21
Dependence of Silicon-On-Insulator Waveguide Loss on Lower Oxide Cladding Thickness Adam Mock and John O'Brien University of Southern California Microphotonic Device Group July 16, 2008 IPNRA - IWG4

Dependence of Waveguide Loss on Lower Oxide Cladding Thicknesspeople.cst.cmich.edu/mock1ap/ipnra2008_slides.pdf · 2008. 7. 11. · waveguide loss total bend loss waveguide loss total

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Dependence of Silicon-On-Insulator Waveguide Loss on Lower Oxide Cladding Thickness

    Adam Mock and John O'Brien

    University of Southern CaliforniaMicrophotonic Device Group

    July 16, 2008IPNRA - IWG4

  • Optical Loss Due to High Index Substrate

    400 nm

    Thermal Conductivity

    Si 1.5 W / (cm K) SiO

    2 0.015 W / (cm K)

    - A thermally insulating SiO2 layer may not be compatible with the heat

    dissipation requirements of VLSI circuits

    - A sufficiently thick SiO2 layer is required for optical confinement

  • Presentation Outline

    Simple model for estimating substrate leakage

    Compact FDTD method for the numerical analysis of leaky waveguides

    Dependence of waveguide loss on SiO2 thickness

    Bending loss analysis using FDTD formulation for cylindrical symmetry

    Alternative waveguide cross sections that reduce substrate leakage

  • Estimating Substrate Losses for Rectangular Waveguides Using the Effective Index Method

    P z =P0 e− z=P0−P substrate

    Assume evanescent field becomes propagating field in Si substrate to obtain P

    substrate

    Use effective index method to obtain the propagation constant and field profile assuming infinite SiO

    2 substrate

  • Estimating Substrate Losses for Rectangular Waveguides Using the Effective Index Method

    y

    x

    TE-like Polarization(dominant electric field along x)

  • Finite-Difference Time-Domain Method for Dielectric Waveguides Uniform Along Propagation Direction

    Compact FDTD: Six vector components on a 2-d gridAssume functional form F(x,y,z) = F(x,y)e-iβz for 6 field components

    with β specified by user

    ∂ Dxi , j1 /2

    ∂ t= 1

    yH z

    i , j1−H zi , j−−i H y

    i , j1 /2

    ∂ D yi−1 / 2, j1

    ∂ t=−i H x

    i , j1 /2− 1 x

    H zi , j1−H z

    i−1, j1

    ∂ Dzi , j1

    ∂ t= 1

    xH y

    i , j1 /2−H yi−1, j1 /2− 1

    yH x

    i−1 /2, j 1−H xi−1 /2, j

    ∂ Bxi−1 /2, j1

    ∂ t=−i E y

    i−1 /2, j 1− 1 y

    E zi−1 /2, j 3/2− E z

    i− 1/2, j1 /2

    ∂ B yi , j1 /2

    ∂ t= 1 x

    E zi1 /2, j1 /2−E z

    i−1 /2, j1/2−−i Exi , j1 /2

    ∂ B zi , j1

    ∂ t= 1

    yEx

    i , j3 /2−Exi , j1 /2− 1

    xE y

    i1 /2, j1−E yi−1 /2, j1

    {{{

    x-components

    y-components

    z-components

  • Numerical analysis method

    - Broadband initial condition to excite all waveguide modes

    - Propagate the fields in time for 70,000 FDTD time steps

    - 15 layers of PML on all boundaries to absorb leaky radiation from the waveguide

    - Padé interpolation to resolve spectral widths due to substrate loss

    DFT of time sequence Padé interpolation

    Q=f 0 f

    =0vgQ

  • Six field components for TE-like mode of a rectangular wavguide

    500 nm

  • Six field components for TM-like mode of a rectangular wavguide

    500 nm

  • Propagation loss calculated numerically and using effective index method

    TE-like Polarization TM-like Polarization

    Gray curves correspond to estimated loss using effective index model

  • Propagation loss for different rectangular waveguide cross sections with a 500nm SiO

    2 layer

    500 nm SiO2

    Si

    Si

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    TE-like Polarization TM-like Polarization

    Consistent with experimental reportsXiao et al. Opt. Expr. 15 10553 (2007)Vlasov et al. Opt. Expr. 12 1622 (2004)

  • SOI waveguide loss as a function of SiO2

    thickness

    TE-like Polarization TM-like Polarization

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    SiO2

    Si

    Si

  • FDTD for cylindrical symmetry: estimation of bending loss from SOI ring resonators

    ∂Dri , j1 /2

    ∂ t= 1 z

    Hi , j−H

    i , j1−mr 0H zi , j1/2

    ∂Bri , j1 /2

    ∂ t= 1 z

    Ei , j1−E

    i , j−mr1E zi , j1 /2

    ∂Di1 /2, j1/2

    ∂ t= 1 r

    H zi , j1 /2−H z

    i1, j1 /2 1 z

    H ri1 /2, j1−H r

    i1 /2, j

    ∂Bi1/2, j1/2

    ∂ t= 1r

    E zi1, j1 /2−E z

    i , j1/2 1 z

    Eri1/2, j−E r

    i1 /2, j1

    ∂D zi1 /2, j

    ∂ t=2r2r22−r1

    2 Hi1, j−

    2 r1r22−r1

    2 Hi , j2mr

    r22−r1

    2 H ri1/2, j

    ∂B zi1/2, j

    ∂ t=2 r2r 22−r1

    2 Ei , j−

    2r1r22−r1

    2 Ei1, j2m r

    r22−r1

    2 Eri1 /2, j

    {{{

    r-components

    φ-components

    z-components

    Assume functional form F(r,φ,z) = Fμ(r,z)e+imφ + F

    ν(r,z)e-imφ

    for 6 field components with integer m specified by user

  • Bending loss calculated from FDTD ring resonator losses with 500 nm SiO

    2

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    TE-like Polarization TM-like Polarization

  • Bending loss calculated from FDTD ring resonator losses with 500 nm SiO

    2

    TE-like Polarization TM-like Polarization

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    SiO2

    Si

    Si

  • Bending loss dependence on lower oxide thickness

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    TE-like Polarization TM-like Polarization

  • Bending loss dependence on lower oxide thickness

    TE-like Polarization TM-like Polarization

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    SiO2

    Si

    Si

  • Waveguide geometries for reducing substrate loss

    TE-like Polarization TM-like Polarization

    y

    x

  • TE-like Polarization TM-like Polarization

    SiO2

    Si

    Si

    SiO2

    Si

    SiO2

    Si

    Si

    SiSi

    Dependence of loss on SiO2 thickness

    400 nm

    400 nm400 nm400 nm

    400 nm

    300 nm

    300 nm

    100 nm

  • Dependence of loss on SiO2 thickness

    TE-like Polarization TM-like Polarization

    SiO2

    Si

    Si

    SiO2

    Si

    Si

    Si

    waveguide losstotal bend loss

    waveguide losstotal bend loss

    waveguide losstotal bend loss

    waveguide losstotal bend loss

  • Summary

    Method for estimating substrate loss in SOI waveguides

    FDTD numerical method for leaky wave analysis

    Investigated loss as a function of SiO2 thickness

    - 300nm to 400nm required for α < 5 cm-1 - not limited by bending loss even for r = 1μm

    Alternative waveguide geometries that reduce substrate loss

    AcknowledgementsDefense Advanced Research Projects Agency (DARPA)

    National Science Foundation (NSF)

    University of Southern California Center for High Performance Computing and Communications (USC HPCC)