13
50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 Cs@C n 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n Distribution similar to empty cages C 60 and C 70 dominant n = 60 n = 70

Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

Embed Size (px)

Citation preview

Page 1: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

Cs@Cn

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

K@Cn

Rb@Cn

Group I Group I MetallofullerenesDonate 1 electron to cage M+@C2n

− Distribution similar to empty cages C60 and C70 dominant

n = 60

n = 70

Page 2: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Ca@Cn

Ba@Cn

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84

Sr@Cn

Group II metals• Donate 2 electron to cage M2+@C2n

2−

• M@C50 exhibits dominance as well as M@C60 M@C70 no longer dominant

n = 50 60

Page 3: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Sc@Cn

Y@Cn

Group III metals• Donate 3 electron to cage• M3+@C2n

3−

• Now, M@C44 dominates • M@C50 is also abundant.• M@C60 no longer dominates

n = 44

n = 50

n = 60

Page 4: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant
Page 5: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

Clear correlation to charge transfer and growth

• More charge transferred, the distribution of fullerenes shifts to very small metallofullerenes

• Thus, when more charge is transferred they “grow slower”. As the number of transferred electrons are increased, the growth distribution is shifts to smaller fullerenes.

• This can explain why the larger metallofullerenes appear to only form as a small fraction of, for example, empty cage C60. Under conditions where empty cage C60 dominates of C2n distribution, the M@C2n distributions exhibits mostly small fullerenes…….which will likely “react away” in the solid state, in solution, or air.

• Charge transfer appears to be extremely important in determining metallofullerenes formation. It is likely the most important growth factor

Page 6: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

C84

+ carbon vapor

C84

1,1751,1701,165

m/z1,6001,5001,4001,3001,2001,1001,000900

1165 1170 1175

Gd@C82 Gd@C82 calculated

Gd@C84

Metallofullerenes “grow slower” than empty cages in carbon vapor?

+ carbon vapor

C84

m/z20001900180017001600150014001300120011001000900800700600

Compare Gd@C80 to C84

from our Nature Communications paper

Page 7: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

Cs@C2n

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

Rb@C2n

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Ca@C2n

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Ba@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Sc@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Y@C2n

Cs@C60

Cs@C70

Ca@C50

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

K@C2n

K@C60

K@C70

Rb@C70

Rb@C60

Ba@C50

Ca@C60

Sc@C44Ca@C70

Ba@C70

Ba@C60

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84

Sr@C2n

Sr@C60

Sr@C50

Sr@C70

Sc@C50

Sc@C60

Y@C50Y@C44

Y@C50

Group I metals• Donate 1 electron to cage• M+@C2n

• Distribution similar to empty cages (ie, C60 and C70 dominate)

Group II metals• Donate 2 electron to cage• M2+@C2n

2−

• M@C50 exhibit much greater abundance, although M@C60 just a bit more dominate. M@C70 forms in lower abundance

Group III metals• Donate 3 electron to cage• M3+@C2n

3−

• Now, M@C44 dominates over other endo cages. M@C50 is also highly abundant.

• M@C60 no longer dominates

Comparison of Group I, II, III metallofullerene growth distributions

Page 8: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

m/z20001900180017001600150014001300120011001000900800700600

Metallofullerenes “grow slower” than empty cages in carbon vapor?

La2@C80

+ carbon vapor

m/z

1,8001,7001,6001,5001,4001,3001,2001,1001,000

La2@C82

La2@C80

C84

+ carbon vapor

C84

Compare growth of La2@C80 to C84

from our Nature Communications paper

Page 9: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

C84

+ carbon vapor

C84

1,1751,1701,165

m/z1,6001,5001,4001,3001,2001,1001,000900

1165 1170 1175

Gd@C82 Gd@C82 calculated

Gd@C84

Metallofullerenes “grow slower” than empty cages in carbon vapor?

+ carbon vapor

C84

m/z20001900180017001600150014001300120011001000900800700600

Compare Gd@C80 to C84

from our Nature Communications paper

Page 10: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

Does more charge transfer from metal to cage render metallofullerenes less reactive?

• That could explain striking difference in growth of metallofullerenes vs empty cages

• Thus, as one moves from Group I to Group III metals, M@C2n should become less reactive due to more transfer to cage. Thus, Group III would exhibit a greater distribution of smaller fullerenres than Group II, and Group I

• A good test of this is to look at the Lanthanides• It is known there are two groups of lanthanides, those that

transfer 3 electrons to cage M3+@C2n

3-

La, Ce, Pr, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu

• And those that only transfer 2 electrons to cage M2+@C2n

2-

Sm, Eu, Tm, Yb

Page 11: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

La@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Ce@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Pr@C2n

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Sm@C2n

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Eu@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Tb@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Dy@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Ho@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Er@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Nd@C2n

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82

Yb@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Lu@C2n

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Gd@C2n

Comparison of Lanthanides

La@C44

La@C50

La@C60

Tb@C44 Tb@C50

Tb@C60

Sm@C44

Sm@C50

Sm@C70

Sm@C60

M3+@M@C2n3− Lanthanides

M2+@M@C2n2− Lanthanides

Page 12: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

• Striking difference for Sm, Eu, Tm, Yb

These are M2+@M@C2n2−

M@C60 > M@C50 >M@C70

M@C44 is weak

Matches Group II metal M@C2n distributions (for example, Sr@C2n below), which can, of course, only donate 2 electrons

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

La@C2n

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Sm@C2n

Comparison of Lanthanides

La@C44La@C50

La@C60

Sm@C44

Sm@C50

Sm@C70

Sm@C60

M3+@M@C2n3− Lanthanides

M2+@M@C2n2− Lanthanides

• La, Ce, Nd, Gd, Tb, Dy, Ho, Er, Lu all exhibit the same distributions

M@C44 > M@C50 >M@C60

M@C60 relatively weak for these M3+@M@C2n

3− Lanthanides

Matches the growth distributions of the Group III metals….for example, Y@C2n below

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84

Sr@C2n

Sr@C60

Sr@C50

Sr@C70

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Y@C2nY@C50Y@C44

Y@C50

Page 13: Cs@C n K@C n Rb@C n Group I Group I Metallofullerenes Donate 1 electron to cage M + @C 2n − Distribution similar to empty cages C 60 and C 70 dominant

Clear correlation to charge transfer and growth

• More charge transferred, the distribution of fullerenes shifts to very small metallofullerenes

• Thus, when more charge is transferred they “grow slower”. As the number of transferred electrons are increased, the growth distribution is shifts to smaller fullerenes.

• This can explain why the larger metallofullerenes appear to only form as a small fraction of, for example, empty cage C60. Under conditions where empty cage C60 dominates of C2n distribution, the M@C2n distributions exhibits mostly small fullerenes…….which will likely “react away” in the solid state, in solution, or air.

• Charge transfer appears to be extremely important in determining metallofullerenes formation. It is likely the most important growth factor