27
Design Status of the PEFP RCS HB2010, Morschach, Switzerland J.H. Jang 1) Y.S. Cho 1) , H.S. Kim 1) , H.J. Kwon 1) , Y.Y. Lee 2) 1) PEFP/KAERI, 2) BNL (www.komac.re.kr)

Design Status of the PEFP RCS - CERN › HB2010 › talks › weo2b03_talk.pdfDTL101 34 6.738 33.1 DTL102 28 6.707 45.3 DTL103 25 6.792 57.3 DTL104 23 6.877 69.1 DTL105 21 6.778 80.4

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Design Status of the PEFP RCS

    HB2010, Morschach, Switzerland

    J.H. Jang1) Y.S. Cho1), H.S. Kim1), H.J. Kwon1), Y.Y. Lee2)

    1)PEFP/KAERI, 2)BNL

    (www.komac.re.kr)

  • 2

    PEFP (proton engineering frontier project) Status

    Expansion Plan of PEFP

    Design Concept of the PEFP RCS (rapid cycling synchrotron)

    Lattice Design and Beam Dynamics

    Summary

    Contents

  • 3

    Project : Proton Engineering Frontier Project (PEFP)

    21C Frontier Project, Ministry of Education, Science & Technology

    Project Objectives :

    1st : Developing & constructing a proton linear accelerator (100MeV, 20mA)

    2nd : Developing technologies for the proton beam utilizations &

    accelerator applications

    3rd : Promoting industrial applications with the developed technologies

    Project Period : 2002.7 – 2012.3 (10 years)

    Project Cost : 128.6 B Won (Gov. 115.7 B, Private 12.9 B) (Gyoungju City provides the land, buildings & supporting facilities)

    Overview of PEFP

  • 4

    Output Energy (MeV) 20 100

    Peak Beam Current (mA) 20 20

    Max. Beam Duty (%) 24 8

    Avg. Beam Current (mA) 4.8 1.6

    Pulse Length (ms) 2 1.33

    Max. Repetition Rate (Hz) 120 60

    Max. Avg. Beam Power (kW) 96 160

    Schematics of PEFP Linac & Beamlines

    Features of the PEFP linac

    • 50 keV Injector (Ion Source + LEBT)

    • 3 MeV RFQ (4-vane type)

    • 20 & 100 MeV DTL

    • RF Frequency : 350 MHz

    • Beam Extractions at 20 or 100 MeV

    • 5 Beamlines for 20 MeV & 100 MeV

    - Beam to be distributed to 3 BL via AC

    Future

    Extension

    100 MeV Beamlines 20 MeV Beamlines

    TR105 TR101 TR25 TR21

    TR23 TR22 TR24 TR102 TR103 TR104

    100 MeV 20 MeV 3 MeV

  • 5

    Status of Accelerator Development

    100 MeV Beam 20 MeV Beam

    Step 3

    (’08.04 ~ ’12.03)

    Step 2

    (’05.07 ~ ’08.03)

    Step 1

    (’02.07 ~ ’05.06)

    RF RF RF RF RF

    91~102 80~91 69~80 57~69 45~57

    DTL103 DTL104 DTL105 DTL106 DTL107 MEBT

    RF RF

    33~45 20~33

    DTL101 DTL102

    RF

    RFQ IS

    RF

    DTL21~DTL24

    Control & Diagnostics

    Operating 2010

    Fully developed & integrated up to 20 MeV at KAERI site in Daejeon

    The fabrication of tanks up to 91MeV has been finished.

    Last tank will be fabricated in this fiscal year.

    Completed

  • 6

    The Project Site

    The land (440,000 m2) provided by Gyeongju municipal government.

    (The capital of Shilla dynasty for 992 years, from BC 57 to AD 935.)

    Seoul

    KAERI (Daejeon) Gyeongju

    Daegu

    Pusan

    Express Railway (KTX)

    (New Gyeongju Station)

    Free Way

    (Gyeonju IC)

    Phase

    II

    Phase

    I

  • 7

    The Site Plan

    Proton Accelerator Research

    Center

    ② ③

    ⑥ ⑦

    ⑦ Water Storages

    ⑧ Main Office Building

    ⑨ Regional Cooperation Center

    ⑩ Dormitory

    ⑪ Information Center

    ⑫ Sewage Plant

    ① Accelerator Tunnel

    ② Experimental Hall

    ③ Ion Beam Facility

    ④ Utility Building

    ⑤ Substation

    ⑥ Cooling Tower

    1,100 m 450 m

    40

    0 m

    Reserved for

    the Future Expansion

    Phase I

    (2002~2012)

    Phase II

    (2012 ~) Express Railway (Under construction)

    Phase - II

    Phase - I

    Gyeong-bu

    Freeway

  • 8

    PEFP 20 MeV Linac

    Waveguide WR2300

    Klystron for DTL 350 MHz 1 MW CW

    LEBT 3 MeV RFQ

    350 MHz 4-Vane

    Injector

    50 keV 40 mA 20 MeV DTL

    4 -Tank 150-DT

    Klystron for RFQ 350 MHz 1 MW CW

    Beam Profile Target station

    for user

    Extracted first beam (July 2005)

    Obtained operation license (June 2007)

    - Avg. current: 0.1 A,

    - Rep. Rate: 0.1 Hz, 4 hrs/week

    Started beam service (June 2007)

    Achieved design performance (May 2008)

    4cm

  • 9

    Target Station for 20-MeV beams (at KAERI site)

    -30 -20 -10 0 10 20 30

    0

    1000

    2000

    3000

    4000Data: Data1_B

    Model: Gauss

    Equation: y=y0 + (A/(w*sqrt(PI/2)))*exp(-2*((x-xc)/w)^2)

    Weighting:

    y No weighting

    Chi^2/DoF = 26392.98749

    R^2 = 0.98215

    y0 354.12642 ± 24.15184

    xc 0.00098 ± 0.07989

    w 10.29726 ± 0.18919

    A 44757.8051 ± 893.56993

    N.O

    of p

    art

    icle

    s

    X axis [cm]

    1m

    Gauss fit of Data1_B

    External beam

    DTL

    QM (triplet)

    Target

    Lead shielding

    Concrete

    Shielding

    Beam energy / current : 20-MeV, 1uA (average) – 20mA peak, 50us, 1Hz

    Target room dimension : 0.6m(width)x2.6m(length)x1.8m(height)

    External beam diameter : 10cm (1m transport after beam window)

    Beam window : 0.5mm thick Al

    Shielding : gamma-10cm thick lead, neutron – 15cm thick concrete

    License issued at June, 2007 (May, 2008 for 1uA license)

    Irradiated Samples

    103

    178155

    0

    50

    100

    150

    200

    2007 2008 2009

  • 10

    100-MeV DTL tanks

    tank cell # length

    (m)

    energy

    (MeV)

    DTL101 34 6.738 33.1

    DTL102 28 6.707 45.3

    DTL103 25 6.792 57.3

    DTL104 23 6.877 69.1

    DTL105 21 6.778 80.4

    DTL106 20 6.870 91.7

    DTL107 19 6.880 102.6

    The fabrication of tanks up to 91MeV (DTL101~DTL106)has been finished.

    Last tank will be fabricated in this fiscal year.

    DTL tanks at Gyeonju office

  • 11

    Beam Lines

    BL25

    BL21 BL22

    BL23

    BL24

    BL105

    BL101 BL102

    BL103

    BL104

    Beam

    Line

    Application

    Field

    Rep.

    Rate

    Avg.

    Current

    Irradiation

    Condition

    TR21 Semiconductor 60 Hz 0.6 mA Hor. Ext.

    TR22 Bio-Medical

    Application 15 Hz 60 A Hor. Ext.

    TR23 Materials, Energy &

    Environment 30 Hz 0.6 mA Hor. Ext.

    TR24 Basic Science 15 Hz 60 A Hor. Ext.

    TR25 Radio Isotopes 60 Hz 1.2 mA Hor. Vac.

    Beam

    Line

    Application

    Field Rep. Rate

    Avg.

    Current

    Irradiation

    Condition

    TR101 Radio Isotopes 60 Hz 0.6 mA Hor. Ext.

    TR102 Medical Research

    (Proton therapy) 7.5 Hz 10 A Hor. Ext.

    TR103 Materials, Energy &

    Environment 15 Hz 0.3 mA Hor. Ext.

    TR104 Basic Science

    Aero-Space 7.5 Hz 10 A Hor. Ext.

    TR105 Neutron Source

    Irradiation Test 60 Hz 1.6 mA Hor. Vac.

    QM AC Dipole 25 BM 45 BM

    Designed by reflecting user’s requirements

    Developed components, BM, QM, ACM, & Beam Instruments

    AC magnet distributes proton beams to three target rooms

    Fabricated at IHEP (China)

    Beam Line magnets

    at Gyeonju office

  • 12

    Options of PEFP Expansion

    ▪ 1 GeV Linac + Acc. Ring

    ⇒ 2 MW Spallation Neutron Source

    ⇒ 250, 400, 1000 MeV Proton Beam

    ▪ 200 MeV Linac + 2 GeV RCS

    ⇒ 0.5 MW Spallation Neutron Source

    ⇒ 250 MeV Proton Beam

    ▪ 400 MeV Linac + 8 GeV PS

    ⇒ 8 GeV Proton Beam

    Two Options Proposed by Science & TEchnology Policy Institute (Feb, 2009)

    : in a research report on “Long-term Planning for Proton Engineering Frontier Project”

    Option 2

    Option 1

  • 13

    Design concept of PEFP RCS

    Purpose

    • Spallation neutron source: energy > 1GeV

    • Medical application, Radioisotope, Nuclear physics, etc: energy ~ 450 MeV

    Design concept

    • PEFP 100MeV linac: injector of the RCS

    • Final energy of RCS: 1 GeV (initial stage)

    • Beam power of 60 kW (initial stage)

    • Beam power of 500kW through 3 upgrade stages: injection and extraction energies,

    repetition rate

    • Injection: charge exchange and painting

    • Extraction: fast and slow extraction

  • 14

    Upgrade Plan

    - Injection energy: from 100 MeV to 200 MeV

    - Extraction energy: from 1 GeV to 2 GeV

    - Repetition rate: from 15 Hz to 30 Hz

    Injection

    Energy

    (MeV)

    Extraction

    Energy

    (MeV)

    Repetition

    Rates

    (Hz)

    RF

    Voltage

    (kV)

    Output

    Power

    (kW)

    Initial 100 1000 15 75 60

    1 100 1000 30 140 120

    2 100 2000 30 260 250

    3 200 2000 30 250 500

    - In the following contents, we will focus on the RCS design study in initial stage

  • 15

    Design parameters of PEFP RCS (initial stage)

    Beam power (kW) : 60

    Injection energy (MeV) : 100

    Extraction energy (MeV) : 1000

    Injection type : Charge exchange

    Extraction type : Fast & Slow

    Repetition rate (Hz) : 15

    Circumference (m) : 224.16

    Lattice structure and cell number : FODO and 20

    Number of dipole : 32

    Dipole field at 1 GeV (T) : 0.56

    Super-period : 4

    Tunes of QX /QY : 4.39/4.29

    T : 4.4

    RF harmonic number : 2

    Required RF voltage : 75 kV

  • 16

    Lattice Design (1/2)

    • Four-fold symmetry :

    To reduce lower-order resonance

    • FODO lattice : pseudo 20 fold symmetry

    • Dispersion free long straight sections :

    – Injection and Extraction

    – RF system

    – Collimator

    • Arc straight sections with missing dipole :

    – Momentum collimation

    – Slow extraction

    Fast Extraction

    Injection

    Slow Extraction

    RF

    Ac

    ce

    lera

    tion

    RF

    Ac

    ce

    lera

    tio

    n

    Lattice Structure of PEFP RCS

    Momentum Collimation

    Collimator

    65.08 m

  • 17

    Lattice Design (2/2)

    • Lattice: FODO

    • Beam optics: MAD8

    - dispersion suppression in the straight sections

    • Maximum beta functions: 18.3 m / 18.7 m

    • Dispersion function < 6.0 m

    • beta functions and dispersion function

    in one super-period

    • Physical acceptance: 560 mm-mrad

    • Collimator acceptance: 350 mm-mrad

    • Transverse emittance: 280 mm-mrad

  • 18

    Closed Orbit Distortion and Correction

    Parameters Values

    Magnetic Field Error of BM (dB/B) =10^-4

    Magnetic Field Error of QM (dB/B) =10^-4

    Displacement Error dx = dy = ds= 0.3mm

    Rotation Error dx, dy, dz = 1.0 mrad

    • MAD8: MICADO method

    • Number of used BPM : 40

    • Number of used corrector magnets : 40

    • Maximum orbit distortion before/after corrections :

    ±10mm / ± 1mm

    • Statistical analysis to determine the specification of the

    corrector magnets.

  • 19

    Chromaticity Correction

    • Natural chromaticity: -4.32 / -4.64

    • Assuming momentum spread : ±1%

    • Maximum tune spread due to chromaticity:

    dQx = 0.043, dQy = 0.046

    (This is very small compared with the

    space charge tune shift of 0.2)

    Horizontal

    Vertical

  • 20

    Dynamic Aperture Study

    • DYNAP routine in MAD8

    • Tracking Method: LIE Algebra Method

    • p/p < 0.7 % ( Injection Simulation Result )

    • Closed Orbit Distortion Effects

    • Multipole Effects of Dipole Magnet

    • Most dominant effects: COD

    (After correction, DA is larger than the stable

    region)

    p/p

    effects

    COD

    effects

  • 21

    • Painting scheme: Correlated • Macro – particles number: 4.0*104

    • Circumference [m] : 224.16 • Linac peak current [mA] : 20

    • Injection energy [MeV] : 100 • Injection time [ms] : 0.349

    • Machine tunes(Qx/Qy) : 4.39/4.28 • Foil Thickness : 200 μg/cm2

    • Linac emittance [pi mm mrad] : 1.0 • Number of Turns Injected : 200

    • Beam emittance [pi mm mrad] : 280 • Space Charge effect : YES

    Injection

  • 22

    Transverse Correlated Painting

    • correlated painting: ORBIT code

    • Spatial beam size of horizontal and vertical coordinate: 55mm

    bump function

    x-y

    x-x’

    y-y’

    distribution

    injectiont

    ttf 1)(

  • 23

    Acceleration Simulation (1/3)

    Time structure of the RCS input beam: injection energy: 100 MeV

    repetition rate: 15 Hz

    Linac beam just before injection : One macro-pulse includes 400 mid-pulses ( h=2 )

    [ Macro-Pulse ] [ Mid-Pulse ]

    RCS beam just after injection : One pulse includes two bunches

    bunch length of 500 ns ~ Chopping factor of 57%

    [ Pulse ] [ Bunch ]

  • 24

    Acceleration Simulation (2/3)

    - This simulation is for the initial stage: ORBIT

    - Magnetic field ramping: sinusoidal

    - Peak accelerating voltage < 75 kV

    - Synchronous phase < 35.3

    particle distribution in longitudinal phase space

    magnetic field ramping

    peak voltage

    sync. phase

    18.7 kV

    75.0 kV

    - Energy (E): Gaussian with = 0.2 MeV

    - Phase (): uniform in 103 degrees

    ( chopping factor = 57%)

    Energy

    Phase

  • 25

    Acceleration Simulation (3/3)

    - final energy = 1003 MeV

    - final capture rate = 99.9 %

    200 turns

    (100.1 MeV, 100 %)

    6000 turns

    (210.5 MeV, 99.93 %)

    2000 turns

    (113.8 MeV, 99.96 %)

    10000 turns

    (362.5 MeV, 99.91 %) 31200 turns

    (1003 MeV, 99.91 %)

    18000 turns

    (700 MeV, 99.91 %)

  • 26

    Summary

    RCS is an option for PEFP expansion.

    1 GeV RCS with the 100MeV linac as an injector

    - upgradable up to 2 GeV (STEPI result for PEFP future study)

    - fast extraction for spallation neutron source

    - slow extraction for medical application, RI facility, nuclear physics

    - lattice design, beam dynamics calculation including acceleration : MAD, ORBIT

    Further work

    - 2GeV study with 200 MeV injection.

    - beam transport line (linac to RCS, RCS to target) and extraction

    - components design

    - instability issues, slow extraction, etc.

  • 27

    Thank you for your attention !!