22
CUI What are the implica1ons of the test method chosen? 5. Nov 2015 DESIGNING AGAINST CUI Adrian Chris:an Haaland

DESIGNING#AGAINST#CUI# - OVERFLATEoverflate.no/wp-content/uploads/2015/...CUI-What-are-the...chosen.pdf · CUI%$Whatare$the$implicaons$of$the$testmethod$chosen?$ 5.Nov2015 DESIGNING#AGAINST#CUI#

Embed Size (px)

Citation preview

CUI  -­‐  What  are  the  implica1ons  of  the  test  method  chosen?  

5.  Nov  2015  

DESIGNING  AGAINST  CUI  

Adrian  Chris:an  Haaland  

PROGRAM  

•  PROTECTING  AGAINST  CUI  -­‐  Which  strategies  can  be  reliably  counted  on?  

 •  TEST  METHODS  -­‐  What  do  each  test  method  tell  us?    •  SELF  DEVELOPED  TEST  METHOD  -­‐  AOributes  and  test  philosophy    •  RESULTS  -­‐  A  quick  summery  of  results  obtained    •  SUMMARY  -­‐  What  we  have  learned  from  these  tests  and  what  we  have  

learned  that  we  don’t  know  

PROTECTING  AGAINST  CUI  

•  Keeping  water  out  of  the  insula:on  system  

•  An  effec:ve  drainage  system  leYng  water  out  of  the  system  

 •  Good  drying  condi:ons    •  A  robust  coa:ng  system  

compa:ble  with  the  insula:on  material  and  service  condi:ons    

•  Avoiding  damages  and  faults  on  the  coa:ng  and  the  insula:on  system  

FACTORS  INFLUENCING  THE  RISK  OF  CUI  

•  What  environment  is  created  under    the  insula:on?    

 •  Closed  /  open  systems    •  Reduced  corrosion  above  

80°C  for  open  systems  

•  Corrosion  increases  steadily  with  temperature  for  closed  system  

•  Clˉ accelerates  the  corrosion  even  further  

 Source:  NACE  Standard  Prac1ce  -­‐  SP0198  

FACTORS  INFLUENCING  INSULATION  DRYING  ABILITY  

•  Opera:ng  temperature,  thermal  gradient  and  ambient  temperature  

•  Rela:ve  humidity      •  Permeability  and  porosity  of  

insula:on  material  

•  Effect  of  pore-­‐size  (capillary  forces)  

•  Hydroscopic  vs.  hydrophobic  material  proper:es  

Source:  Mujumdar  A.S  Devahas1n  -­‐    “Fundamental  principles  of  drying”  

EFFECT  OF  THERMAL  GRADIENT  ON  DRYING  

Source:  www.bygningsfysikk.no  

PREVIOUS  TEST  METHODS  FOR  CUI  

ASTM  G189  –  07      •  Corrosion  tes:ng  of  C-­‐steel  pipes  

with  insula:on    •  WeYng  /  drying  cycles  

   •  2D  –  The  water  inlet  and  outlet  is  

located  directly  above/below  each  other  

•  Electrochemical  measurements  monitor  corrosion  con:nuously  

 Source:  ASTM  G189  -­‐  07  

PREVIOUS  TEST  METHODS  FOR  CUI  

ASTM  B117    •  Cyclic  salt  spray  test  on  sealed  

insula:on  system.    •  Measure  the  insula:on  systems  

ability  to  keep  water  out    •  Tes:ng  performed  on  ideal  test  

pieces.    

Source:  Internal  test  report  

PREVIOUS  TEST  METHODS  FOR  CUI  

Outdoor  weather  exposure  tests  •  Insula:on  materials  are  on  C-­‐

steel  pipes.    •  Variable  weather  condi:ons  used    

as  exposure    •  No  sealant  or  cladding  is  applied    •  The  test  measures  the  insula:on  

materials  ability  to  dry  under  ideal  condi:ons  

   

Source:  NACE  -­‐  The  influence  of  insula1on  materials  on  corrosion  under  insula1on  

BENARX  SOLUTION  SELF-­‐DEVELOPED  TEST  

Parameters  •  Possibility  for  10  parallel  pipe  

tests  •  Pipe  temperature  at  65°C  •  5L  of  3,5  wt.%  synthethic  

saltwater  introduced  every  week  (The  Saltwater  made  by  mixing  sea-­‐salt  in  dis:lled  water)  

•  No  coa:ng  system  (worst  case)  •  Drainage  holes  included  in  all  

insula:on  systems  •  Measurements:    -­‐  Temperature    -­‐  Humidity  -­‐  IR-­‐imaging  -­‐  Visual  inspec:on  

BENARX  SOLUTION  SELF-­‐DEVELOPED  TEST  

BENARX  SOLUTION  SELF-­‐DEVELOPED  TEST  

BENARX  SOLUTION  SELF-­‐DEVELOPED  TEST  

AOributes  and  tes:ng  philosophy    •  Test  philosophy:  Water  will  get  

inn    •  Water  inlet  and  drainage  at  

separate  points    •  No  coa:ng  system  –  A  complete  

coa:ng  breakdown  scenario    •  Mul:ple  insula:on  systems  can  

be  tested  simultaneously.  

•  Infrared  monitoring  of  tests  enable  a  3D  view  of  the  wet  insula:on  present  

RESULTS  AFTER  1ST  ROUND  OF  TESTS  

0  

500  

1000  

1500  

2000  

2500  

3000  

3500  

4000  

XP  +  5mm  aerogel   XP  +  5mm  aerogel  spacers  

XP  +  28mm  rubber  spacer  

Cellular  glass  +  AES-­‐wool  +  SS316  cladding  

Mineral  wool  +  SS316  cladding  

Corrugated  distance  bands  +  mineral  wool  +  SS316  Cladding  

Volume  (m

l)  

Absorbed  volume  of  water  -­‐  Efficiency  of  drainage  

RESULTS  AFTER  1ST  ROUND  OF  TESTS  

Water  absorp:on:  •  The  drying  abili:es  of  mineral  

wool,  AES  wool  and  aerogel  were  retarded  when  placed  inside  a  closed  system.  

•  Drainage    not  sufficient  for  water  absorbing  materials  

 •  Resul:ng  in  corrosion  from  wet  

insula:on    •  Drainage  became  efficient  one  

an  air  gap  was  added  between  the  pipe  and  the  insula:on  material  

IMPLICATION  OF  TEST  METHOD  

Test  of  open  system  (op:mal  condi:ons)  

•  Test  of  the  insula:on  materials  own  performance  

•  Good  drying  condi:on  •  Water  evaporates  into  the  surrounding  air  

quickly  •  Ambient  temperatures  •  Rain  water  outside  the  insula:on    

Test  of  closed  system  (worst  condi:ons)  

•  Insula:on  tested  as  part  of  a  system  •  Poor  drying  condi:ons  •  Water  escapes  slowly  resul:ng  in  a  

concentrate  of  NaCl  during  the  drying  phase  

•  OTP  =  65°C,  Ambient  =  19°C  •  Saltwater  inside  the  insula:on  

Mineral  wool   Mineral  wool  

Aerogel   Aerogel  

RESULTS  AFTER  2ND  ROUND  OF  TESTS  

Cellular  glass  with  15mm  Air-­‐Gap   Cellular  glass  directly  on  steel  pipe    

RESULTS  AFTER  2ND  ROUND  OF  TESTS  

Cellular  glass  with  2mm  Air-­‐Gap   Cellular  glass  with  5  -­‐  10mm  Air-­‐Gap  

Op1mized  solu1on?  

IMPLICATION  OF  TEST  METHOD  

Salt  spray  test  of  sealed  Cellular  Glass  

•  Tes:ng  of  the  insula:on  systems  ability  to  keep  water  out  

•  No  installa:on  faults  are  accounted  for  •  None  of  the  CUI  controlling  factors  are  

evaluated  

Self  developed  CUI  test    •  Tes:ng  of  corrosion  behavior  when  

saltwater  HAS  entered  the  system  •  A  3D  picture  of  the  resul:ng  corrosion  can  

be  evaluated.  •  Controlling  factors  like  Cl¯ˉ  content,  

temperature  cycle,  drying  condi:ons  and  drainage  can  be  accounted  for  and  controlled.  

 

RESULTS  AFTER  2ND  ROUND  OF  TESTS  

Thermal  imaging    •  Wet  insula:on  materials  are  

detected  in  IR  due  loss  of  insula:on  performance  at  wet  zones.  

•  Hot  zones  observed  in  the  IR  images  correlates  well  with  the  wet  and  corroded  areas  revealed.  

•  Detec:on  is  only  possible  with  water  absorbing  insula:on  materials  and  with  a  high  surface  emissivity  (non-­‐reflec:ve).  

SUMMARY  

•  Drying  ability  of  an  insula:on  material  in  a  closed  system  is  extremely  limited,  and  results  in  severe  corrosion  from  permanent  weYng  

•  Insula:on  systems  with  spacers  separa:ng  the  pipe  from  the  insula:on  were  observed  to  perform  well  across  different  CUI  test  methods.  

 -­‐  Spacer  materials  used  -­‐>  Coa:ng  damage?    -­‐  Op:miza:on  of  air  gap  distance  for  slimness    

•  No  single  CUI  test  can  be  said  to  be  right  or  wrong,  BUT  the  relevance  of  each  test  method  should  be  evaluated  cri:cally  

•  Tes:ng  needs  to  be  conducted  at  actual  service  condi:ons  and  for  the  complete  insula:on  system.  

•  Effec:ve  drainage  is  of  major  importance,  even  if  the  system  is  claimed  water:ght  or  the  insula:on  material  water-­‐repellant.  

THANK  YOU  FOR  THE  ATTENTION