19

Dark energy fifth forces in torsion pendulum experiments · matter coupling b 0.1 0.01 0.001 0.0001 mass m ... Types of dark energy Dynamical explanations of the cosmic acceleration

Embed Size (px)

Citation preview

Outline

1 Cosmic acceleration

Deviations from cosmological constantMatter couplings from modifiedgravityChameleon scalars and screening

2 Experimental probes

Eot-Wash torsion pendulumexperimentChameleons in Eot-Wash

3 Quantum-stable chameleons

Chameleon models with smallquantum correctionsApproximate Eot-Wash constraintsForecasts

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Eot-W

ash φ

4

0.01 0.1 1 10 100 1000matter coupling β

0.0001

0.001

0.01

0.1

mas

s m

φ(ρ l

ab) [

eV]

excluded by Eot-Wash

large quantum corrections

Eot-W

ash φ

4

0.01 0.1 1 10 100 1000matter coupling β

0.0001

0.001

0.01

0.1

mas

s m

φ(ρ l

ab) [

eV]

excluded by Eot-Wash

large quantum corrections

Types of dark energy

Dynamical explanations of the cosmic acceleration can differ froma cosmological constant in two ways: evolution and coupling.

Dark energy evolves

V (φ)

H(z) evolves with φ

Constrain using

Dark energy couples

New effects:

fifth forcesnew particle

Screening mechanism

chameleon (mass)Vainshtein (kinetic)

Constrain using:

532nmNd:YAG

laser

HamamatsuH7422P−40

PMT

(BK7 glass) (BK7 glass)

(BK7 glass)lens

vacuum pump

window

magnetic field region

entrance

(B = 5 Tesla)

exit window

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Types of dark energy

Dynamical explanations of the cosmic acceleration can differ froma cosmological constant in two ways: evolution and coupling.

Dark energy evolves

V (φ)

H(z) evolves with φ

Constrain using

Dark energy couples

New effects:

fifth forcesnew particle

Screening mechanism

chameleon (mass)Vainshtein (kinetic)

Constrain using:

532nmNd:YAG

laser

HamamatsuH7422P−40

PMT

(BK7 glass) (BK7 glass)

(BK7 glass)lens

vacuum pump

window

magnetic field region

entrance

(B = 5 Tesla)

exit window

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Types of dark energy

Dynamical explanations of the cosmic acceleration can differ froma cosmological constant in two ways: evolution and coupling.

Dark energy evolves

V (φ)

H(z) evolves with φ

Constrain using

Dark energy couples

New effects:

fifth forcesnew particle

Screening mechanism

chameleon (mass)Vainshtein (kinetic)

Constrain using:

532nmNd:YAG

laser

HamamatsuH7422P−40

PMT

(BK7 glass) (BK7 glass)

(BK7 glass)lens

vacuum pump

window

magnetic field region

entrance

(B = 5 Tesla)

exit window

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Modified gravity and coupled scalar fields

The simplest modified gravity models reduce at low energies to4-D matter-coupled scalar field theories.

Modified gravity

f (R) gravity:action S =∫ d4x

√−g

16πGNf (R)

DGP, etc.:non-compactextra dimension

Kaluza-Klein,etc.: compactextra dimension

Effective scalar

Conformaltransformation⇒ chameleon

Decoupling limit(weak gravity)⇒ Galileon

Small extradimension limit⇒ radion

New physics

matter coupling,self-interactionV (φ)

matter coupling,non-canonicalkinetic term

matter coupling,photon (gaugefield) coupling

A matter coupling implies a fifth force which must be screened.

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Modified gravity and coupled scalar fields

The simplest modified gravity models reduce at low energies to4-D matter-coupled scalar field theories.

Modified gravity

f (R) gravity:action S =∫ d4x

√−g

16πGNf (R)

DGP, etc.:non-compactextra dimension

Kaluza-Klein,etc.: compactextra dimension

Effective scalar

Conformaltransformation⇒ chameleon

Decoupling limit(weak gravity)⇒ Galileon

Small extradimension limit⇒ radion

New physics

matter coupling,self-interactionV (φ)

matter coupling,non-canonicalkinetic term

matter coupling,photon (gaugefield) coupling

A matter coupling implies a fifth force which must be screened.

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Modified gravity and coupled scalar fields

The simplest modified gravity models reduce at low energies to4-D matter-coupled scalar field theories.

Modified gravity

f (R) gravity:action S =∫ d4x

√−g

16πGNf (R)

DGP, etc.:non-compactextra dimension

Kaluza-Klein,etc.: compactextra dimension

Effective scalar

Conformaltransformation⇒ chameleon

Decoupling limit(weak gravity)⇒ Galileon

Small extradimension limit⇒ radion

New physics

matter coupling,self-interactionV (φ)

matter coupling,non-canonicalkinetic term

matter coupling,photon (gaugefield) coupling

A matter coupling implies a fifth force which must be screened.

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Modified gravity and coupled scalar fields

The simplest modified gravity models reduce at low energies to4-D matter-coupled scalar field theories.

Modified gravity

f (R) gravity:action S =∫ d4x

√−g

16πGNf (R)

DGP, etc.:non-compactextra dimension

Kaluza-Klein,etc.: compactextra dimension

Effective scalar

Conformaltransformation⇒ chameleon

Decoupling limit(weak gravity)⇒ Galileon

Small extradimension limit⇒ radion

New physics

matter coupling,self-interactionV (φ)

matter coupling,non-canonicalkinetic term

matter coupling,photon (gaugefield) coupling

A matter coupling implies a fifth force which must be screened.

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Chameleon effect

Veff(φ) = V (φ) + βMPl

(−Tµµ )φ ≈ V (φ) + βρ

MPlφ

V(φ)

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Chameleon effect

Veff(φ) = V (φ) + βMPl

(−Tµµ )φ ≈ V (φ) + βρ

MPlφ

Vint = βmat ρmat φ / MPl

V(φ)

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Chameleon effect

Veff(φ) = V (φ) + βMPl

(−Tµµ )φ ≈ V (φ) + βρ

MPlφ

φmin(ρlow)

(meff2 = V’’ is small)

V(φ)Veff(φ,ρlow)

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Chameleon effect

Veff(φ) = V (φ) + βMPl

(−Tµµ )φ ≈ V (φ) + βρ

MPlφ

φmin(ρlow)

(meff2 = V’’ is small)

φmin(ρhigh)

(meff2 is large)

V(φ)Veff(φ,ρlow)

Veff(φ,ρhigh)

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

Fifth-force constraints from a torsion pendulum

Eot-Wash Experiment

http://www.npl.washington.edu/eotwash

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

φ4 chameleon field in Eot-Wash pendulum

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

-6 -4 -2 0 2 4 6

-0.6-0.4

-0.2 0

0.2 0.4

0.6 0.8 1

1.2

0

5

10

15

20

25

φ [mm-1]

20 15 10 5

x [mm]

z [mm]

φ [mm-1]

AU, S. Gubser, J. Khoury, PRD 74 104024 (2006)Adelberger, Heckel, Hoedl, Hoyle, Kapner, AU, PRL 98 131104 (2007)

Chameleons with small quantum corrections

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

∆V1−loop(φ) = meff(φ)4

64π2 log(meff(φ)2

µ2

)⇒ meff , φ change

Eot-W

ash φ

4

0.01 0.1 1 10 100 1000matter coupling β

0.0001

0.001

0.01

0.1

mas

s m

φ(ρ l

ab) [

eV]

excluded by Eot-Wash

large quantum corrections

Eot-W

ash φ

4

0.01 0.1 1 10 100 1000matter coupling β

0.0001

0.001

0.01

0.1

mas

s m

φ(ρ l

ab) [

eV]

excluded by Eot-Wash

large quantum corrections

AU, W. Hu, J. Khoury, PRL 109 041301 (2012)

1-D plane-parallel approximation to Eot-Wash constraints

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

self-

coup

ling

λ

0.001 0.01 0.1 1 10 100 1000matter coupling β

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

linear

Eot-Wash

1Dpp approx.

large quantum corrections

self-

coup

ling

λ

0.001 0.01 0.1 1 10 100 1000matter coupling β

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

linear

Eot-Wash

1Dpp approx.

large quantum corrections

AU, arXiv:1209:0211, submitted to PRD (2012)

V (φ) = λ4!φ

4

Next-generation Eot-Wash: Forecasts

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments

self-

coup

ling

λ

0.01 0.1 1 10 100 1000 10000matter coupling β

10-4

10-3

10-2

10-1

100

101

102

103

104

linea

r

Eot

-Was

h cu

rren

t

Eot-Washnext-generation(1Dpp approx.)

large quantum corrections

self-

coup

ling

λ

0.01 0.1 1 10 100 1000 10000matter coupling β

10-4

10-3

10-2

10-1

100

101

102

103

104

linea

r

Eot

-Was

h cu

rren

t

Eot-Washnext-generation(1Dpp approx.)

large quantum corrections

self-

coup

ling

γ

0.01 0.1 1 10 100 1000matter coupling β

10-3

10-2

10-1

100

101

102

103

104

linear Eot-Washnext-generation(1Dpp approx.)

large quantum correctionsself-

coup

ling

γ

0.01 0.1 1 10 100 1000matter coupling β

10-3

10-2

10-1

100

101

102

103

104

linear Eot-Washnext-generation(1Dpp approx.)

large quantum corrections

0.01 0.1 1 10 100 1000matter coupling β

4

6

8

10

12

14

16

18

20

pow

er la

w in

dex

n

linea

r

Eot-Washnext-generation (1Dpp approx.)

largequantumcorrections

0.01 0.1 1 10 100 1000matter coupling β

4

6

8

10

12

14

16

18

20

pow

er la

w in

dex

n

linea

r

Eot-Washnext-generation (1Dpp approx.)

largequantumcorrections

0.01 0.1 1 10 100matter coupling β

-30

-25

-20

-15

-10

-5

-1

pow

er la

w in

dex

n

linea

r

Eot-Washnext-generation(1Dpp approx.)

largequantumcorrections

0.01 0.1 1 10 100matter coupling β

-30

-25

-20

-15

-10

-5

-1

pow

er la

w in

dex

n

linea

r

Eot-Washnext-generation(1Dpp approx.)

largequantumcorrections

AU, arXiv:1209:0211, submitted to PRD (2012)

V (φ) = λ4!φ4 V (φ) = γM5

Λ/φ

V (φ) = γM4−nΛ

φn V (φ) = γM4−nΛ

φn

Conclusions

1 Modified gravity could be responsible for the cosmicacceleration.

2 Scalar-mediated fifth forces from modified gravity must bescreened in order to evade constraints from tests of gravity.

3 Chameleon-screened models with small quantum correctionsand gravitation-strength couplings extend just beyond currentexperimental bounds in parameter space.

4 The next-generation Eot-Wash torsion pendulum experimentwill exclude a large range of quantum-stable chameleonmodels.

Amol Upadhye Dark energy fifth forces in torsion pendulum experiments