25
David Claessen CERESERTI & Labo « Ecologie & Evolution » UMR 7625 CNRSUPMCENS

David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

David  Claessen  CERES-­‐ERTI  &  Labo  «  Ecologie  &  Evolution  »  UMR  7625  CNRS-­‐UPMC-­‐ENS  

   

Page 2: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Evolu&onary  problems  � How  do  life  history  traits,  behaviour,  and  other  ecological  traits  evolve?  

� How  can  we  understand  observed  characteristics  of  organisms?    

� How  can  we  predict  these  traits?  � Evolutionary  traits,  e.g.:  

�  Age  or  size  at  maturation  � Number  of  eggs  per  clutch  �  Size  of  eggs  �  Semelparous  vs  iteroparous  reproduction  �  Energy  allocation  (growth  –  reproduction  –  survival)  � Dispersal  rate,  consumption  rate,  death  rate  ,  …  

Page 3: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Evolu&on  of  individual  traits  �  Traits:    

�  Life  history,  behaviour,  exploitation  strategies  

�  Two  contrasting  approaches  1.  «  Optimization  principle  »  

�  Life  history  theory  �  Optimal  foraging  theory  

2.  «  Game  theory  »  �  Adaptive  dynamics  

�  …that  differ  in  important  respects:    �  How  to  take  into  account  the  (impact  of  adaptation  on)  the  environment  

�  How  to  define  fitness  

Page 4: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Simplifica&on  �  If  we  ignore  feedback,  we  can  simplify  the  problem  of  «  predicting  »  evolution  

�  Use  the  method  of  «  Optimization  »  �  Optimization  principle  

�  Find  the  «  optimal  »  strategy,  which  maximizes  «  fitness  »  �  Classic  refs:  

�  Krebs  and  David  (1993)  �  Stearns  (1992)  �  Roff  (1992)  

�  But:    �  How  to  define  fitness?  �  How  valid  is  this  assumption?  (see  later)    

Page 5: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Example:  life  history  traits  

From:  Mayhem  (2006)  

Page 6: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

From:  Mayhem  (2006)  

Page 7: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution
Page 8: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Ques&on  Timing  and  extent  of  reproduction  spread  throughout  an  organism’s  lifetime  

 

� Example:  #  offspring  produced  � Mosquito,  perch:    >10,000  to    >1,000,000  (per  season)  �  Elephants,  humans:  1,  2,  3  per  lifetime  

� Example:  timing  of  reproduction  �  Salmon:  once  (then  die)  �  Perch:  each  year  

� Are  these  differences  adaptations  to  different  environmental  conditions?  

Page 9: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Example:  guppies  (Poecilia  re*culata)  

�  Live  bearing  fish  �  Coastal  regions  �  Sexual  maturity  in  <  3  months  �  Litters  at  3-­‐4  week  interval  �  Sexual  dimorphism  

�  Males  smaller  than  females    

Guppy  distribution  

Page 10: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Two  habitats  “high  predation”  “low  predation”  

Predator  =  killifish  Predator  =  pike  cichlid  High  mortality  Low  mortality  

Are  these  differences  adaptations  to  different  

environmental  conditions?  

Page 11: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

�  Life  cycle  �  Population  structure  � Matrix  population  models  �  Population  growth  rate  /  fitness  

�  Life  history  � Evolution  of  life  histories    

Page 12: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Life  cycle  �  Life  cycle    

�  “A  series  of  stages  through  which  an  organism  passes  between  recurrences  of  a  primary  stage”  

�  “The  course  of  developmental  changes  in  an  organism  from  fertilized  zygote  to  maturity  when  another  zygote  can  be  produced”    

�  Life  cycle  graph  (Caswell  2001)  1.  Set  of  stages  2.  Projection  interval  3.  Create  a  node  for  each  stage,  number  1  to  s  4.  Arcs  between  nodes  (contributions,  transitions)    5.  Label  each  arc  by  a  coefficient  

Page 13: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Structured  popula&ons  � Variation  between  individuals    

�  Age  �  Body  size  �  Sex  �  Location  in  space  �  Genotype  �  etc…  

� Population  is  structured  by  one  or  more  of  these  i-­‐state  variables    

� Population  structure,  for  example:  �  Size  distribution  �  Spatial  distribution  

“  i-­‐state  variables  ”  

Page 14: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Dynamics  of  structured  popula&ons  � Matrix-­‐vector  multiplication  � Population  growth  rate  � Eigenvalue  �  Sensitivity  � Elasticity  � Euler-­‐Lotka  equation    

Page 15: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Matrix  model  

Michael  Bulmer  (1994)  Theoretical  evolutionary  ecology  

Page 16: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Year-­‐to-­‐year  dynamics  

For  x>1  (thus  excluding  age-­‐1)  

For  age-­‐1  only  

The  same  equations,  but  written  in  matrix  form  (a  vector-­‐matrix  product)  

L  is  the  transition  matrix  

(Leslie  matrix)  

Page 17: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

From  life  table  to  transi&on  matrix    Life  table:  

=Age-­‐classified  model  

(stage  classified  model;  similar  analysis,  see  guppy  model)  

Page 18: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution
Page 19: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Asympto&c  behaviour  Now  look  at  population  dynamics  when  t→∞    

(Long  term  dynamics)  

The  vector-­‐matrix  product    Analogous  to  simple  exponential  growth  

The  dynamics  converge  to  exponential  growth,  with  growth  rate  λ  λ  =  dominant  eigenvalue  of  matrix  L  e1=  corresponding  eigenvector  

Page 20: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Euler-­‐Lotka  equa&on  Assume  pop  is  in  stable  age  distribution  

Survival  to  age  x  

#  newborn  offspring  in  year  t  

Females  of  age  x  have  survived  since  t-­‐x  

Each  age  class  increases  at  rate  λ  

Stable  age  distribution!  

“Euler-­‐Lotka  equation”  

Page 21: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Life  &me  reproduc&ve  success  

Discrete  time  

Continuous  time  

Euler-Lotka equation Equilibrium

NB.  In  continuous  time:          -­‐  stable  age  distribution        -­‐  mx  is  the  birth  rate    

R=1  →  r=0  

R=1  →  λ=1  

“LTR”

Page 22: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Stable  age  distribu&on  (again)  

�  λ=1  �  λ>1  �  λ>1  

Distribution  biased  toward  younger  age  classes  

Distribution  biased  toward  older  age  classes  

Distribution  proportional  to  survival  curve  

Page 23: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Evolu&on  of  age  at  matura&on  � Why  postpone  reproduction?  

�  (Why  are  there  juveniles?)  

§  Cost  of  reproduction  §  Survival  §  Growth  

§  Delaying  reproduction  can  be  advantageous  if  fecundity  increases  with  age  §  Bigger  →  higher  fitness  

Page 24: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Evolu&on  of  age  at  matura&on  � Model:  

�  Juveniles  invest  all  energy  in  growth  and  maintenance  �  Von  Bertalanffy  growth  curve  

�  Adults  do  not  grow  but  invest  all  surplus  energy  in  reproduction  

�  Fecundity  increases  with  body  size  �  Proportional  to  body  mass  L3    

t=  Optimal  age  at  maturation  

k  =  “growth  rate”  M  =  mortality  rate  

Page 25: David&Claessen& CERES/ERTI&Labo«Ecologie&Evolution

Evolu&on  of  age  at  matura&on  Optimal  age  at  maturation  

Estimates  for  30  fish  species  

 k,  M,  t  

The  model  predicts    

higher  mortality  (M)    

→  earlier  maturation  (t)