117
Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science Frederick Institute of Technology

Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Embed Size (px)

Citation preview

Page 1: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

Geometric Objects and Transformations

Dr. Giorgos A. DemetriouDr. Stephania Loizidou Himona

Computer ScienceFrederick Institute of Technology

Page 2: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

2

Objectives

Introduce the elements of geometry Scalars Vectors Points

Develop mathematical operations among them in a coordinate-free manner

Define basic primitives Line segments Polygons

Page 3: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

3

Basic Elements

Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in

three dimensions

Want a minimum set of primitives from which we can build more sophisticated objects

We will need three basic elements Scalars Vectors Points

Page 4: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

4

Coordinate-Free Geometry

When we learned simple geometry, most of us started with a Cartesian approach Points were at locations in space p=(x,y,z) We derived results by algebraic manipulations involving these

coordinates This approach was nonphysical

Physically, points exist regardless of the location of an arbitrary coordinate system

Most geometric results are independent of the coordinate system Euclidean geometry: two triangles are identical if two corresponding

sides and the angle between them are identical

Page 5: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

5

Scalars

Need three basic elements in geometry Scalars, Vectors, Points

Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)

Examples include the real and complex number under the ordinary rules with which we are familiar

Scalars alone have no geometric properties

Page 6: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

6

Vectors

Physical definition: a vector is a quantity with two attributes Direction Magnitude

Examples include Force Velocity Directed line segments

Most important example for graphics Can map to other types v

Page 7: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

7

Vector Operations

Every vector has an inverse Same magnitude but points in opposite direction

Every vector can be multiplied by a scalar There is a zero vector

Zero magnitude, undefined orientation The sum of any two vectors is a vector

Use head-to-tail axiom

v -v vv

u

w

Page 8: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

8

Linear Vector Spaces

Mathematical system for manipulating vectors Operations

Scalar-vector multiplication u = v

Vector-vector addition w = u+v

Expressions such as v=u+2w-3r

Make sense in a vector space

Page 9: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

9

Vectors Lack Position

These vectors are identical Same length and magnitude

Vectors spaces insufficient for geometry Need points

Page 10: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

10

Points

Location in space Operations allowed between points and vectors

Point-point subtraction yields a vector Equivalent to point-vector addition

P = v+Q

v = P-QS

Page 11: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

11

Affine Spaces

Point + a vector space Operations

Vector-vector addition Scalar-vector multiplication Point-vector addition Scalar-scalar operations

For any point define 1 • P = P 0 • P = 0 (zero vector)

Page 12: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

12

Lines

Consider all points of the form P() = P0 + d

Set of all points that pass through P0 in the direction of the vector d

Page 13: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

13

Parametric Form

This form is known as the parametric form of the line More robust and general than other forms Extends to curves and surfaces

Two-dimensional forms Explicit: y = mx +h Implicit: ax + by +c = 0 Parametric:

x() = x0 + (1-)x1

y() = y0 + (1-)y1

Page 14: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

14

Rays and Line Segments

If >= 0, then P() is the ray leaving P0 in the direction d

If we use two points to define v, then

P( ) = Q + (R-Q)=Q+v

=R + (1-)Q

For 0<=<=1 we get all the

points on the line segment

joining R and Q

Page 15: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

15

Convexity

An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

P

Q Q

P

Page 16: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

16

Affine Sums

Consider the “sum”

P = 1P1+2P2+…..+nPn

Can show by induction that this sum makes sense iff

1+2+…..n = 1

in which case we have the affine sum of the points P1P2,…..Pn

If, in addition, i>=0, we have the convex hull of P1P2,…..Pn

Page 17: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

17

Convex Hull

Smallest convex object containing P1P2,…..Pn

Formed by “shrink wrapping” points

Page 18: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

18

Curves and Surfaces

Curves are one parameter entities of the form P() where the function is nonlinear

Surfaces are formed from two-parameter functions P(, ) Linear functions give planes and polygons

P() P(, )

Page 19: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

19

Planes

A plane be determined by a point and two vectors or by three points

P(,)=R+u+v P(,)=R+(Q-R)+(P-Q)

Page 20: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

20

Triangles

convex sum of P and Q

convex sum of S() and R

for 0<=,<=1, we get all points in triangle

Page 21: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

21

Normals

Every plane has a vector n normal (perpendicular, orthogonal) to it

From point-two vector form P(,)=R+u+v, we know we can use the cross product to find n = u v and the equivalent form

(P()-P) n=0

u

v

P

Page 22: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

22

Linear Independence

A set of vectors v1, v2, …, vn is linearly independent if

v1+v2+..vn=0 iff 1=2=…=0

If a set of vectors is linearly independent, we cannot represent one in terms of the others

If a set of vectors is linearly dependent, as least one can be written in terms of the others

Page 23: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

23

Dimension

In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space

In an n-dimensional space, any set of n linearly independent vectors form a basis for the space

Given a basis v1, v2,…., vn, any vector v can be written as

v=1v1+ 2v2 +….+nvn

where the {i} are unique

Page 24: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

24

Representation

Until now we have been able to work with geometric entities without using any frame of reference, such a coordinate system

Need a frame of reference to relate points and objects to our physical world. For example, where is a point? Can’t answer without a

reference system World coordinates Camera coordinates

Page 25: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

25

Coordinate Systems

Consider a basis v1, v2,…., vn

A vector is written v=1v1+ 2v2 +….+nvn

The list of scalars {1, 2, …. n}is the representation of v with respect to the given basis

We can write the representation as a row or column array of scalars

a=[1 2 …. n]T=

n

2

1

.

Page 26: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

26

Example

V=2v1+3v2-4v3 A=[2 3 –4] Note that this representation is with respect to a

particular basis For example, in OpenGL we start by representing

vectors using the world basis but later the system needs a representation in terms of the camera or eye basis

Page 27: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

27

Coordinate Systems

Which is correct?

Both are because vectors have no fixed location

v

v

Page 28: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

28

Frames

Coordinate System is insufficient to present points If we work in an affine space we can add a single

point, the origin, to the basis vectors to form a frame

P0

v1

v2

v3

Page 29: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

29

Frames (cont.)

Frame determined by (P0, v1, v2, v3)

Within this frame, every vector can be written as

v=1v1+ 2v2 +….+nvn

Every point can be written as

P = P0 + 1v1+ 2v2 +….+nvn

Page 30: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

30

Confusing Points and Vectors

Consider the point and the vector

P = P0 + 1v1+ 2v2 +….+nvn

v=1v1+ 2v2 +….+nvn

They appear to have the similar representations

p=[1 2 3] v=[1 2 3]

which confuse the point with the vector

A vector has no position

v

pv

can place anywherefixed

Page 31: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

31

A Single Representation

If we define 0•P = 0 and 1•P =P then we can write

v=1v1+ 2v2 +3v3 = [1 2 3 0 ] [v1 v2 v3 P0]

T

P = P0 + 1v1+ 2v2 +3v3= [1 2 3 1 ] [v1 v2 v3 P0]

T

Thus we obtain the four-dimensional homogeneous coordinate representation

v = [1 2 3 0 ] T

p = [1 2 3 1 ] T

Page 32: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

32

Homogeneous Coordinates

The general form of four dimensional homogeneous coordinates is

p=[x y x w] T

We return to a three dimensional point (for w0) by

xx/w

yy/w

zz/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

Page 33: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

33

Homogeneous Coordinates and Computer Graphics Homogeneous coordinates are key to all computer

graphics systems All standard transformations (rotation, translation, scaling) can

be implemented by matrix multiplications with 4 x 4 matrices Hardware pipeline works with 4 dimensional representations For orthographic viewing, we can maintain w=0 for vectors

and w=1 for points For perspective we need a perspective division

Page 34: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

34

Change of Coordinate Systems

Consider two representations of a the same vector with respect to two different bases. The representations are

v = 1v1+ 2v2 +3v3 = [1 2 3] [v1 v2 v3]

T

= 1u1+ 2u2 +3u3 = [1 2 3] [u1 u2 u3]

T

a=[1 2 3 ]b=[1 2 3]

where

Page 35: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

35

Representing second basis in terms of first Each of the basis vectors, u1,u2, u3, are vectors that can be

represented in terms of the first basis

u1 = 11v1+12v2+13v3

u2 = 21v1+22v2+23v3

u3 = 31v1+32v2+33v3

v

Page 36: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

36

Matrix Form

The coefficients define a 3 x 3 matrix

The basis can be related by

See text for numerical examples

a = MTb

33

M =

Page 37: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

37

Change of Frames

We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames

Any point or vector can be represented in each

(P0, v1, v2, v3)(Q0, u1, u2, u3)

P0 v1

v2

v3

Q0

u1u2

u3

Page 38: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

38

Representing One Frame in Terms of the Other

u1 = 11v1+12v2+13v3

u2 = 21v1+22v2+23v3

u3 = 31v1+32v2+33v3

Q0 = 41v1+42v2+43v3 +44P0

Extending what we did with change of bases

defining a 4 x 4 matrix

M =

Page 39: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

39

Working with Representations

Within the two frames any point or vector has a representation of the same form

a = [1 2 3 4 ] in the first frameb = [1 2 3 4 ] in the second frame

where 4 4 for points and 4 4 for vectors and

The matrix M is 4 x 4 and specifies an affine transformation in homogeneous coordinates

a=MTb

Page 40: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

40

Affine Transformations

Every linear transformation is equivalent to a change in frames

Every affine transformation preserves lines However, an affine transformation has only 12

degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations

Page 41: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

41

The World and Camera Frames

When we work with representations, we work with n-tuples or arrays of scalars

Changes in frame are then defined by 4 x 4 matrices InOpenGL, the base frame that we start with is the world frame Eventually we represent entities in the camera frame by

changing the world representation using the model-view matrix Initially these frames are the same (M=I)

Page 42: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

42

Moving the Camera

If objects are on both sides of z=0, we must move camera frame

1000

d100

0010

0001

M =

Page 43: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

43

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Q=T(P)

v=T(u)

Page 44: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

44

Affine Transformations

Line preserving Characteristic of many physically important

transformations Rigid body transformations: rotation, translation Scaling, shear

Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Page 45: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

45

Pipeline Implementation

transformation rasterizer

u

v

u

v

T

T(u)

T(v)

T(u)T(u)

T(v)

T(v)

vertices vertices pixels

framebuffer

(from application program)

Page 46: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

46

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

P,Q, R: points in an affine space u, v, w: vectors in an affine space , , : scalars p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates u, v, w: representations of points

-array of 4 scalars in homogeneous coordinates

Page 47: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

47

Translation

Move (translate, displace) a point to a new location

Displacement determined by a vector d Three degrees of freedom P’ = P+d

P

P’

d

Page 48: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

48

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object translation: every point displaced by same vector

Page 49: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

49

Translation Using Representations

Using the homogeneous coordinate representation in some frame

p=[ x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or

x’=x+dx

y’=y+dy

z’=z+dz

note that this expression is in four dimensions and expressesthat point = vector + point

Page 50: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

50

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates p’=Tp where

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

1000

d100

d010

d001

,,z

y

x

zyx dddTT

Page 51: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

51

Rotation (2D)

Consider rotation about the origin by degrees radius stays the same, angle increases by

x’=x cos –y sin y’ = x sin + y cos

x = r cos y = r sin

x = r cos (y = r sin (

Page 52: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

52

Rotation about the z axis

Rotation about z axis in three dimensions leaves all points with the same z Equivalent to rotation in two dimensions in planes of constant

z

or in homogeneous coordinates

p’=Rz()p

x’ = x cos – y sin y’ = x sin + y cos z’ = z

Page 53: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

53

Rotation Matrix

1000

0100

00 cossin

00sin cos

zRR

Page 54: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

54

Rotation about x and y axes

Same argument as for rotation about z axis For rotation about x axis, x is unchanged For rotation about y axis, y is unchanged

1000

0 cossin 0

0sin - cos0

0001

xRR

1000

0 cos0sin -

0010

0sin 0 cos

yRR

Page 55: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

55

Scaling

1000

000

000

000

,,z

y

x

zyx s

s

s

sssSS

x’=sxxy’=syxz’=szx

p’=Sp

Expand or contract along each axis (fixed point of origin)

Page 56: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

56

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Page 57: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

57

Inverses

Although we could compute inverse matrices by general formulas, we can use simple geometric observations Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

Rotation: R -1() = R(-)

Holds for any rotation matrix Note that since cos(-) = cos() and sin(-)=-sin()

R -1() = R T() Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

Page 58: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

58

Concatenation

We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices

Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p

The difficult part is how to form a desired transformation from the specifications in the application

Page 59: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

59

Order of Transformations

Note that matrix on the right is the first applied Mathematically, the following are equivalent p’ = ABCp = A(B(Cp)) Note many references use column matrices to present

points. In terms of column matrices pT’ = pTCTBTAT

Page 60: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

60

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

Note that rotations do not commute We can use rotations in another order but with different angles

General Rotation About the Origin

x

z

yv

R() = Rz(z) Ry(y) Rx(x)

x y z are called the Euler angles

Page 61: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

61

Rotation About a Fixed Point other than the Origin Steps

1. Move fixed point to origin

2. Rotate

3. Move fixed point back

M = T(-pf) R() T(pf)

Page 62: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

62

Instancing

In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

We apply an instance transformation to its vertices to Scale

Orient

Locate

Page 63: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

63

Shear

Helpful to add one more basic transformation Equivalent to pulling faces in opposite directions

Page 64: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

64

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot y’ = yz’ = z

1000

0100

0010

00cot 1

H() =

Page 65: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

65

OpenGL Matrices

In OpenGL matrices are part of the state Three types

Model-View (GL_MODEL_VIEW) Projection (GL_PROJECTION) Texture (GL_TEXTURE) (ignore for now)

Single set of functions for manipulation Select which to manipulated by

glMatrixMode(GL_MODEL_VIEW); glMatrixMode(GL_PROJECTION);

Page 66: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

66

Current Transformation Matrix (CTM)

Conceptually there is a 4 x 4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline

The CTM is defined in the user program and loaded into a transformation unit

CTMvertices vertices

p p’=CpC

Page 67: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

67

CTM operations

The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix: C ILoad an arbitrary matrix: C M

Load a translation matrix: C TLoad a rotation matrix: C RLoad a scaling matrix: C S

Postmultiply by an arbitrary matrix: C CMPostmultiply by a translation matrix: C CTPostmultiply by a rotation matrix: C C RPostmultiply by a scaling matrix: C C S

Page 68: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

68

Rotation about a Fixed Point

Steps1. Start with identity matrix: C I2. Move fixed point to origin: C CT -1

3. Rotate: C CR4. Move fixed point back: C CT

Result: C = T -1RT

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program

Page 69: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

69

CTM in OpenGL

OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM

Can manipulate each by first setting the matrix mode

Page 70: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

70

Rotation, Translation, Scaling

glRotatef(theta, vx, vy, vz)

glTranslatef(dx, dy, dz)

glScalef( sx, sy, sz)

glLoadIdentity()

Load an identity matrix:

Multiply on right:

theta in degrees, (vx, vy, vz) define axis of rotation

Each has a float (f) and double (d) format (glScaled)

Page 71: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

71

Example

Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

Remember that last matrix specified in the program is the first applied

glMatrixMode(GL_MODELVIEW);glLoadIdentity();glTranslatef(1.0, 2.0, 3.0);glRotatef(30.0, 0.0, 0.0, 1.0);glTranslatef(-1.0, -2.0, -3.0);

Page 72: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

72

Arbitrary Matrices

Can load and multiply by matrices defined in the application program

The matrix m is a one dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by columns

In glMultMatrixf, m multiplies the existing matrix on the right

glLoadMatrixf(m)glMultMatrixf(m)

Page 73: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

73

Matrix Stacks

In many situations we want to save transformation matrices for use later Traversing hierarchical data structures (Chapter 9) Avoiding state changes when executing display lists

OpenGL maintains stacks for each type of matrix Access present type (as set by glMatrixMode) by

glPushMatrix()glPopMatrix()

Page 74: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

74

Reading Back Matrices

Can also access matrices (and other parts of the state) by enquiry (query) functions

For matrices, we use as

glGetIntegervglGetFloatvglGetBooleanvglGetDoublevglIsEnabled

double m[16];glGetFloatv(GL_MODELVIEW, m);

Page 75: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

75

Using Transformations

Example: use idle function to rotate a cube and mouse function to change direction of rotation

Start with a program that draws a cube (colorcube.c) in a standard way Centered at origin Sides aligned with axes Will discuss modeling in next lecture

Page 76: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

76

main.c

void main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(500, 500); glutCreateWindow("colorcube"); glutReshapeFunc(myReshape); glutDisplayFunc(display); glutIdleFunc(spinCube); glutMouseFunc(mouse); glEnable(GL_DEPTH_TEST); glutMainLoop();}

Page 77: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

77

Idle and Mouse callbacks

void spinCube() {theta[axis] += 2.0;if( theta[axis] > 360.0 ) theta[axis] -= 360.0;glutPostRedisplay();

}

void mouse(int btn, int state, int x, int y){ if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN) axis = 0; if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN) axis = 1; if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN) axis = 2;}

Page 78: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

78

Display callback

void display(){ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glRotatef(theta[0], 1.0, 0.0, 0.0); glRotatef(theta[1], 0.0, 1.0, 0.0); glRotatef(theta[2], 0.0, 0.0, 1.0); colorcube(); glutSwapBuffers();}

Note that because of fixed from of callbacks, variables such as theta and axis must be defined as globals

Camera information is in standard reshape callback

Page 79: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

79

Using the Model-View Matrix

In OpenGL the model-view matrix is used to Position the camera

Can be done by rotations and translations but is often easier to use gluLookAt (Chapter 5)

Build models of obejcts The projection matrix is used to define the view volume and to select

a camera lens Although both are manipulated by the same functions, we have to be

careful because incremental changes are always made by postmultiplication For example, rotating model-view and projection matrices by the same

matrix are not equivalent operations. Postmultiplication of the model-view matrix is equivalent to premultiplication of the projection matrix

Page 80: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

80

Smooth Rotation

From a practical standpoint, we are often want to use transformations to move and reorient an object smoothly Problem: find a sequence of model-view matrices M0,M1,

…..,Mn so that when they are applied successively to one or more objects we see a smooth transition

For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere Find the axis of rotation and angle Virtual trackball (see text)

Page 81: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

81

Incremental Rotation

Consider the two approaches

For a sequence of rotation matrices R0,R1,…..,Rn , find the Euler angles for each and use Ri= Riz Riy Rix

Not very efficient

Use the final positions to determine the axis and angle of rotation, then increment only the angle

Quaternions can be more efficient than either

Page 82: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

82

Quaternions

Extension of imaginary numbers from two to three dimensions Requires one real and three imaginary components i, j, k

Quaternions can express rotations on sphere smoothly and efficiently. Process: Model-view matrix quaternion Carry out operations with quaternions Quaternion Model-view matrix

q=q0+q1i+q2j+q3k

Page 83: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

83

Interfaces

One of the major problems in interactive computer graphics is how to use two-dimensional devices such as a mouse to interface with three dimensional objects

Example: how to form an instance matrix? Some alternatives

Virtual trackball 3D input devices such as the spaceball Use areas of the screen

Distance from center controls angle, position, scale depending on mouse button depressed

Page 84: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

84

Representing a Mesh

Consider a mesh

There are 8 nodes and 12 edges 5 interior polygons 6 interior (shared) edges

Each vertex has a location vi = (xi yi zi)

v1 v2

v7

v6

v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

Page 85: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

85

Simple Representation

List all polygons by their geometric locations Leads to OpenGL code such as

Inefficient and unstructured Consider moving a vertex to a new locations

glBegin(GL_POLYGON); glVertex3f(x1, x1, x1); glVertex3f(x6, x6, x6); glVertex3f(x7, x7, x7);glEnd();

Page 86: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

86

Inward and Outward Facing Polygons

The order {v1, v6, v7} and {v6, v7, v1} are equivalent in that the same polygon will be rendered by OpenGL but the order {v1, v7, v6} is different

The first two describe outwardly facing polygons Use the right-hand rule = counter-clockwise encirclement of outward-pointing normal OpenGL treats inward and outward facing polygons differently

Page 87: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

87

Geometry vs Topology

Generally it is a good idea to look for data structures that separate the geometry from the topology Geometry: locations of the vertices Topology: organization of the vertices and edges Example: a polygon is an ordered list of vertices with an edge

connecting successive pairs of vertices and the last to the first Topology holds even if geometry changes

Page 88: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

88

Vertex Lists

Put the geometry in an array Use pointers from the vertices into this array Introduce a polygon list

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

P1P2P3P4P5

v1

v7

v6

v8

v5

v6topology geometry

Page 89: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

89

Shared Edges

Vertex lists will draw filled polygons correctly but if we draw the polygon by its edges, shared edges are drawn twice

Can store mesh by edge list

Page 90: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

90

Edge List

v1 v2

v7

v6

v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1e2e3e4e5e6e7e8e9

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

v1v6

Note polygons arenot represented

Page 91: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

91

Modeling a Cube

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

{1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Model a color cube for rotating cube program

Define global arrays for vertices and colors

Page 92: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

92

Drawing a polygon from a list of indices Draw a quadrilateral from a list of indices into the array vertices

and use color corresponding to first index

void polygon(int a, int b, int c , int d){ glBegin(GL_POLYGON); glColor3fv(colors[a]); glVertex3fv(vertices[a]); glVertex3fv(vertices[b]); glVertex3fv(vertices[c]); glVertex3fv(vertices[d]); glEnd(); }

Page 93: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

93

Draw cube from faces

void colorcube( ){ polygon(0,3,2,1); polygon(2,3,7,6); polygon(0,4,7,3); polygon(1,2,6,5); polygon(4,5,6,7); polygon(0,1,5,4);}

0

5 6

2

4 7

1

3

Note that vertices are ordered so that we obtain correct outward facing normals

Page 94: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

94

Efficiency

The weakness of our approach is that we are building the model in the application and must do many function calls to draw the cube

Drawing a cube by its faces in the most straight forward way requires 6 glBegin, 6 glEnd 6 glColor 24 glVertex More if we use texture and lighting

Page 95: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

95

Vertex Arrays

OpenGL provides a facility called vertex arrays that allow us to store array data in the implementation

Six types of arrays supported Vertices Colors Color indices Normals Texture coordinates Edge flags

We will need only colors and vertices

Page 96: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

96

Initialization

Using the same color and vertex data, first we enableglEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY); Identify location of arrays

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguousdata array

Page 97: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

97

Mapping indices to faces

Form an array of face indices

Each successive four indices describe a face of the cube

Draw through glDrawElements which replaces all glVertex and glColor calls in the display callback

GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6 0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

Page 98: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

98

Drawing the cube

Method 1:

Method 2:

for(i=0; i<6; i++) glDrawElements(GL_POLYGON, 4, GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw number of indices

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

Page 99: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

99

Physical Trackball

The trackball is an “upside down” mouse

If there is little friction between the ball and the rollers, we can give the ball a push and it will keep rolling yielding continuous changes

Two possible modes of operation Continuous pushing or tracking hand motion Spinning

Page 100: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

100

A Trackball from a Mouse

Problem: we want to get the two behavior modes from a mouse

We would also like the mouse to emulate a frictionless (ideal) trackball

Solve in two steps Map trackball position to mouse position Use GLUT to obtain the proper modes

Page 101: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

101

Trackball Frame

origin at center of ball

Page 102: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

102

Projection of Trackball Position

We can relate position on trackball to position on a normalized mouse pad by projecting orthogonally onto pad

Page 103: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

103

Reversing Projection

Because both the pad and the upper hemisphere of the ball are two-dimensional surfaces, we can reverse the projection

A point (x,z) on the mouse pad corresponds to the point (x,y,z) on the upper hemisphere where

y =222 zxr if r |x| 0, r |z| 0

Page 104: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

104

Computing Rotations

Suppose that we have two points that were obtained from the mouse.

We can project them up to the hemisphere to points p1 and p2

These points determine a great circle on the sphere We can rotate from p1 to p by finding the proper axis of rotation and the angle

between the points

Page 105: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

105

Using the cross product

The axis of rotation is given by the normal to the plane determined by the origin, p1 , and p2

n = p1 p1

Page 106: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

106

Obtaining the angle

The angle between p1 and p2 is given by

If we move the mouse slowly or sample its position frequently, then will be small and we can use the approximation

| sin | = ||||

||

21 pp

n

sin

Page 107: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

107

Implementing with GLUT

We will use the idle, motion, and mouse callbacks to implement the virtual trackball

Define actions in terms of three booleans trackingMouse: if true update trackball position redrawContinue: if true, idle function posts a redisplay trackballMove: if true, update rotation matrix

Page 108: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

108

Example

In this example, we use the virtual trackball to rotate the color cube we modeled earlier

The code for the colorcube function is omitted because it is unchanged from the earlier examples

Page 109: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

109

Initialization

#define bool int /* if system does not support bool type */#define false 0#define true 1#define M_PI 3.14159 /* if not in math.h */

int winWidth, winHeight;

float angle = 0.0, axis[3], trans[3];

bool trackingMouse = false;bool redrawContinue = false;bool trackballMove = false;

float lastPos[3] = {0.0, 0.0, 0.0};int curx, cury;int startX, startY;

Page 110: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

110

The Projection Step

voidtrackball_ptov(int x, int y, int width, int height, float v[3]){ float d, a; /* project x,y onto a hemisphere centered within width, height , note z is up here*/ v[0] = (2.0*x - width) / width; v[1] = (height - 2.0F*y) / height; d = sqrt(v[0]*v[0] + v[1]*v[1]); v[2] = cos((M_PI/2.0) * ((d < 1.0) ? d : 1.0)); a = 1.0 / sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); v[0] *= a; v[1] *= a; v[2] *= a;}

Page 111: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

111

glutMotionFunc (1)

voidmouseMotion(int x, int y){ float curPos[3], dx, dy, dz; /* compute position on hemisphere */ trackball_ptov(x, y, winWidth, winHeight, curPos); if(trackingMouse) { /* compute the change in position on the hemisphere */ dx = curPos[0] - lastPos[0]; dy = curPos[1] - lastPos[1]; dz = curPos[2] - lastPos[2];

Page 112: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

112

glutMotionFunc (2)

if (dx || dy || dz) { /* compute theta and cross product */ angle = 90.0 * sqrt(dx*dx + dy*dy + dz*dz); axis[0] = lastPos[1]*curPos[2] – lastPos[2]*curPos[1]; axis[1] = lastPos[2]*curPos[0] – lastPos[0]*curPos[2]; axis[2] = lastPos[0]*curPos[1] – lastPos[1]*curPos[0]; /* update position */ lastPos[0] = curPos[0]; lastPos[1] = curPos[1]; lastPos[2] = curPos[2]; } } glutPostRedisplay();}

Page 113: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

113

Idle and Display Callbacks

void spinCube(){ if (redrawContinue) glutPostRedisplay();}

void display(){ glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); if (trackballMove) { glRotatef(angle, axis[0], axis[1], axis[2]);

}colorcube();

glutSwapBuffers();}

Page 114: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

114

Mouse Callback

void mouseButton(int button, int state, int x, int y){if(button==GLUT_RIGHT_BUTTON) exit(0);

/* holding down left button allows user to rotate cube */if(button==GLUT_LEFT_BUTTON) switch(state)

{ case GLUT_DOWN: y=winHeight-y; startMotion( x,y); break;

case GLUT_UP: stopMotion( x,y); break;

} }

Page 115: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

115

Start Function

void startMotion(int x, int y){ trackingMouse = true; redrawContinue = false; startX = x; startY = y; curx = x; cury = y; trackball_ptov(x, y, winWidth, winHeight, lastPos); trackballMove=true;}

Page 116: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

116

Stop Function

void stopMotion(int x, int y){ trackingMouse = false; /* check if position has changed */ if (startX != x || startY != y) redrawContinue = true;

else { angle = 0.0; redrawContinue = false; trackballMove = false;

}}

Page 117: Demetriou/Loizidou – ACSC330 – Chapter 4 Geometric Objects and Transformations Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science

Demetriou/Loizidou – ACSC330 – Chapter 4

117

Quaternions

Because the rotations are on the surface of a sphere, quaternions provide an interesting and more efficient way to implement the trackball

See code in some of the standard demos included with Mesa