Dc Converter

Embed Size (px)

Citation preview

  • 8/2/2019 Dc Converter

    1/28

    DC TO DC CONVERTER

    PRESENTED BY

    ANKAN BANDYOPADHYAY

  • 8/2/2019 Dc Converter

    2/28

    Outline

    3.1 Basic DC to DC converters

    3.1.1 Buck converter (Step- down converter)

    3.1.2 Boost converter (Step-up converter)

    3.2 Composite DC/DC converters and connection of multipleDC/DC converters

    3.2.1 A current-reversible chopper

    3.2.2 Bridge chopper (H-bridge DC/DC converter)

    3.2.3 Multi-phase multi-channel DC/DC converters

  • 8/2/2019 Dc Converter

    3/28

    Basic DC to DC converters

    Buck converter

    SPDT switch changes dc

    component

    Switch output voltage

    waveform

    Duty cycle D: 0 D 1

    complement D: D = 1 - D

    +-

    +

    -

    V(t)R

    Vg+

    -

    Vs(t)

    Vs(t)

    Vg

    switch

    osition:

    DTs DTs

    0

    1 12

    t

    12

    0 DTs Ts

  • 8/2/2019 Dc Converter

    4/28

    Dc component of switch output voltage

    Vs(t)

    Vg=DVg

    DTs Ts0

    t

    Fourier analysis:DC component =average value:

    0

    area=

    D Ts Vg

    =

    0

    TsVs(t) tTs

    1

    = =DVg1

    TsTsVg

  • 8/2/2019 Dc Converter

    5/28

    Insertion of low- pass filter to remove switching

    harmonics and pass only dc component

    +-

    +

    -

    V(t)RVg

    +

    -

    Vs(t)

    1

    2

    L

    C

    v =DVgV

    Vg

    o0 1 D

  • 8/2/2019 Dc Converter

    6/28

    Basic operation principle of buck converter

    +-

    +

    -

    V(t)RVg

    +

    -

    Vs(t)

    1

    2

    L

    C

    Buck converter with

    ideal switch

    Realization using

    power MOSFET

    and diode+-

    + -

    VL(t) ic(t)

    Vg

    iL(t)

    tDTs Ts

    +

    L

    D1 R

  • 8/2/2019 Dc Converter

    7/28

    Thought process in analyzing basic DC/DC converters

    1) Basic operation principle (qualitative analysis)

    How does current flows during different switching states

    How is energy transferred during different switching states

    2) Verification of small ripple approximation

    3) Derivation of inductor voltage waveform during different switching

    states

    4) Quantitative analysis according to inductor volt-second balance or

    capacitor charge balance

  • 8/2/2019 Dc Converter

    8/28

    Actual output voltage waveform of buck converter

    +-

    +

    -

    V(t)RVg

    + -

    VL(t)

    1

    2

    L

    C

    Buck converter

    containing practical

    low-pass filter

    ic(t)

    iL(t)

    Actual output voltage

    waveform

    v(t) = V+ v ripple(t)

    v(t)

    V

    0t

    Actual waveform

    v(t) = V+ v ripple(t)

    DC component V

  • 8/2/2019 Dc Converter

    9/28

    Buck converter analysis: inductor current waveform

    +

    -

    +

    -

    V(t)RVg

    + -

    VL(t)

    1

    2

    L

    C

    original

    converter

    ic(t)

    iL(t)

    Switch in position 1 Switch in position 2

    +-

    +

    -

    V(t)RVg

    + -

    VL(t)

    L

    C

    ic(t)

    iL(t)

    +-

    +

    -

    V(t)RVg

    + -

    VL(t)

    L

    C

    ic(t)

    iL(t)

  • 8/2/2019 Dc Converter

    10/28

    Inductor voltage and current subinterval 1: switch in position 1

    Inductor voltage

    vL=Vg - v(t)

    Small ripple approximation:

    vL=Vg - V

    Knowing the inductor voltage, we can now find the inductor current via

    +-

    +

    -

    V(t)RVg

    + -

    VL(t)

    L

    C

    ic(t)

    iL(t)

    vL(t)=LdiL(t)

    dtSolve for the slope:

    diL(t)

    dt=

    vL(t)

    L

    Vg - V

    L

    the inductor current changes with an

    essentially constant slope

  • 8/2/2019 Dc Converter

    11/28

    Inductor voltage and current subinterval 2: switch in position 2

    Inductor voltage

    vL=- v(t)

    Small ripple approximation:

    vL- V

    Knowing the inductor voltage, we can now find the inductor current via

    vL(t)=LdiL (t)

    dtSolve for the slope:

    diL(t)

    dt

    V

    L

    the inductor current changes with an

    essentially constant slope-

    +-

    +

    -

    V(t)RVg

    + -

    VL(t)

    L

    C

    ic(t)

    iL t)

  • 8/2/2019 Dc Converter

    12/28

    Inductor voltage and current waveforms

    VL(t)

    Vg -V

    switch

    osition:

    DTs DTs

    -V

    1 12

    t

    vL(t)=LdiL (t)

    dtiL(t)

    tDTs Ts0

    I

    iL(0)

    iL(DTs)

    Vg -VL

    -VL

    iL

  • 8/2/2019 Dc Converter

    13/28

    Determination of inductor current ripple magnitude

    changes in iL=slopelength of subinterval

    Vg -V

    L2iL DTs=

    iL=Vg -V

    2LDTs L =

    Vg -V

    2iLDTs

    iL(t)

    DTs Ts0

    IiL(0)

    iL(DTs)

    Vg -V

    L

    -V

    L

    iL

  • 8/2/2019 Dc Converter

    14/28

    Inductor current waveform during start-up transient

    iL(t)

    tDTsTs0

    When the converter operates in equilibrium:

    iL 0 =0iL(Ts)

    Vgv(t)

    L-v(t)

    L

    2Ts

    iL(nTs)

    nTs n+1 Ts

    iL((n+1)Ts)

    iL((n+1)Ts)=iL(nTs)

  • 8/2/2019 Dc Converter

    15/28

    The principle of inductor volt- second balance:Derivation

    Inductor defining relation:

    Integrate over one complete switching period:

    In periodic steady state, the net changes in inductor current is zero:

    Hence, the total area(or volt-seconds)under the inductor voltage waveformis zero whenever the converter operates in steady state.

    An equivalent form:

    The average inductor voltage is zero in steady state.

    vL(t)=LdiL (t)

    dt

    0 TsVL(t)tL1iL(Ts) -iL(0)=0TsVL(t)t=0

    =

    0Ts

    VL(t)dtTs

    1 =0

  • 8/2/2019 Dc Converter

    16/28

    Inductor volt-second balance:Buck converter example

    Integral of voltage waveform is area of rectangles:

    average voltage is

    Equate to zero and solve for V:

    inductor voltage waveform

    previously derived:

    VL(t)

    Vg -V

    DTs

    -V

    t

    total area

    0Ts

    VL(t)dt= = (VgV)( DTs)+( -V) ( DTs)

    =Ts

    =D (VgV) +D'( -V)

    0=D Vg(D+D')V= D VgV V=D Vg

  • 8/2/2019 Dc Converter

    17/28

    3.1.2Boost converter

    Boost converter example

    +-

    +

    -

    vR

    Vg

    + -vL(t)

    1

    2L

    C

    Boost converter

    with ideal switch

    iL(t) iC(t)

    Realization using

    power MOSFET

    and diode+-

    ic(t)

    Vg

    iL(t)

    tDTs Ts

    + -

    VL(t)

    L D1

    R

    +-

    Q1

    +

    -

    vC

  • 8/2/2019 Dc Converter

    18/28

    Boost converter analysis

    original

    converter

    Switch in position 1 Switch in position 2

    +-

    +

    -

    vRVg

    + -

    vL(t)1

    2L

    C

    iL(t)

    +-

    +

    -

    vRVg

    + -

    vL(t)

    L

    C

    iL(t) iC(t)

    iC(t)

    +-

    +

    -

    vRVg

    + -

    vL(t)

    L

    C

    iL(t) iC(t)

  • 8/2/2019 Dc Converter

    19/28

    Subinterval 1: switch in position 1

    Inductor voltage and capacitor current

    vL=Vg

    Small ripple approximation:

    iC= - v/R+-

    +

    -

    vRVg

    + -vL(t)

    L

    C

    iL(t) iC(t)

    vL=Vg

    iC= - V/R

  • 8/2/2019 Dc Converter

    20/28

    Subinterval 2: switch in position 2

    Inductor voltage and capacitor current

    vL=Vg -v

    Small ripple approximation:

    iC=iL - v/R

    vL=Vg -V

    iC=I - V/R

    +-

    +

    -

    vRVg

    + -

    vL(t)

    L

    C

    iL(t) iC(t)

  • 8/2/2019 Dc Converter

    21/28

    Inductor voltage and capacitor current waveforms

    VL(t)

    VgDTs D'Ts

    Vg -V

    t

    iC(t)

    -V/R

    DTs D'Ts

    1V/R

    t

  • 8/2/2019 Dc Converter

    22/28

    Inductor volt- second balance

    VL(t)

    Vg

    DTs D'Ts

    Vg -V

    t

    0Ts

    VL(t)dt = ( Vg) DTs+(VgV) D'Ts

    Net volt-seconds applied to inductor

    over one switching period

    Equate to zero and collect terms

    VgD+ D'-VD'=0

    Solve for V

    V= VgD'

    The voltage conversion ratio is therefore

    V

    Vg D'MD= = =

    1

    1-D

    1

  • 8/2/2019 Dc Converter

    23/28

    Conversion ratioM(D) of the boost converter

    D'

    MD= =1

    1-D

    1

    D

    MD

    0

    01

    2

    3

    4

    5

    0.2 0.4 0.6 0.8 1

  • 8/2/2019 Dc Converter

    24/28

    Determination of inductor current dc component

    Vg/R

    I

    D0

    02

    46

    8

    0.2 0.4 0.6 0.8 1

    iC(t)

    -V/R

    DTs D'Ts

    IV/R

    t

    Capacitor charge balance

    0

    TsiC(t)dt =- D'Ts

    V

    RDTs+I-

    V

    R

    Collect terms and equate to zero

    -V

    RD+D'+I D'=0

    Solve for I

    V

    D'RI=

    Eliminate V to express in terms of Vg

    Vg

    D'I= 2

    R

  • 8/2/2019 Dc Converter

    25/28

    Continuous- Conduction- Mode (CCM) and Discontinuous Conduction-

    Mode (DCM) of boost

    M E

    VDL

    V uoEM

    a)

  • 8/2/2019 Dc Converter

    26/28

    3.2 Composite DC/DC converters and connection of multiple DC/DC

    converters

    3.2.1 A current reversible chopper

    E L

    V1

    VD1 uo

    ioV2

    VD2

    EMM

    R

    t

    tO

    O

    uo

    io iV1 iD1

    t

    tO

    O

    uo

    io

    iV2 iD2

    Can be considered as a

    combination of a Buck and a Boost

    Can realize two- quadrant (I & II)

    operation of DC motor:

    forward motoring,

    forward braking

  • 8/2/2019 Dc Converter

    27/28

    3.2.2Bridge chopper (H-bridge chopper)

    E L R

    + -

    V1

    VD1

    uo

    V3

    EM

    V2

    VD2 io

    V4

    VD3

    VD4

    M

  • 8/2/2019 Dc Converter

    28/28

    3.2.3Multi-phase multi-channel DC/DC converter

    C

    L

    E M

    V1

    VD1

    L1

    i0

    uO

    V2

    V3

    i1

    i2

    i3

    VD2VD3

    u1 u2 u3

    L2

    L3

    Current output capability is increased due

    to multi- channel paralleling.

    Ripple in the output voltage and current is

    reduced due to multi-channel paralleling.

    Ripple in the input current is reduced due to

    multi- phase paralleling.