Development and Whirl Tower Test of the Smart Active Flap Rotor

Embed Size (px)

Citation preview

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    1/11

    1

    DevelopmentandwhirltowertestoftheSMARTactiveflaprotor

    FriedrichK.Straub,DennisK.Kennedy,AlanD.Stemple,V.R.Anand,andTerryS.Birchette

    TheBoeingCompany,Mesa,Az85215

    ABSTRACT

    AfullscaleSmartMaterialActuatedRotorTechnology(SMART)systemwithpiezoelectricactuatedbladeflaps

    wasdevelopedandwhirltowertested.Thedevelopmenteffortincludeddesign,fabrication,andcomponenttesting

    ofrotorblades,trailingedgeflaps,piezoelectricactuators,switchingpoweramplifiers,andthedata/powersystem.

    Simulationsandmodelscalewindtunneltestshaveshownthatthissystemcanprovide80%vibrationreduction,

    10dBnoisereductionforahelicopterpassingoverhead,andsubstantialaerodynamicperformancegains.Whirl

    towertestingofthe34-footdiameterrotordemonstratedthefunctionality,robustness,andrequiredauthorityofthe

    activeflapsystem.

    Theprograminvolvedextensivedevelopmentworkandriskreductiontestswhichresultedinarobust,high

    performanceactuatorandatightlyintegratedactuator,flap,andbladesystem.Theactuatordemonstratedexcellent

    performanceduringbenchtestingandhasaccumulatedover60millioncyclesunderaspectrumofloading

    conditions.TheflightworthyactiveflaprotorbladeswerebasedonamodifieddesignoftheFAAcertifiedMD900

    Explorerproductionrotorblade.Whirltowertestingwasconductedwithfullrotorinstrumentationanda5-

    componentbalance.Therotorwastestedfor13hoursunderarangeofconditions,including7hoursofflap

    operation.Flapinputsincludedopenloopstaticanddynamiccommands.Theflapsshowedexcellentauthority

    withoscillatorythrustgreaterthan10%ofthesteadybaselinethrust.Variousflapactuationfrequencysweepswere

    runtoinvestigatethedynamicsoftherotorandtheflapsystem.Limitedclosedlooptestsusedhubaccelerations

    andhubloadsforfeedback.

    Provingtheintegration,robustoperation,andauthorityoftheflapsystemwerethekeyobjectivesmetbythewhirl

    towertest.Thissuccessdependedontailoringthepiezoelectricmaterialsandactuatortotheapplicationand

    meetingactuator/bladeintegrationrequirements.Testresultsdemonstratethefeasibilityandpracticalityofapplying

    smartmaterialsforlimitedauthority,activecontrolonahelicopterrotor.Follow-onforwardflightdemonstrations

    areneededtoquantifytheexpectedsignificantimprovementsinvibrations,noise,andaerodynamicperformance.Extensionsofthistechnologyareaprimecandidateforon-bladeflightcontrol,i.e.eliminationoftheswashplate.

    ThisprogramwasperformedaspartofDARPAsSmartMaterialsandStructuresDemonstrations.Fundingwas

    providedbyDARPA,TheBoeingCompany,NASA,andtheU.S.Army.Additionalcostsharefundswereprovided

    bytheUniversityofMaryland,MIT,andUCLA.

    Keywords:Smartmaterials,piezoelectric,actuator,helicopter,blade,flap,vibrationcontrol,noisecontrol

    1.INTRODUCTION

    Vibration,noise,andaerodynamicdesigncompromisescontinueasbarrierstofurtherimprovementsineffectivenessandpublicacceptanceofthehelicopter.Bladetrailingedgeflapsactuatedbyin-bladesmartmaterialactuatorshave

    emergedasprimarycandidatetodynamicallyalterthebladestructureandapplylimitedauthorityactivecontrolto

    achievesignificantimprovementsinrotorcraftperformanceandmissioncapability[1-5].Simulationsandmodel

    scalewindtunneltestshaveshownthatthissystemcanprovidemorethan80%vibrationreduction,10dBnoise

    reductionforahelicopterpassingoverhead,andsubstantialaerodynamicperformancegains.Resultingbenefits

    includeajetsmoothride,improvedcommunityacceptance,aswellassignificantlyimprovedlifecyclecost,

    productivity,andfleetreadiness.

    PresentedatSPIEsIntl.SymposiumonSmartStructuresandMaterials,SanDiego,CA,March14-18,2004.

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    2/11

    2

    Theoverallprogramobjectivewastodevelopthetechnologyanddemonstratethatsmartmaterialactuatedflapsare

    feasibleandpracticalforhighbandwidth,limitedauthorityactivecontrolofahelicoptermainrotor.TheMD900

    Explorertwinengine,lightutilityhelicopterwasselectedasdemonstrationvehicle.Itsstate-of-the-art5-bladed

    composite,bearinglessmainrotorsystemwasmodifiedtoincludein-bladepiezoelectricactuatorsandtrailingedge

    flaps,Figure1.

    ConceptdevelopmentanddesignsupporttestswereconductedduringPhaseIofthisprogram[6].Thecurrent

    PhaseIIeffortincludeddesign,fabrication,andcomponenttestingofflightworthyhardwareandwhirltowertesting

    oftheintegratedsystem.Primarycomponentsofthesystemincludetheblades,flaps,piezoelectricstacksand

    actuators,switchingpoweramplifiers,anddata/powersystem.Theirdevelopmentandresultsofthewhirltowertest

    arepresentedhere.AdditionaldetailsoftheworkperformedunderPhaseIIcanbefoundinReferences7-17.

    2.ROTORBLADEANDFLAPDEVELOPMENT

    ThebasiccharacteristicsoftheSMARTrotorareshowninTable1.Primarydesignobjectivesforthemodified

    bladeandtheflapweretominimizeactuationrequirements,matchthebaselinebladedynamics,andminimize

    weight.Akeyconstraintwastousetheproductionbladetoolingwithonlyminormodifications.Secondarydesign

    objectivesweresimplicity,modularity,andtheflexibilityofthebladetoserveasatestbedforalternateactuators.

    Thebladedesignwasmodifiedtocarrytheactuatorinsidethesparcavityandtoaddprovisionsformountingtheflap.Ashortlinkconnectstheactuatorandflap.Detailsoftheblade,flap,andactuatorintegrationareshownin

    Figures2-4.TheoveralllayoutofthehardwarecomponentsisshowninFigure5.Severalchangesweremadeto

    thebladeconstruction,includingreplacementofthreeglassplyswithtwographiteplysinthespar,eliminationof

    theouterveilply,anduseoflightweighthoneycombcoreinthemid-sectionoftheblade.Reinforcementswere

    addedtoprovideattachmentsfortheactuatorcavityaccesscover,Figure6,theactuatormounts,andtheflap

    supports,Figure7.Leadingedgeweightwasaddedtomaintainchordwisebalance,Figure8.Bladeinternalwiring

    wasprovidedforactuatordataandpower.

    Theflapparameters,Table2,werechosentominimizeactuationrequirements.Becauseoftheflaplength,three

    intermediateflapsupportsarerequiredtocarrytheflaploads.Theflapisaerodynamicallybalancedinorderto

    lowertheaerodynamichingemomentandthustheactuatorforcerequired.Theflapisalsomassbalanced.For

    maximumtorsionalstiffnesstheflapisconstructedusing45deggraphiteplys.Theradiallocationwaschosento

    providebothvibrationandnoisereduction.Centrifugalloadsaretransmittedtothebladeusingatension-torsionrod.Aflexiblelinkandarodendbearingtransmittheactuatoroutputtotheflaphorn.Aseriesoftestswere

    conductedontheflap,flaplink,andtension-torsionrodtoconfirmpropertiesandtoprovidequalificationdata.

    Aprototypeblade,flap,andactuatorwerefabricatedandusedtoconfirmfitandfunction.Integratedtestingofthe

    assemblytogetherwithaswitchingamplifierprototypeestablishedthevalidityofthedesign.Actuator/flap

    performanceunderarangeofbladedeformationsshowednodegradation.Bladestiffnessandfree-freefrequency

    testsconfirmedthatthecompletebladeassembly,includingflapandactuator,closelymatchedthebaselineblade.

    3.PIEZOELECTRICACTUATORANDAMPLIFIERDEVELOPMENT

    Actuatordesignconsiderationsincludeahighenergydensity,highbandwidthsmartmaterialtomeetactuation

    requirements,anefficientmechanismtoprovidestrokeamplificationandminimizelosses,andlowvolume.Inparticulartheactuatorheightmustbesmalltofitinsidethebladespar.Furthermore,theactuatormustberobustand

    withstandthebladeelasticdeformationsanddynamicloadingof650gsteadyand30gcyclic.Modelscalerotor

    testswereconductedandestablishedthefeasibilityandbenefitsofusingpiezoelectricactuatedbladeflaps[7,8].

    Aeroelasticsimulationsshowedthat2degflapdeflectionaresufficientforvibrationreductionathighspeedandfor

    noisereduction[6,9,10].Thiscorrespondstoanactuatoroutputof43lband0.032in,includingsomeallowance

    forlosses.Fordesignpurposesanominalflapdeflectionof4degwithanactuatoroutputof63lband0.062in

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    3/11

    3

    wereused.Maximumoperatingfrequencywaschosenastherotor(N+1)/rev,i.e.6/revor40Hzforthis5-bladed

    rotor,asrequiredforvibrationreduction.

    Piezoelectricstackactuatorswereselectedasthedrivingelement.Severallowandhighvoltagestacksweretested

    [11-15].Thelatterprovidedbetterperformanceandmoreflexibilitywithrespecttofabricationofdifferent

    geometries.Acustommade,highvoltagestackwasselected.Anumberofthesestackswereextensivelytested

    underarangeofelectrical,mechanical,andthermalconditions.Bothperformanceandfatiguetestsupto150

    millioncycleswereconducted.Fatiguetestswererunatelevatedfieldlevels(2.9kV/mm)andmechanicalpreloads

    (6ksi)withoutputs75%largerthancommerciallyavailable.Thesetestsdemonstratedthatdomainwallmovement

    withinthepiezoelectricceramicscanbeusedwithoutanysignificantdegradationover150millioncyclesof

    operation.

    Theactuatormechanismwasbasedonthex-frameconcept[7]withtwoactuatorsworkinginparallel,thusthe2x-

    frameactuator.Thetwox-framesareactuated180degout-of-phaseinapush-pullmode.Theactuatorstructure

    providesstrokeamplification,ameansforpreloadingthepiezo-ceramicstacks,andprovisionsformountinginthe

    blade.Threeprototypeswerefabricatedandtestedtooptimizeperformanceanddurability.Thefirstprototypeused

    lowvoltagestacksandvalidatedtheconcept[17].Ithadmarginalperformancebutshowedexcellentrobustness

    duringspintesting.Thesecondprototypewasscaledupby15%andusedcustomhighvoltagestacks,Figure9.

    Severalfeatureswereaddedtofacilitateassembly,enhancewearcharacteristics,andimprovemountingintheblade.

    Athirdprototypewithimprovedstructuralcharacteristicswasdeveloped,Figure10.Itdemonstratedexcellent

    performanceduringbenchtesting,Table3,andaccumulated66millioncyclesunderrepresentativeelectricalandmechanicalloadconditions.Thiscorrespondsto560hoursofoperationat5/rev.Theactuatorandbenchtestrigare

    showninFigure11.

    Aswitchingpoweramplifierwasdevelopedtodrivethepiezoelectricactuator.IGBT(Insulated-GateBipolar

    Transistor)switchingat20kHzandcapacitiveenergystorage[18]providedtheefficiencyrequiredtomeetthe

    volumeandweightconstraintsforflighttesting.Intermsofpowerdensityitrepresentsafour-foldincrease

    comparedtopreviousmodels.Theamplifiermaximumoutputwas-300/+1200Vand3Aforcapacitiveloadsof

    4 F.Aprototypeamplifierwasdevelopedandusedtodrivetheflapsystem.Basedontestresults,thedesignwas

    enhancedbyaddingnoisesuppressionfilters,providingbetterthermalprotectionforflighttestingonhotdays,and

    improvingmodularity.

    4.FLIGHTHARDWAREFABRICATIONANDTESTING

    Acompletesetof5flightworthyblades,flaps,actuators,andamplifierswasfabricatedforwhirltesting.Inaddition

    aspareactuatorandasparebladeforfuturepressureinstrumentationwerefabricated.Fiveactuatorsweretestedon

    thebenchtoestablishperformance,stiffness,andnaturalfrequencies.Inadditiontheywererunforonehourtoseat

    thecomponents,letthepreloadsettle,andbreakintheflaplinkrodendbearing.Afterinstallationintheblade,the

    actuator/flapsystemwasruntoestablishbaselineperformance,naturalfrequencies,andtobreakintheflapbearing

    surfaces.Thebladeinstalledactuator/flapsystemnaturalfrequencywas98Hz.Thepitchinertiasofallflapsand

    thefree-freefrequenciesandpitchinertiasofthemassbalancedbladeassemblieswerealsodetermined.Theoverall

    bladeweightincreasedby5lb,anincreaseof9%inweightand15%inspanwisemomentcomparedtothebaseline

    blade.ThechordwiseCGremainedunchangedat27.4%.ThecompletedbladeassemblyisshowninFigure12.

    5.WHIRLTOWERTEST

    WhirltestswereconductedatMesainawhirlcageusingtheLargeRotorTestStand(LRTS).TheLRTSincludesa

    1500HPmotor,transmission,strutassembly,a5-componentrotorbalance,andtherotorflightcontrols,Figure13.

    Thisteststandhasbeenusedinanumberofwhirltowerandwindtunneltestsofseveraldifferentrotors.

    Testsetupstartedwithinstallationoftheteststand,motor,rotorbalance,androtorhubinthewhirlcage.Forthe

    SMARTrotortestahubmounteddataacquisitionandmultiplexingsystem,Figure14,andaslipringforrotordata

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    4/11

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    5/11

    5

    normalforceresults,Figure22,showthatwithharmonicflapinputstherotoractsasafilterandonly5/revbalance

    loadsareseen.Applying450Vat5Presultsina5Pnormalforceof550lb,orabout10%ofthenominalsteady

    thrust.Thislevelofauthorityatamediumvalueofdrivingvoltageexceedsrequirementsandindicatesthattheflap

    systemshouldbeabletoprovidetheexpectedvibration,noise,andaerodynamicimprovementsinforwardflight.

    Oneadvantageoftheflapsystemisthatitiscompletelyindependentoftheprimarycontrolsystemandisnotflight

    safetycritical.Varioustestswereruntoinvestigatethesystembehaviorwithoneflapinoperativeoratfullstatic

    deflection(hardover)withtheotherflapsoperatingnormally.Noproblemswereobserved,butairframevibration

    levelswouldcertainlyincreaseshouldsuchaneventoccuronanaircraft.Tofurtherdemonstraterobustness,the

    flapsystemwasruncontinuouslyforovertwohourswithoutanyissuesandnodegradationinperformance.After

    completionofthewhirltesttheflapsystemwasbenchtested,disassembled,andinspected.Performancematched

    datatakenbeforethewhirltestandnosignsofanyinterferenceorunduewearwerefound.

    6.SUMMARY

    Afullscalerotorsystemwithpiezoelectricactuatedbladeflapswasdevelopedandwhirltowertested.The

    developmenteffortincludeddesign,fabrication,andcomponenttestingofrotorblades,trailingedgeflaps,

    piezoelectricactuators,switchingpoweramplifiers,andthedata/powersystem.Whirltowertestingofthe34-foot

    diameterrotordemonstratedthefunctionality,robustness,andrequiredauthorityoftheflapsystem.

    Provingtheintegration,robustoperation,andauthorityoftheflapsystemwerethekeyobjectivesmetbythewhirl

    towertest.Thissuccessdependedontailoringthepiezoelectricmaterialsandactuatortotheapplicationand

    meetingactuator/bladeintegrationrequirements.Testresultsdemonstratethefeasibilityandpracticalityofapplying

    smartmaterialsforlimitedauthority,activecontrolonahelicopterrotor.Follow-onforwardflightdemonstrations

    areneededtoquantifytheexpectedsignificantimprovementsinvibrations,noise,andaerodynamicperformance.

    Extensionsofthistechnologyareaprimecandidateforon-bladeflightcontrol,i.e.eliminationoftheswashplate.

    Specificconclusionsare:

    1. Modelscalerotortestsdemonstratedthefeasibilityandbenefitsofpiezoelectricactuatedtrailingedgeflaps.2. Highvoltagecustompiezostackscanbedrivenathighfieldlevelsandmechanicalpreloadwithoutputs75%

    largerthancommerciallyavailablewithoutaffectingdurability.

    3. Ahighenergy,compactpiezoelectricactuatorforoperationintheruggedrotorbladeenvironmentwas

    developed.Performanceanddurabilityweredemonstratedinextensivebenchtests.4. Ahighefficiencyswitchingpoweramplifierwasdeveloped.Powerdensitywasincreasedfour-foldcompared

    topreviousmodels.

    5. Aeroelasticsimulationmodelsfortheflapsystemweredeveloped.Resultsshowedthat2degreesofflapdeflectionaresufficientforvibrationreductionathighspeed.

    6. Theactuator/flapintegrationintothebladewasoptimizedforperformance,weight,matchingbaselinebladedynamics,andusingproductionbladetooling.Fabricationmethodsweredevelopedtoembedactuatorandflap

    supportingstructuresaswellasdata/powerwiringintheblade.

    7. Therobustnessandcontrolauthorityoftheflapsystemwasdemonstratedinwhirltowertests.Therotorwasfullyinstrumentedandanextensivedatasetofactuatorperformanceandrotorloadswasobtained.

    8. Actuatorauthorityexceededrequirements.Flapinducedoscillatoryrotorthrustwasgreaterthan10%ofbaselinethrust.

    9. TheSMARTrotorsystemisreadyforforwardflightdemonstrations.

    ACKNOWLEDGEMENTS

    Drs.EphrahimGarciaandTerryWeisshaar,DARPA,providedthemotivationandfundingfortheeffort.Dr.Gary

    Anderson,ARO,providedtechnicaloversightwithsupportfromotherresearchersatU.S.Armylaboratories.Dr.

    JanetSater,IDA,providedguidance.Drs.WilliamWarmbrodt(NASA)andCheeTung(U.S.Army)provided

    fundingandtechnicaloversight.AtBoeingthefollowingengineers,staff,andsubcontractorsprovidedsupport:

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    6/11

    6

    LouSilverthorn,MikeNothaft,JeffHughes,MikeGamble,DaveDomzalski,JosephJette,andmanyothers.Atthe

    UniversityofMaryland,Prof.InderjitChopra,assistedbyJinweiShen,TaeohLee,AndreasBernhard,andNikhil

    Koratkarsupportedrotoraeroelasticanalysesandflapactuatorspintesting,andconductedmodelrotorwindtunnel

    tests.AtUCLA,Prof.GregoryCarman,assistedbyMilanMitrovichandPaulChaplya,testedPEmaterials.At

    MIT,Prof.StevenHall,assistedbyEricPrechtlandDoraTzianetopoulou,conductedmodelrotorspintestsand

    supporteddesignofthedoublex-frameactuator.

    REFERENCES

    1. ChopraI.,StatusofApplicationofSmartStructuresTechnologytoRotorcraftSystems",RAEConference"InnovationinRotorcraftTechnology,London,UK,June1997(republishedinJournaloftheAHSSociety,

    Vol.45(4),pp228-252,October2000).

    2. FriedmannP.,ThePromiseofAdaptativeMaterialsforAlleviatingAeroelasticProblemsandSomeConcerns,RAEConference"InnovationinRotorcraftTechnology",London,UK,June1997.

    3. Straub,F.K.andKing,R.J.,Applicationofsmartmaterialstocontrolofahelicopterrotor,Proc.SPIESymposiumonSmartStructuresandMaterials,SanDiego,March1996.

    4. HasegawaY.,KatayamaN.,KobikiN.,NakasatoE.,YamakawaE.,OkawaH.,ExperimentalandAnalyticalResultsofWhirlTowerTestofATICFullScaleRotorSystem,57thAnnualForum,Washington,DC,May9-

    11,2001.5. Enenkl,B.,Klppel,V.,Preiler,D.,andJnker,P.,FullScaleRotorwithPiezoelectricActuatedBlade

    Flaps,Proc.28thEuropeanRotorcraftForum,Paper89,Bristol,UK,Sept.2002.

    6. Straub,F.K.etal.,SmartMaterialActuatedRotorTechnologySMART,Proc.AIAASDMConference,AIAA-2000-1715,Atlanta,GA,April2000.

    7. Prechtl,E.,andHall,S.R.,Closed-LoopVibrationControlExperimentsonaRotorwithBladeMountedActuation,Proc.41

    stAIAASDMConference,AIAA-2000-1714,Atlanta,GA,April2000.

    8. Koratkar,N.A.,andChopra,I.,WindTunnelTestingofaMach-ScaledRotorModelwithTrailingEdgeFlaps,Proc.57

    thAHSAnnualForum,Alexandria,VA,2001,pp.1069-1099.

    9. Shen,J.andChopra,I.,AeroelasticModelingofTrailing-EdgeFlapswithSmartMaterialActuators,Proc.41stAIAASDMConference,AIAA-2000-1622,Atlanta,GA,April2000.

    10. Shen,J.andChopra,I.,AeroelasticStabilityofSmartTrailing-EdgeFlapHelicopterRotors,Proc.42ndAIAASDMConference,AIAA-2001-1675,Seattle,WA,April2001.

    11. Mitrovic,M.,G.P.Carman,andF.K.Straub,Electro-MechanicalCharacterizationofPiezoelectricStackActuators,Proc.SPIEConferenceonSmartStructuresandMaterials,SPIEVol.3668,NewportBeach,CA,

    March1999,pp.586-601.

    12. Mitrovic,M.,GregP.Carman,G.P.andStraub,F.K,DurabilityCharacterizationofPiezoelectricStackActuatorsunderCombinedElectro-MechanicalLoading,Proc.AIAASDMConference,AIAA-2000-1500,

    Atlanta,April2000.

    13. Mitrovic,M.,G.P.Carman,andF.K.Straub,DurabilityofPiezoelectricStackActuatorsunderCombinedElectro-Mechanical-ThermalLoading,Proc.SPIEConferenceonSmartStructuresandMaterials,Paper4333-

    04,NewportBeach,CA,March2001,pp.586-601.

    14. Chaplya,P.M.andCarman,G.P.,TheEffectofMechanicalPrestressonDielectricandPiezoelectricResponseofPZT-5HatHighElectricFields,AdaptiveStructuresandMaterialSystems,Orlando,FL,Nov.

    2000,pp.327-334.

    15. Chaplya,P.andCarman,G.P.,DielectricandPiezoelectricResponseofLeadZirconateTitanateatHigh

    ElectricandMechanicalLoadsinTermsofNon-180DomainWallMotion,JournalofAppliedPhysics,November2001,V90Issue10,pp.5278-5286.

    16. Hall,S.R.,Tzianetopoulou,T.,Straub,F.K.,andNgo,H.,DesignandTestingofaDoubleX-FramePiezoelectricActuator,Proc.SPIEConferenceonSmartStructuresandMaterials,NewportBeach,CA,

    March2000.

    17. Clingman,D.J.,andGamble,M.HighPowerPiezoDriveAmplifierforLargeStackandPFCApplications,Proc.SPIEConferenceonSmartStructuresandMaterials,NewportBeach,CA,March2001.

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    7/11

    7

    Table1:Rotorcharacteristics

    Rotorblade modifiedMD900

    Hubtype bearingless

    No.ofblades 5

    Radius 203.1in

    RotorSpeed 392rpm

    Chord 10in

    Airfoil HH-10,HH-06

    Twist 10deg

    Torsionfrequency 5.7/rev

    Table2:Flapdata

    Radialstation 150186in

    Length 36in

    Chord 3.5in

    Hingelocation 75%ofchord

    Hornlength 0.75in

    Max.flapangle 6deg

    Table3:2x-Frameactuatorcharacteristics

    Blockedforce 113lb

    Freestroke 0.081in

    Maximumwork 2.28in-lb

    Voltage 475725V

    Weight 2.16lb

    Specificwork 1.1in-lb/lb

    Actuator

    Flap

    Blade

    Actuator

    Flap

    Blade

    Figure1:MD900bladewithembeddedpiezoelectric

    actuatorandtrailingedgeflap

    AccessPlateFrame/Balbar

    ActuatorMounts

    FlapRention Strap

    Tension/TorsionRod

    Flextural RodEndLinkage

    Flap

    FlapHinges

    FlapFrame

    SMARTActuators

    A

    A

    ElectricalConnectors

    Outbd FlapSupportw/FlapStop

    Inbd FlapSupportw/IntegratedLinkEgressTunnel

    Figure2:Blade,flap,actuatordesignintegration

    ArcPathofFlapHornSpar

    CrossSection

    FlapLinkAssembly

    Tension-TorsionRod

    2-XFrameActuator

    ArcPathofFlapHornSpar

    CrossSection

    FlapLinkAssembly

    Tension-TorsionRod

    2-XFrameActuator

    Figure3:Actuator,flaplink,tension-torsionrod

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    8/11

    8

    ActuatorStacks

    Flap

    Balbar

    FlexturalLinkage

    AccessPlateFrame

    LinkageTunnel

    FoamCore

    X-Frames BladeSpar

    RodEndBearing

    AccessPlate

    Figure4:Blade,flap,actuatorcross-section(A-A)

    Actuator

    Flaps

    Access

    Cover

    TipWeights

    Actuator

    Flaps

    Access

    Cover

    TipWeights

    Figure5:Flapsystemcomponents

    SparInnerTorqueWrap

    AccessPlateFrame

    SparOuterTorqueWrap

    LeadingEdge

    Weights

    SparInnerTorqueWrap

    AccessPlateFrame

    SparOuterTorqueWrap

    LeadingEdge

    Weights

    Figure6:Bladesparfabrication

    SparDetail

    HingeAxisAlignmentTool

    Inbd FlapSupport

    Outbd FlapSupport

    Strap

    SparDetail

    HingeAxisAlignmentTool

    Inbd FlapSupport

    Outbd FlapSupport

    Strap

    Figure7:Bladesparandflapsupportdetaillayup

    BalanceWeight

    AccessPlate

    OffsetTool

    LeadingEdgeWrap

    BalanceWeight

    AccessPlate

    OffsetTool

    LeadingEdgeWrap

    Figure8:Leadingedgewrapclosureandbalance

    weight

    Lowerviewshown

    PiezoStackColumn

    InboardX-FrameActuator,Assembled

    LoadLink

    X-FrameActuator,Frames

    OutboardX-FrameActuator,Disassembled

    FlexureMount

    Figure9:2x-frameactuator

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    9/11

    9

    FixedFrame

    MovingFrame

    Figure10:2x-frameactuatordetails

    BenchTestRig

    FlapLinkTorsionBar

    Spring

    InboardX-FrameOutboardX-Frame

    BenchTestRig

    FlapLinkTorsionBar

    Spring

    InboardX-FrameOutboardX-Frame

    Figure11:Actuatoronbenchtestrig

    10in

    chord

    13Ft13Ft

    3Ft

    Actuator

    Access

    Cover

    Flap

    Figure12:Smartrotorbladeassembly

    GearBox

    RotorBalance

    StrutAssy

    1500HP

    Motor

    Figure13:Largerotorteststand(LRTS)

    Figure14:Rotorhubwithdata/powertransferunit

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    10/11

    10

    Figure15:Smartrotorbladeonwhirltower

    Figure16:Smartrotoronwhirltower

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 20 40 60 80 100

    RotorSpeed,%NR;Collective*10,deg

    FlapDeflection-Average,

    Relative

    ,deg

    test11 test12 test18

    te st1 1 te st 18

    vsRotorSpeed

    vsCollective

    vsRotorSpeed

    vsCollective

    Figure17:Flapdeflectionversusrotorspeed(0deg

    collective)andcollectivepitch(100%Rpm)withno

    powerapplied.

    -60

    -40

    -20

    0

    20

    40

    60

    -600 -400 -200 0 200 400 600

    ActuatorVoltage,V

    ActuatorDisplacement,mil

    8degcollective

    0degcollective

    1.5deg

    Figure18:Staticactuatordeflectionversusapplied

    voltage,at100%Rpm

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    11/11

    11

    -2000

    -1500

    -1000

    -500

    0

    500

    -4 -3 -2 -1 0 1 2 3 4

    FlapDeflection,deg

    BladeTorsionMoment,in-lb

    T51 T71 T130 T165

    Figure19:Bladetorsionmomentatfourstations

    versusstaticflapdeflection(8degcoll.,100%Rpm)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5 6 7

    RotorSpeedMultiple

    CyclicFlapDisplacement(Avgof5),deg

    300V

    400V

    450V

    Figure20:Flapdeflectionversusexcitation

    frequencyforthreevoltagelevels(100%Rpm,8deg

    collective,1P=6.53Hz)

    0

    100

    200

    300

    400

    500

    600

    700

    0 1 2 3 4 5 6 7

    RotorSpeedMultiple

    TorsionMomentSta71,

    in-

    lb

    300V

    400V

    450V

    0V

    Figure21:Bladetorsionmomentharmonicsat

    station71inattheexcitationfrequencyforthree

    voltagelevels(100%Rpm,8degcollective,1P=

    6.53Hz)

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6 7

    RotorSpeedMultiple

    BalanceNormal,lb

    300V

    400V

    450V

    0V

    Figure22:Balancenormalforce(thrust)harmonics

    attheexcitationfrequencyforthreevoltagelevels

    (100%Rpm,8degcollective,1P=6.53Hz)