29
Smart Grid Power Condi0oning Systems Allen Hefner Na+onal Ins+tute of Standards and Technology Power Electronics Technologies, and Smart Grid

Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Smart  Grid    Power  Condi0oning  Systems    

 

Allen  Hefner    

Na+onal  Ins+tute  of  Standards  and  Technology  Power  Electronics  Technologies,  and  Smart  Grid  

 

Page 2: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

•  Today’s Grid: •  Electricity is generated by rotating machines with large inertia •  Not much storage: generation instantaneously matches load using

•  load shedding at large facilities •  low efficiency fossil generators for frequency regulation

•  Future Smart Grid: •  High penetration of renewables with power electronic grid interface:

•  dispatchable voltage, frequency, and reactive power •  response to abnormal conditions without cascading events •  dispatchable “synthetic” inertia and spinning reserve (w/ storage)

•  Storage for frequency regulation and renewable variability / intermittency •  High-speed and high-energy storage options •  Load-based “virtual storage” through scheduling and deferral

•  Plug-in Vehicles increase efficiency, provide additional grid storage •  HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost

•  Microgrids & automation provide secure, resilient operation

Grid Transformation via PCS Functionality

Page 3: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

• Back  to  Back  DC  links  with  short  term  (mandatory)  area  balance  (µTile  the  Country)  

• Distributed  Inverters  (many    provided  through  renewable  integra0on)  

• Local  Voltage  Regula0on  -­‐  fast!  Even  sub  cycle,  can  mi0gate  exis0ng  flicker,  increase  quality  and  reliability,  achieve  voltage  regula0on  with  no  tap-­‐changers,  line  regulators,  or  capacitors  

• Fault  Limi0ng  

• Storage  Integra0on  (very  cost  effec0ve  as  element  of  renewable  power  plant)  

Some Possible Game Changers

Contributed by: Leo Casey (Google)

Page 4: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Electronics can be Transformative – BUT different Paradigm – and System

•  Readily Controllable (remotely) •  Supply Real Power, P, Dynamically •  Reactive power, Q, (|P + jQ| < SINV), Dynamically •  Active Damping (stabilizing) •  Controllable or Synthetic Inertia •  Fault Clearing •  Rapid Dynamics •  Unbalanced •  Non-linear sourcing •  Active Filtering •  Harmonic cancellation •  Also, high speed series devices would limit faults and enable

robust interactive microgrids

1

Southern Control AreaGenerator UF coordination curve

54

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

59.5

60

1 10 100 1000 10000

Time (Cycles)

Freq

uenc

y (H

z)

Trip Point per IEEE 1547

Trip Point of Turbines

Contributed by: Leo Casey (Google)

Page 5: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Power electronics key to affordable, controllable and reliable renewables (e.g. PV) •  Classic  Tradeoffs  for  Power  Conversion  

 -­‐cost    -­‐efficiency    -­‐reliability  

•  Direct  Pathways    -­‐topologies    -­‐switching  frequency    -­‐devices  (WBG)    -­‐packaging    -­‐integrated  systems    

•  Indirect  Approaches      -­‐distributed  harvest  (MPPT)    -­‐reduced  system  costs    -­‐ancillary  services,  advanced  performance  (flicker  control,  voltage  control,  …)    -­‐scale  (big  vs.  small,  panel  vs.  string  vs.  array,  centralized  vs.  decentralized)      -­‐inverter  vs  BOS  

 

Wide  Bandgap  Power  Semiconductors  

Contributed by: Leo Casey (Google)

Page 6: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

HV-HF Switch Mode Power Conversion

•  Switch-mode power conversion (Today): •  advantages: efficiency, control, functionality, size, weight, cost

•  semiconductors from: 100 V, ~MHz to 6 kV, ~100 Hz

•  New semiconductor devices extend application range: •  1990’s: Silicon IGBTs

•  higher power levels for motor control, traction, grid PCS

•  Emerging: SiC Schottky diodes and MOSFETs, & GaN

•  higher speed for power supplies and motor control

•  Future: HV-HF SiC: MOSFET, PiN diode, Schottky, and IGBT

•  enable 15-kV, 20-kHz switch-mode power conversion

Page 7: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Power Semiconductor Applications •  Switching speed decreases with voltage •  SiC enables higher speed and voltage

HVDC and FACTS

Power distribution, transmission and generation

A. Hefner, et.al.; "SiC power diodes provide breakthrough performance for a wide range of applications" IEEE Transactions on Power Electronics, March 2001, Page(s):273 – 280.

DARPA/EPRI Megawatt Program

Page 8: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

DARPA/ONR/NAVSEA HPE Program 10 kV HV-HF MOSFET/JBS

High Speed at High Voltage

-5

0

5

10

15

20

5.0E-08

6.5E-08

8.0E-08

9.5E-08

1.1E-07

1.3E-07

1.4E-07

1.6E-07

1.7E-07

1.9E-07

2.0E-07

Time (s)

Dra

in C

urr

en

t (A

)

-1500

0

1500

3000

4500

6000

Dra

in-S

ou

rce V

olt

ag

e (

V)

Area = 0.125 cm2

T = 25o C

Vd

Id

SiC MOSFET: 10 kV, 30 ns Silicon IGBT: 4.5 kV, 2us

1us /div

3000 V

15 ns /div

0 V

Area= 0.15 cm2

A. Hefner, et.al. “Recent Advances in High-Voltage, High-Frequency Silicon-Carbide Power Devices,” IEEE IAS Annual Meeting, October 2006, pp. 330-337.

Page 9: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

ARPA-e ADEPT NRL/ONR 12 kV SiC IGBT 4.5 kV SIC-JBS/Si-IGBT Future option Low cost now

SiC JBS: improves Si IGBT turn-on SiC IGBT: HV, high Temp, 1 us

Sei-­‐Hyung  Ryu,  Craig  Capell,  Allen  Hefner,  and  Subhashish  BhaRacharya,  “High  Performance,  Ultra  High  Voltage  4H-­‐SiC  IGBTs”  Proceedings  of  the  IEEE  Energy  Conversion  Congress  and  Exposi+on  (ECCE)  Conference  2012,  Raleigh,  NC,  September  15  –  20,  2012.  K.D.  Hobart,  E.A.  Imhoff,  T.  H.  Duong,  A.R.  Hefner  “Op+miza+on  of  4.5  kV  Si  IGBT/SiC  Diode  Hybrid  Module”  PRiME  2012  Mee+ng,  Honolulu,  HI,  October  7  -­‐  12,  2012.  

Page 10: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

10 kV SiC MOSFET/JBS Half-Bridge Module Model and Circuit Simulation

•  Half-bridge module model: •  10 kV SiC power MOSFETs •  10 kV SiC JBS for anti-parallel diodes •  low-voltage Si Schottky diodes •  voltage isolation and cooling stack

•  Validated models scaled to 100 A, 10 kV half bridge module

•  Model used to perform simulations necessary to:

•  optimize module parameters •  determine gate drive requirements •  SSPS system integration •  high-megawatt converter cost analysis

Tj

Th

Tc

Ta Ta

Tc

Th

Tj

TjTj

Th

Tc

Ta Ta

Tc

Th

SiC_MOS1

SiC_MOS2

SiC_JBS1

SiC_JBS2

Si_JBS2

Si_JBS1

G1

G2

S1

S2_D1

D2

Half-Bridge

Si_Sch1

Si_Sch2

Page 11: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Semiconductors Packaging and Interconnects

HF transformers Filter Inductors and Capacitors

Cooling System 60 Hz Transformer up to 18 kV

Breakers and Switchgear

Ripple < 2% Stack Voltage Range ~700 to 1000 V

$40-$100 / kW

SECA: 300 MW PCS

18 kV AC

345 kV AC

Approx. 500 Fuel Cells

~700 V DC

~700 V DC

IEEE – 519 IEEE – 1547

Harmonic Distortion Future: HVDC transmission ?

http://www.nist.gov/pml/high_megawatt/

Page 12: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

$0$20$40$60$80$100$120$140$160$180$200Transformer &

SwitchgearOther PE

Semiconductor

Cooling

Magnetics

Inverter Voltage Medium Medium High High High HV-SiC Diode   Schottky Schottky Schottky PiN HV-SiC Switch   MOSFET MOSFET IGBT 

HF Transformer Nano Nano Nano Nano Nano 60 Hz Transformer yes yes      

Estimated $/kW: MV & HV Inverter

Risk Level: High Considerable Moderate Low

loss

loss

Page 13: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

DOE Sunshot - SEGIS-AC, ARPA-E “$1/W  Systems:  A  Grand  Challenge  for  Electricity  from  Solar”      Workshop,  August  10-­‐11,  2010  

Goal  :  1$/W  by  2017  

                     for  5  MW  PV  Plant    

 $0.5/W  –  PV  module  

 $0.4/W    –  BOS  

 $0.1/W    –  Power                    electronics  

Smart  Grid  FuncRonality  

 High  PenetraRon  

 Enhanced  Grid  Value  

$1/W  achieves  cost  parity  in  most  states!    

Page 14: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

MV Direct Connect Solar Inverter (ARPA-E)

•  Utilize 10kV, 120 A SiC MOSFET Module: –  Design Developed for DARPA/ONR/NAVSEA WBG HPE Program –  Already tested at 1 MW-scale system for HPE SSPS requirements

•  MV Solar Inverter Goals: –  Improve cost, efficiency, size, and weight –  High speed, series connected to grid: rapidly respond/clear faults, tune power quality

S1D2

S2

D1 G1

G2

Contributed by: Leo Casey (Google)

Page 15: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

High  PenetraRon  of  Distributed  Energy  Resources  

•  Power Conditioning Systems (PCS) convert to/from 60 Hz AC for interconnection of renewable energy, electric storage, and PEVs

•  “Smart Grid Interconnection Standards” required for devices to be

utility-controlled operational asset and enable high penetration: •  Dispatchable real and reactive power •  Acceptable ramp-rates to mitigate renewable intermittency •  Accommodate faults faster, without cascading area-wide events •  Voltage/frequency regulation and utility-controlled islanding

Energy Storage Plug-in Vehicle to Grid Renewable/Clean Energy

PCS PCS Communication

Power Smart Grid PCS

http://www.nist.gov/pml/high_megawatt/2008_workshop.cfm

Page 16: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

PCS  Architectures  for  PEV  Fleet  as  Grid  Storage  

PCS PCS

Energy Storage Renewable/Clean Energy

Communication

Power Smart Grid

Plugin Vehicle Fleet

PCS PCS PCS

http://www.nist.gov/pml/high_megawatt/jun2011_workshop.cfm

Page 17: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Large  Inverter  with  DC  Circuits  to  Fleet  PEVs  

Energy Storage Renewable/Clean Energy

DC Circuits or DC Bus

Plugin Vehicle Fleet

Storage Asset Management

Charging Station (Multiple Vehicles)

DC-DC DC-DC DC-DC

PCS PCS Communication

Power Smart Grid DC-AC

Page 18: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Islandable Microgrid

DC-AC

DC  Microgrid:  DC-­‐AC  with  DC  Circuits  

Energy Storage Renewable/Clean Energy

Plugin Vehicle Fleet

Device Asset Management

DC Circuits / DC Bus

DC-DC DC-DC DC-DC

24 V DC Loads

380 V DC Loads

Smart Grid

Page 19: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Flow  Control  Microgrid:  AC-­‐AC  with  AC  Circuits  

Plugin Vehicle Fleet

PCS PCS PCS

Energy Storage Renewable/Clean Energy

PCS PCS

AC-AC DC Options Smart Grid

Microrid Controller

AC Loads & Generators

AC Circuits

Device Asset Management

Islandable Microgrid

Page 20: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Microgrid  using  Disconnect  and  Local  EMS  

Smart Grid

Plugin Vehicle Fleet

PCS PCS PCS

Energy Storage Renewable/Clean Energy

PCS PCS

Disconnect Switch

Microgrid Controller

AC Loads & Generators

Device Asset Management

AC Circuits

Islandable Microgrid

Page 21: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Task  4:  Develop  and  Harmonize  Object  Models          

IEC  61850-­‐7-­‐420:    Expanded  to  include    •   Mul+func+onal  ES-­‐DER  opera+onal  interface  

•   Harmonized  with  CIM  &  Mul+Speak  •   Map  to  MMS,  DNP3,  web  services,  &  SEP  2    

a) b) c) d e)

Task  0:  Scoping  Document  

Priori+zed  +meline  for  ES-­‐DER  standards    

Task  1:  Use  Cases,  *EPRI  PV-­‐ES  Inverter  Define  requirements  for  different  scenarios  

Task  5:    Test,  Safe  and  Reliable  Implementa0on  

Implementa0on  UL  1741,  NEC-­‐NFPA70,  SAE,  CSA  and  IEC  

Task  3:    Unified  interconnec0on  method  with  mul0func0onal  opera0onal  interface  for  range  of  storage  and  genera0on/storage.  

               IEEE  1547.8  (a)    Opera+onal  interface  

   (b)    Storage  without  gen      (c)    PV  with  storage      (d)    Wind  with  storage      (e)    PEV  as  storage  

       

 

Task  2:  IEEE  1547.4  for  island  applica0ons            and    IEEE  1547.6  for  secondary  networks  

PAPs    

MIC  Info  exchanges  

 PAP  7:    Smart  Grid  ES-­‐DER  Standards  

 

Page 22: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Iden+fy  Needed    Func+ons  

Represent  in  Standard  

Informa+on  Model  

IEC  61850-­‐7-­‐420  

DNP3  

Smart  Energy  Profile  

MMS,  Web  

Services,  Other  

Map  to  Protocols  

Select  a  Specific  Way  to  Implement  each  Func+on  

Interest  Group,  Demonstra+ons,  PAP7,  IEEE  1547  

Smart  Inverter  Focus  Group  

Published  IEC  61850-­‐90-­‐7  

Informa0ve  document    

Standards  Groups,  Funded  Efforts  

 EPRI/Sandia  NL    Smart  Inverter  IniRaRve  

courtesy: Brian Seal (EPRI)

Modbus-­‐  Sunspec  

Page 23: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

EPRI/SNL  Volt-­‐Var  Control  FuncRon  

VAR

s G

ener

ated

Capacitive

Inductive

System Voltage

V1 V2 V3 V4

Q1

Q4

Q3 Q2

Volt/Var Mode 1 – Normal

Regulation VA

Rs

Gen

erat

ed Capacitive

Inductive

System Voltage

V1 V2

Q2

Q1

Volt/Var Mode 2 –

Transmission VAR Support

Utility-Defined Curve Shapes

Simple Broadcast

courtesy: Brian Seal (EPRI)

Page 24: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Distributed  Renewables,  Generators  and  Storage  

•  DRGS  Domain  Expert  Working  Group  ini0ated  September  2011  •  Iden0fy  Smart  Grid  standards  and  interoperability  issues/gaps  for  

–  Integra+on  of  renewable/clean  and  distributed  generators  and  storage  –  Opera+on  in  high  penetra+on  scenarios,  weak  grids,  microgrids,  DC  grids  –  Including  interac+on  of  high-­‐bandwidth  and  high-­‐iner+a  type  devices  

•  Focus  on  Smart  Grid  func0ons  that    –  mi+gate  impact  of  variability  and  intermiRency  of  renewable  generators    –  enable  generators  and  storage  to  provide  valuable  grid  suppor+ve  services    –  prevent  uninten+onal  islanding  and  cascading  events  for  clustered  devices  

•  Ac0vi0es  of  DRGS  DEWG  –  Consistent  approaches  for  generators/storage  types  and  domains  –  Use  cases  and  informa+on  exchange  requirements  –  Define  new  PAPs  to  address  standards  gaps  and  issues  

•  Subgroups:  A-­‐Roadmap,  B-­‐Informa+on,  C-­‐Microgrid,        D-­‐Test,  E-­‐Regulatory,  F-­‐Interconnec+on  

Page 25: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

ADEPT EFFICIENT POWER CONVERSION

Goals •  Improve the energy efficiency of electronic

devices and power systems •  Enable high efficiency, high power density power

electronics •  Contribute to the development of a smart grid

Highlights •  Advanced charge storage devices •  Magnetic materials •  Advanced solid-state switch technologies •  Advanced circuit topologies and converter

architectures

Mission Paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors. Program Director Dr. Tim Heidel

Year 2010

Projects 13

Total Investment $37.7 Million

25 Contributed by: Tim Heidel (ARPA-E)

Page 26: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

ADEPT Program Technical Targets

26

Category

Voltage &

Power

Efficiency Switching Frequency

Power Density

Applications

Fully Integrated, Chip-scale power converters

>100V 10-50W

>93% >5 MHz >300 W/in3

Package integrated power converters

>600V 3-10kW

>95% >1 MHz >150 W/in3

Lightweight, solid-state, medium voltage energy conversion

13kV 1MW

>98% >50 kHz N/A

Contributed by: Tim Heidel (ARPA-E)

Page 27: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

Goals • Increase the efficiency of solar energy systems • Reduce the size of PV components and systems • Make solar energy cost competitive with conventional electricity generation

Project Categories • Cell, module integrated electronics • AC modules • Lightweight central inverters

Mission Improve the performance of photovoltaic (PV) solar energy systems by making the process of converting solar energy to electricity more efficient. Program Director Dr. Tim Heidel

Year 2011

Projects 6

Total Investment $14.1 Million

Solar ADEPT EFFICIENT SOLAR ENERGY SYSTEMS

DOE Goal: 5-6¢/kWh fully installed at the MW scale by

2020

27 Contributed by: Tim Heidel (ARPA-E)

Page 28: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

GENI INCREASING GRID FLEXIBILITY

Goals • Enable 40% intermittent non-dispatchable generation penetration

•  >10x reduction in power flow control hardware •  >4x reduction in HVDC terminal/line cost

Project Categories • Power Transmission Controllers

– Power flow controllers for mesh AC grids. – Resilient multi-terminal HVDC network

technologies. • Grid Control Architectures

– Optimization of power grid operation; incorporation of uncertainty into operations; distributed control and increasing customer control.

Mission Modernize the way electricity is transmitted in the U.S. through advances in hardware and software that provide greater control over power flows. Program Director Dr. Tim Heidel

Year 2011

Projects 15

Total Investment $39 Million

28 Contributed by: Tim Heidel (ARPA-E)

Page 29: Day1 Panel3A Hefner · • HVDC, DC circuits, SST, SSCB provide stability, functionality and low cost ... different Paradigm – and System • Readily Controllable (remotely) •

DOE  EERE  AMO:  Next  Genera0on  Power  Electronics    Na0onal  Manufacturing  Innova0on  Ins0tute  

hRps://www1.eere.energy.gov/manufacturing/innova+on/facili+es/wbg.html