21
Bonsai Trees, or how to delegate a lattice basis David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Embed Size (px)

Citation preview

Page 1: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Bonsai Trees,or how to delegate a lattice basis

David Cash (UCSD) Dennis Hofheinz (KIT)Eike Kiltz (CWI)Chris Peikert (GA)

Page 2: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

This work: crypto from lattices

1. Bonsai trees for lattices/basis delegation2. Applications: new lattice primitives– Hash-and-sign signatures (standard model)– IBE (standard model)– Hierarchical IBE (random oracle model)– Hierarchical IBE (standard model)

Independently discovered by [AB09]!

Page 3: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Pairings LatticesBF01: IBE

ROM

GS02: HIBEROM

CHK03: HIBESelective secure,

bit-by-bit

BB04: HIBESelective secure,Identity at once

Waters05: HIBE Fully secure

Waters09: HIBEFully secure,poly depth

GPV08: IBEROM

NEW: HIBEROM

HEW: HIBESelective secure,

bit-by-bit

ABB10: HIBESelective secure,Identity at once

B10/ABB10 HIBE Fully secure

You??? HIBEFully secure,poly depth

Basis delegation

Rand

om o

racl

e m

odel

Stan

dard

mod

el

Page 4: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)
Page 5: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Integer lattices

A

Matrix A Zqm x n

m 2nlg(q)

n

(q,0)

(0,q)

m-dim Lattice L(A)={xZm :xA = 0 mod q}

Page 6: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Random basis for A

Integer lattices

A

Matrix A Zqm x n Non-short basis for L(A)

Page 7: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Short basis for A

Integer lattices

A

Matrix A Zqm x n Short basis for L(A)

[Ajtai96]

Page 8: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

A

Encryption from lattices [Regev05, GPV08]

A

Public-key:Matrix A Zq

m x n

Secret Key:Short basis for L(A)

Encrypt/decrypt: via “trapdoor function” fA associated to matrix A

Security: Learning with errors

Page 9: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)
Page 10: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Bonsai Trees

Ancient art of bonsai • Techniques for selective control

of a tree by arborist

Cryptographic bonsai• Tree = hierarchy of trapdoor functions• Arborist = setup/simulator controls 2 types of

growth1. Undirected growth:

no privileged information 2. Controlled growth:

privileged information • Property: extending control down hierarchy (not up)

A

A

Page 11: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Central new technique: lattice basis delegation

A1

A1, A2, short basis for L(A1)

A2 Basis delegation

Short basis for (any) higher-dim. super-lattice L(A12)

A12

A2

A1hard

A3

A2

A1

A3A312

Page 12: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Bonsai trees: hierarchy of trapdoor functions

Page 13: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

fA1256

fA1

fA125

fA1234

fA12

f A 123

Hierarchy of trapdoor functions

A1

A12

A123

A1234

m-dim lattice L(A1)

2m-dim lattice L(A12)

4m-dim latticeL(A1234)A1 A2 A3 A5A4 A6

A1256

3m-dim lattice L(A113)

A14m-dim lattice L(A1256)

Page 14: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

fA1256

fA1

fA125

fA1234

fA12

f A 123

A1 A2 A3 A5A4 A6

fA1

fA12

fA1256

fA125

fA1234

f A 123

fA12

fA1234

f A 123

A1 A2A1 A2 A3 A4 A5

Short basis delegation to any higher-dim super-lattice

A1

A12

A123 A125

A12

A123

A1234

A125

A1

no tr

apdo

or

trap

door

undirectedgrowth

controlledgrowth

A1256

A2

A5

Hierarchy of trapdoor functions

Page 15: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Application 1: Hierarchical IBE (random oracles)

Page 16: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

A

Hierarchical ID-based encryption (ROM)

Master Public-key: Matrix A Zq

m x n

Master Secret Key: Short basis for L(A)

AID

A

H(ID1)

A

Encrypt to ID: Use TDF fAID

associated to matrix AID

AID

Secret Key for ID: Short basis for L(AID)

AID’

H(ID1,..,IDk)H(ID1,…,IDk)

Encrypt to hierarchical identities ID=(ID1,…,IDk)IDSpacek

Secret key delegation ID’ID: “controlled growth” A

Page 17: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Application 2: IBE (standard model)

Page 18: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

ID-based encryption (standard model)Master Public-key: Matrices Aij Zq

m x n

Master Secret Key: Short basis for L(A10) and L(A11)

A10 A11

A20 A21

Ak1Ak0

A10 A11

A10

A20

Ak0

ID0=0

ID1=1

IDk=0

AIDZqkm x n

…A11

A21

Ak1

Encrypt to ID{0,1}k: Use TDF fAID

associated to matrix AID

Secret Key for ID’: Short basis for L(AID’)

AID

A10

Ak0

AID’

A21

A10 A11

A20 A21

Ak1Ak0

…Security reduction (selective-ID security)

A10 A11

A20 A21

Ak1Ak0

…Master Secret Key: all-but-one setup ID=challenge ID

ID

Remarks:• Extends to Hierarchical IBE (standard model)• Full security (constant depth) using [BB04b]

Page 19: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Hash and sign signatures (standard model)

Master Public-key: Matrices Aij Zq

m x n

Master Secret Key: Short basis for L(A10) and L(A11)

A10 A11

A20 A21

Ak1Ak0

A10 A11

Sign M{0,1}k : Invert TDF fAM associated

to matrix AM with short

basis for L(AM)

A10

Ak0

AM

A21

Full UF-CMA security:• Add chameleon hash• Proof adapts “prefix-simulation” technique [HW09]

Page 20: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Conclusions• Bonsai trees/basis delegation• Applications: HIBE/signatures

• Follow-up work: • Improved efficiency of HIBE/sigs [ABB10, B10]• Alternative basis delegation [ABB10b]• More crypto primitives [R10, WB10, …]

Page 21: David Cash (UCSD) Dennis Hofheinz (KIT) Eike Kiltz (CWI) Chris Peikert (GA)

Thank you!