常時湛水

    常時湛水

    稲わ 稲わ 持出 持出

    きのこ

    稲わら

    # State and trends of the carbon market 2012,

    # Spot and Secondary offset market 2011, 1,822MtCO2

    = 23,250million USD

    Arai., 2015

    CF

    AW

    D

    AW

    D

    AW

    D

    AW

    D

    CF

    CF

    CF

    GHG from mushroom

    GHG from field burning

    GHG from paddy soil

    Mushroom seeds

    Irrigation cost

    Land preparation

    Grain threshing

    Seed (OM4218)

    Seed (Jasmine 85)

    KCl

    NPK

    DAP

    Urea

    Rice

    Straw

    Mushroom

    Expenditure

    (JP

    Y/y

    ear)

    Incom

    e -

    Expenditure

    (J

    PY/y

    ear)

    Incorp.Burn sell Mush-room

    STRAWMANAGEMENT

    Transparent MRV system on baselines/mitigation-effects with

    satellite data is the key !