49
Reviewer’s Initials CRITERIA FOR RANKING EVALUATIONS OF IR-4 EARLY STAGE BIOPESTICIDE PROPOSALS-2014 Proposal number/Title/PI: 5E, A Natural Treatment for Fire Blight: Pilot Tests in Apple Orchards, Grose The following criteria were established to assist the reviewers in selecting biopesticide projects for funding that: (1) in an exploratory or early stage of development (2) have a high probability of being registered/marketed in a reasonable period of time; and (3) will be useful in meeting pest control needs involving minor crops (uses), including minor uses on major crops. Criteria Score (0 to 10 or 20) 1. Adequacy of investigators and facilities. of 10 2. Experimental design, work plan and preliminary research. of 10 3. Evaluation of budget. of 10 4. Time to completion and probability of attaining objectives in the proposed time frame. of 10 5. Relevance of the proposal toward the development of data for registration or label expansion of the biopesticide. of 10 6. Evidence of Efficacy. of 20 7. Probability of biopesticide being used by growers (factors such as effectiveness and economics of use rates should be considered). of 10 8. Adverse environmental risks including crop safety, safety to beneficials, safety to ecosystems, and stability. of 10 9. Other control measures currently available to control target pest. of 10 10. Probability of biopesticide being registered, time to registration, and if label expansion, time to market. of 10 11. Availability of a potential registrant. Likelihood of developing a formulated commercial product. of 10 TOTAL* of 120 Funding Recommendation YES ____________ (Check appropriate line) NO ____________ MAYBE ____________ Note: Attach a comment page, should you have specific comments related to the proposal not covered in the above criteria. * There is a possibility of 10 points per criteria(except efficacy=20) for a total of up to 120 points. A rating of 0 means that the proposal does not meet the criteria at all, while a rating of 10 means it is ideal.

CRITERIA FOR RANKING EVALUATIONS OF IR-4 EARLY …ir4.rutgers.edu/Biopesticides/Proposals/5E.pdf · CRITERIA FOR RANKING EVALUATIONS OF IR-4 EARLY STAGE BIOPESTICIDE PROPOSALS-2014

  • Upload
    doduong

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Reviewer’s Initials

CRITERIA FOR RANKING EVALUATIONS OF IR-4 EARLY STAGE BIOPESTICIDE PROPOSALS-2014

Proposal number/Title/PI: 5E, A Natural Treatment for Fire Blight: Pilot Tests in Apple Orchards, Grose

The following criteria were established to assist the reviewers in selecting biopesticide projects for funding that: (1) in an exploratory or early stage of development (2) have a high probability of being registered/marketed in a reasonable period of time; and (3) will be useful in meeting pest control needs involving minor crops (uses), including minor uses on major crops.

Criteria Score

(0 to 10 or 20)

1. Adequacy of investigators and facilities. of 10

2. Experimental design, work plan and preliminary research. of 10

3. Evaluation of budget. of 10

4. Time to completion and probability of attaining objectives in the proposed time frame. of 10

5. Relevance of the proposal toward the development of data for

registration or label expansion of the biopesticide. of 10

6. Evidence of Efficacy. of 20

7. Probability of biopesticide being used by growers (factors such as effectiveness and economics of use rates should be considered). of 10

8. Adverse environmental risks including crop safety, safety to

beneficials, safety to ecosystems, and stability. of 10

9. Other control measures currently available to control target pest. of 10

10. Probability of biopesticide being registered, time to registration, and if label expansion, time to market. of 10

11. Availability of a potential registrant. Likelihood of developing a

formulated commercial product. of 10 TOTAL* of 120

Funding Recommendation YES ____________ (Check appropriate line) NO ____________

MAYBE ____________

Note: Attach a comment page, should you have specific comments related to the proposal not covered in the above criteria. * There is a possibility of 10 points per criteria(except efficacy=20) for a total of up to 120 points. A rating of 0 means that the proposal does not meet the criteria at all, while a rating of 10 means it is ideal.

  1  

IR-4 BIOPESTICIDE GRANTS COVER PAGE    

2014    

Proposal Number(For IR-4 Use): Principal Investigator: Julianne H. Grose Proposal Title: A  Natural  Treatment  for  Fire  Blight:  Pilot  Tests  in  Apple  Orchards   Institution: Brigham Young University Total dollars Requested (Year 1 only): $25,000

 Enter each biopesticide /crop/ pest combination

 

No. Biopesticide and/or Conventional Product TRADE Name

Active Ingredient

Crop Pest (Weeds, Diseases, Insects)

1 Fire  Quencher   Bacteriophages     Apple  Trees   Fire  Blight  (Disease)  2 Streptomycin   Streptomycin   Apple  Trees   Fire  Blight  

3 Fire  Quencher  +  Streptomycin  17%  

Bacteriophages  +Streptomycin  Apple  Trees   Fire  Blight  4        5        6        7        8        9        10        11        12        13        14        15        16        17        18        19        20        21        22        23        24        25        26                  

 

   

5E

 

  Page  2        

 Biopesticide Grants Contact Information Form

   

Proposal Title:    A  Natural  Treatment  for  Fire  Blight:  Pilot  Tests  in  Apple  Orchards    

Name

Address        

Phone Number & Fax Number

           

E-mail Address

   

Street

   

City/ State

   

Zip+4

Project  Director  (Principal  Investigator):  Julianne  H.  Grose      

685  East  University  Parkway  

Provo,  Utah  84602  

Utah   84602   (801)  422-­‐4940  

(801)  422-­‐0519  

[email protected]  

Administrative  Contact:  Gene  Larson    

685  East  University  Parkway  

Provo,  Utah  84602  

Utah   84602   (801)  422-­‐3360  

(801)  422-­‐0620  

gene_larson@byu.  edu  

Financial  Grant  Officer:  Kathleen  Rugg    

685  East  University  Parkway  

Provo,  Utah  84602  

Utah   84602   (801)  422-­‐8025  

(801)  422-­‐0620    

[email protected]  

Authorized  Grant  Official:  Alan  Harker  

685  East  University  Parkway  

Provo,  Utah  84602  

Utah   84602   (801)  422-­‐3582  

(801)  422-­‐0620    

alan_harker@byu.  edu  

Individual  Responsible  for  Invoicing:  David  Morris  

685  East  University  Parkway  

Provo,  Utah  84602  

Utah   84602   (801)  422-­‐7548  

(801)  422-­‐0620  

david.morris@byu.  edu  

NOTE: THIS IS FOR INFORMATIONAL PURPOSES ONLY. THIS IS NOT MEANT TO BE SIGNED. DO NOT DELAY SUBMITTING YOUR PROPOSAL BY ATTEMPTING TO GET THIS SIGNED. THIS IS NOT MEANT AS A REPLACEMENT FOR ANY INSTITUTIONAL APPROVAL PAGES.

5E

  3  

I. Grant Stage What is the grant Stage to which you are applying? Early or Advanced (Check appropriate line)

✓ Early – Biopesticide not yet registered and has not completed the Tier I toxicology data requirements.

 Advanced – the biopesticide is registered or at least has completed the Tier I toxicology data requirements.

 If you are applying for any Advanced Stage Proposal, and the product is not currently registered with EPA, provide a list of the toxicology work that has been completed. Ask registrant or have company provide information to IR-4.

   II. Introduction (Limit 1 page)

OBJECTIVE: Our objective is to provide a natural and effective treatment for fire blight through the use of bacteriophages. Bacteriophages are viruses that infect bacteria. They are the most abundant organism on the planet and are essential to maintaining ecological balance due to their ability to infect and kill their hosts. The term bacteriophage literally means “to devour bacteria” as they infect their host organisms by injecting their DNA, pirating cellular machinery to produce progeny, and finally lysing the host cells to release tens or hundreds of progeny that then infect more bacteria. These natural predators are highly specific for their host organism and thus do not affect humans, plants, animals, or the environment. Bacteriophages are biodegradable and considered “organic,” making them a valuable ally in the fight against agricultural diseases. Bacteriophages are commonly used to treat several agricultural diseases, including those that infect tomatoes and peppers, in the United States and abroad. We have isolated 41 bacteriophages that infect and kill the causative agent of fire blight. These bacteriophages have been isolated and amplified from local orchards in Utah. We have combined the best five bacteriophages into a natural bactericide named Fire Quencher. This proposal outlines our goals to 1) further characterize these bacteriophages, 2) conduct small-scale efficacy tests of Fire Quencher in controlled green houses, 3) produce characterize and compare liquid and solid Fire Quencher for large-scale distribution, and 4) test the efficacy of Fire Quencher in conjunction with apple orchards. DESCRIPTION OF DISEASE: Fire blight is a bacterial disease that affects a wide variety of plants including apple trees, pear trees, cherry trees, rose bushes and chrysanthemums. Reported apple produce losses due to fire blight are in excess of $100 million annually in the United States alone ((Norelli et al., 2003). Fire blight is caused by the gamma-proteobacterium Erwinia amylovora that invades wounds on trees and infects almost all tissue types, including flowers, stems, and leaves (Vanneste, 2000). Because the bacteria can overwinter within the bark of tree limbs 2-years-old and older, infected branches often serve as the reservoir of bacteria in subsequent seasons (Khan et al.).. Infected leaves bend inwards towards the stem, release infectious exudates, wilt, and die. As dead plant matter falls to the ground the bacteria can also subsist in the soil. Since the bacteria prefers to amplify in newly formed plant tissue, spring blossoms and new shoots of

5E

  4  

infected trees suffer the greatest damage. Death of blossoms, leaves and shoots, results in low fruit yields and smaller fruits.

The current primary treatment for fire blight is the antibiotic streptomycin sulfate. Other treatment options include heavy metals (such as copper), and Blossom Protect (a new yeast-based spray); however, both of these non-antibiotic options can cause russet. All of these options are considered preventative since none are very effective after symptoms of fire blight appear. Once symptoms appear, trees are generally remove from the orchard to prevent spread. Thus, treatments are currently used at blossom time.

JUSTIFICATION The need for an alternative form of fire blight control is imperative as bacterial resistance to antibiotics and heavy metals has increased (Martinez et al., 2009b). In addition, many farmers would prefer to decrease the use of antibiotics and heavy metals in agriculture (Lipsitch et al., 2002; Martinez, 2009; Martinez et al., 2009a; Stockwell and Duffy, 2012; Stockwell et al., 2011) and still maintain healthy, productive crops. The goal to eliminate antibiotic use is especially important since most Erwinia amylovora strains isolated from orchards have developed antibiotic resistance (Ngugi et al., 2012). For fire blight, antibiotic and heavy metal use, as well as the associated development of resistant bacteria is particularly alarming because Erwinia amylovora is closely related to E. coli and Salmonella and may thus be able to transfer antibiotic and heavy metal resistance gene cassettes. For organic farmers, an alternative option is imperative because antibiotics will no longer be allowed beginning fall of 2014. III. Experimental Plan (Please limit this section to 10 pages)

 Proposed  experiments:    The  numerical  list  of  treatments  below  corresponds  to  experiments  outline  in  this  table.: All tests of Fire Quencher efficacy will be performed with Fire Quencher alone or in combination with streptomycin sulfate, the current standard treatment for fire blight prevention. Experiments are designed with streptomycin sulfate only controls when necessary.    

  Plants  

#  plants  treated/  untreated   Treatment  timing   Treatment  form  

1   Apple  seedlings   25/5   Pre-­‐  and  post-­‐  infection   Fire  Quencher    (liquid)    2   Apple  seedlings   25/5   Pre-­‐  and  post-­‐  infection   Streptomycin  sulfate(17%)  3   Apple  seedlings   25/5   Pre-­‐  and  post-­‐  infection   Fire  Quencher  (liquid)  

Combined  with  Streptomycin  sulfate(17%)    4   Apple  seedlings   25/5   Post-­‐infection   Fire  Quencher    (liquid)  5   Apple  seedlings   25/5   Post-­‐infection   Streptomycin  sulfate(17%)  6   Apple  seedlings   25/5   Post-­‐infection   Fire  Quencher  (liquid)  

Combined  with  Streptomycin  sulfate(17%)    7   Apple  seedlings   25/5   Pre-­‐  and  post-­‐  infection   Fire  Quencher    (solid)  8   Apple  seedlings   25/5   Pre-­‐  and  post-­‐  infection   Fire  Quencher  (solid)  

Combined  with  Streptomycin  sulfate(17%)  9   Apple  seedlings   25/5   Post-­‐infection   Fire  Quencher    (solid)  10   Apple  seedlings   25/5   Post-­‐  infection   Fire  Quencher  (solid)  

Combined  with  Streptomycin  sulfate(17%)  11   Apple  trees   6/4   Pre-­‐  and  post-­‐  infection   Fire  Quencher    (liquid)    12   Apple  trees   6/4   Pre-­‐  and  post-­‐  infection   Fire  Quencher  (liquid)  

Combined  with  Streptomycin  sulfate(17%)        

5E

  5  

13   Apple  trees   6/4   Pre-­‐  and  post-­‐  infection   Fire  Quencher    (solid)  14   Apple  trees   6/4   Pre-­‐  and  post-­‐  infection   Fire  Quencher  (solid)  

Combined  with  Streptomycin  sulfate(17%)  15   Apple  trees   16/4   Pre-­‐  and  post-­‐  infection   Fire  Quencher    (liquid)    16   Apple  trees   16/4   Pre-­‐  and  post-­‐  infection   Streptomycin  sulfate(17%)  17   Apple  trees   16/4   Pre-­‐  and  post-­‐  infection   Combined  with  Streptomycin  sulfate(17)  

    1. Treatment Title: Greenhouse pre- and post- infection treatment of apple seedlings

using Fire Quencher (liquid) Product Trade Name: Fire Quencher (liquid) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Fire Quencher ( 0.1 mL of bacteriophages in nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into water and distributed at a final concentration of 109 plaque forming units. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

2. Treatment Title: Greenhouse pre- and post- infection treatment of apple seedlings

using streptomycin sulfate (17%) Product Trade Name: streptomycin sulfate (17%) Active Ingredient: streptomycin sulfate (17%) Rate (units): Streptomycin sulfate (17%) will be sprayed over 25 apple seedlings at 200 ppm final concentration. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or streptomycin for one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

3. Treatment Title: Greenhouse pre- and post- infection treatment of apple seedlings

using Fire Quencher (liquid) and streptomycin sulfate (17%) Product Trade Name: Fire Quencher (liquid) and Streptomycin sulfate(17%) Active Ingredient: Fire Quencher ( a mixture of 5 bacteriophages that infect Ewinia amylovora) and Streptomycin sulfate (17%) Rate (units): Fire Quencher ( 0.1 mL of bacteriophages in nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into water and distributed at a final concentration of 109 plaque forming units. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Streptomycin sulfate (17%) will then be sprayed at 200 ppm. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire

5E

  6  

Quencher plus streptomycin one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

4. Treatment Title: Greenhouse post-infection treatment of apple seedlings using Fire

Quencher (liquid) Product Trade Name: Fire Quencher (liquid) and Streptomycin sulfate (17%) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Fire Quencher (0.1 mL of bacteriophages in nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into water and distributed at a final concentration of 109 plaque forming units. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher one day following infection with Erwinia amylovora. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

5. Treatment Title: Greenhouse post-infection treatment of apple seedlings using streptomycin sulfate (17%) Product Trade Name: Streptomycin sulfate (17%) Active Ingredient: Streptomycin sulfate (17%) Rate (units): Streptomycin sulfate (17%) will then be sprayed at a final concentration of 200 ppm onto 25 apple seedlings. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher one day following infection with Erwinia amylovora. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

6. Treatment Title: Greenhouse post-infection treatment of apple seedlings using Fire Quencher (liquid) and Streptomycin (17%) Product Trade Name: Fire Quencher (solid) and Streptomycin sulfate (17%) Active Ingredient: Fire Quencher (a mixture of 5 bacteriophages that infect Ewinia amylovora) and Streptomycin sulfate (17%) Rate (units): Fire Quencher (0.1 mL of bacteriophages in nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into water and distributed at a final concentration of 109 plaque forming units. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Streptomycin sulfate (17%) will then be sprayed at 200 ppm. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher and streptomycin sulfate one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

5E

  7  

 7. Treatment Title: Greenhouse pre- and post-infection treatment of apple seedlings

using Fire Quencher (solid) Product Trade Name: Fire Quencher (solid) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Solid Fire Quencher (lyophilized bacteriophages at a total concentration of 1012 plaque forming units) will be reconstituted in water and distributed at a final concentration of 109. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined green house owned by Brigham Young University.

8. Treatment Title: Greenhouse pre- and post-infection treatment of apple seedlings using Fire Quencher (liquid) and streptomycin sulfate (17%) Product Trade Name: Fire Quencher (solid) and streptomycin sulfate (17%)

Active Ingredient: Fire Quencher (a mixture of 5 bacteriophages that infect Ewinia amylovora) and streptomycin sulfate (17%). Rate (units): Fire Quencher (lyophilized bacteriophages at a total concentration of 1012 plaque forming units) will be reconstituted in water and distributed at a final concentration of 109. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Streptomycin sulfate (17%) will then be sprayed at 200 ppm. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher and streptomycin sulfate one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined green house owned by Brigham Young University

9. Treatment Title: Greenhouse post-infection treatment of apple seedlings using Fire

Quencher (solid) Product Trade Name: Fire Quencher (solid) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Solid Fire Quencher (lyophilized bacteriophages at a total concentration of 1012 plaque forming units) will be reconstituted in water and distributed at a final concentration of 109. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher one hour after infection with Erwinia amylovora. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined green house owned by Brigham Young University.

10. Treatment Title: Greenhouse post-infection treatment of apple seedlings using Fire Quencher (liquid) and streptomycin sulfate (17%)

5E

  8  

Product Trade Name: Fire Quencher (solid) and streptomycin sulfate (17%) Active Ingredient: Fire Quencher (a mixture of 5 bacteriophages that infect Ewinia amylovora) and streptomycin sulfate (17%) Rate (units): Fire Quencher (lyophilized bacteriophages at a total concentration of 1012 plaque forming units) will be reconstituted in water and distributed at a final concentration of 109. A total final volume of 100 mL will be sprayed onto 25 apple seedlings. Streptomycin sulfate (17%) will then be sprayed at 200 ppm. Water will be sprayed on a total of 5 apple seedlings as a control. Application Timing: All 30 apple seedlings will be sprayed with either water or Fire Quencher and streptomycin sulfate one hour after infection with Erwinia amylovora. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined green house owned by Brigham Young University.

11. Treatment Title: Greenhouse pre- and post- infection treatment of apple trees using Fire Quencher (liquid)

Product Trade Name: Fire Quencher (liquid) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Fire Quencher ( 0.1 mL of bacteriophages in nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into water and distributed at a final concentration of 109 plaque forming units. A total final volume of 100 mL will be sprayed onto 6 apple trees (3 years old). Water will be sprayed on a total of 4 apple seedlings as a control. Application Timing: All 10 apple trees will be sprayed with either water or Fire Quencher one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

12. Treatment Title: Greenhouse pre- and post- infection treatment of apple trees using

Fire Quencher (liquid) and streptomycin sulfate (17%) Product Trade Name: Fire Quencher (liquid) and Streptomycin sulfate(17%) Active Ingredient: Fire Quencher (a mixture of 5 bacteriophages that infect Ewinia amylovora) and Streptomycin sulfate (17%) Rate (units): Fire Quencher ( 0.1 mL of bacteriophages in nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into water and distributed at a final concentration of 109 plaque forming units. A total final volume of 100 mL will be sprayed onto 6 apple trees (3 years old). Streptomycin sulfate (17%) will then be sprayed at 200 ppm. Water will be sprayed on a total of 4 apple trees as a control. Application Timing: All 10 apple trees will be sprayed with either water or Fire Quencher plus streptomycin one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined greenhouse owned by Brigham Young University.

 

5E

  9  

13. Treatment Title: Greenhouse pre- and post-infection treatment of apple trees using Fire Quencher (solid)

Product Trade Name: Fire Quencher (solid) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Solid Fire Quencher (lyophilized bacteriophages at a total concentration of 1012 plaque forming units) will be reconstituted in water and distributed at a final concentration of 109. A total final volume of 100 mL will be sprayed onto 6 apple trees (3 years old). Water will be sprayed on a total of 4 apple trees as a control. Application Timing: All 10 apple trees will be sprayed with either water or Fire Quencher one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined green house owned by Brigham Young University.

14. Treatment Title: Greenhouse pre- and post-infection treatment of apple trees using Fire Quencher (liquid) and streptomycin sulfate (17%) Product Trade Name: Fire Quencher (solid) and streptomycin sulfate (17%)

Active Ingredient: Fire Quencher (a mixture of 5 bacteriophages that infect Ewinia amylovora) and streptomycin sulfate (17%) Rate (units): Fire Quencher (lyophilized bacteriophages at a total concentration of 1012 plaque forming units) will be reconstituted in water and distributed at a final concentration of 109. A total final volume of 100 mL will be sprayed onto 6 apple trees (3 years old). Streptomycin sulfate (17%) will then be sprayed at 200 ppm. Water will be sprayed on a total of 4 apple trees as a control. Application Timing: All 10 apple trees will be sprayed with either water or Fire Quencher and streptomycin sulfate one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Facility: Quarantined green house owned by Brigham Young University

  15. Treatment Title: Pre-infection treatment of apple orchards at Oregon State University and Washington State University using Fire Quencher (liquid)

Product Trade Name: Fire Quencher (liquid) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora Rate (units): Fire Quencher (bacteriophages in 3.9 mL of nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into one gallon of water and distributed at a final concentration of 109. The total final volume will be sprayed onto 4 apple trees. This will be repeated 3 times for a total of 16 trees. Application Timing: Trees will be sprayed one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Three different application times will be tested this spring, on approximately 4 trees each for a total of 16 treated and infected trees. In addition, 4 trees will also be sprayed with water and infected as control. Application times will be determined by weather and blossoming of the trees. Facility: Sacrificial orchards USDA approved and funded for testing located at both Oregon State University and Washington State University.                

5E

  10  

  16. Treatment Title: Pre-infection treatment of apple orchards at Oregon State University and Washington State University (liquid) using streptomycin sulfate

Product Trade Name: Streptomycin sulfate (17%) Active Ingredient: Streptomycin sulfate (17%) Rate (units): Streptomycin sulfate (17%) will be sprayed onto 4 apple trees for a final concentration of 200 ppm. This will be repeated 3 times for a total of 16 trees. Application Timing: Trees will be sprayed one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Three different application times will be tested this spring, on approximately 4 trees each for a total of 16 treated and infected trees. In addition, 4 trees will also be sprayed with water and infected as control. Application times will be determined by weather and blossoming of the trees. Facility: Sacrificial orchards USDA approved and funded for testing located at both Oregon State University and Washington State University.      

17. Treatment Title: Pre-infection treatment of apple orchards at Oregon State University and Washington State University using Fire Quencher (liquid) and streptomycin sulfate Product Trade Name: Fire Quencher (liquid) and streptomycin sulfate (17%) Active Ingredient: A mixture of 5 bacteriophages that infect Ewinia amylovora and streptomycin sulfate (17%) Rate (units): Fire Quencher (bacteriophages in 3.9 mL of nutrient broth at a final concentration of 1012 plaque forming units) will be diluted into one gallon of water and distributed at a final concentration of 109. The total final volume will be sprayed onto 4 apple trees. The trees will then be sprayed with streptomycin sulfate (17%) to a final concentration of 200 ppm. This will be repeated 3 times for a total of 16 trees. Application Timing: Trees will be sprayed one hour before infection with Erwinia amylovora, then one hour after infection. Treatment will continue with one application once every other day for the following six days. Three different application times will be tested this spring, on approximately 4 trees each for a total of 16 treated and infected trees. In addition, 4 trees will also be sprayed with water and infected as control. Application times will be determined by weather and blossoming of the trees but are anticipated to be one week apart. Facility: Sacrificial orchards USDA approved and funded for testing located at both Oregon State University and Washington State University.                

 2. What crops or sites will this study be conducted on?

Treatments #1-14 will be performed in a quarantined green house owned by Brigham Young University. We currently are growing hundreds of apple seedlings and 40 young trees (3 years old) for these studies. Treatments #15 -17 will be performed at both the Washington State University and the Oregon State University on test orchards that have been designed and USDA approved for the testing of fire blight treatment options. These facilities have tested antibiotic, heavy metal, and various natural product treatments (including combined treatments) the past five years. Please see their letters of support. Old red delicious trees are used which are resistant to fire blight.

5E

  11  

 3. What experimental design will be utilized?  

Treatments #1-14 will be performed in a quarantined green house owned by Brigham Young University. In addition to the Fire Quencher treatment, water will be used as a negative control. The studied will be blinded in that each plant will be given a number, plants receiving the control or Fire Quencher will be chosen randomly, and different students will be used to infect versus score efficacy. Plants will be scored based on degree of disease, scores will be averaged and reported as percent infected relative to wild type. A students T test will be applied to determine validity of the efficacy. In trial tests (see Appendix 3- Supporting Preliminary Data) 100% of plants infected with Erwinia amylovora died. Thus we are confident that our numbers will provide statistical significance if our treatment provides 10% efficacy for treatments #1-10 and 20% efficacy for treatment #11-14. Scales for scoring disease are reported below. Treatments #15-17. These experiments are performed by experts Ken Johnson (Oregon State University) and Tim Morris (Washington State University). Four trees will be treated at each time point for a total of 16 per treatments. Only 50 blossoms are inoculated per tree. Evaluation is based on the number of blossoms displaying fire blight our of each of the 50 flower clusters. The diseases does not spread further into the tree since old red delicious trees are used which are resistant to fire blight spreading from the blossom. Their experimental set-up has proven to detect efficacies as low as 20% (Stockwell, 2011). All data is reported as percent trees rescued and is compared to the untreated controls and is analyzed by a Bayesian approach  (Mila,  2011).      

4. How many locations (field or greenhouse)? How many replications? Treatments #1-14 will all be performed at the Brigham Young University Life Science Greenhouses. Treatments #1-10 include 30 plants each (300 total), treatments #11-14 include 10 trees each (40 trees total). Treatments #1-8 will be replicated once several months apart to ensure reproducible. This replication will increase the total number of apple seedlings (2-4 inch plants) to 540 plants. Treatments #15-18 will be performed once at two separate locations, Washington State University and Oregon State University. These treatments include a total of 20 trees each, or 1/5 of the acre devoted to each study at each location for a total of 120 trees or 1.2 acres.

5. Describe how this proposal is designed to provide information on how it fits into an integrated pest management program.

Fire Quencher is designed to be an early season treatment. Optimally, it will be applied prior to plant blooming to reduce the occurrence of fire blight symptoms. All experiments (Treatments #1-18) are designed to test phage treatment prior to the appearance of fire blight symptoms, which is generally 4-10 days post infection. Efficacy will be determined by the occurrence of fire blight symptoms in treated versus untreated samples. Every type of experiments includes treatment alone and in combination with streptomycin sulfate. Streptomycin sulfate alone generally has an efficacy rate of ~87% in controlled environments (Tim Smith, unpublished data. Please see his letter of support). Note that this efficacy rate is dramatically lower in most orchards due to antibiotic resistant bacteria in the environment.

5E

  12  

6. Data collection – Treatments #1-14: Data will be collected based on visual efficacy. A rating scale of 1-7 will be used for each sample in treatments #1-10. For treatments #1-10, samples will be evaluated each day following inoculation up to 14 days. For treatments #11-14, samples will be evaluated for 4 months to determine if Fire Quencher delays onset of the disease in trees. Samples will be compared to a control sample that was sprayed with water or streptomycin sulfate only. Standard statistical analysis will be performed (students t-test). In addition, we will attempt to isolate the pest (Erwinia amylovora) from each sample including the controls each day of the experiment by swabbing the infected area of the plant and plating to CCT plates that are semi-selective for Erwinia amylovora. Arising colonies will be verified as Erwinia amylovora isolates by amplifying regions of DNA specific to Erwinia amylovora via colony Polymerase Chain Reaction (PCR). Rating Scale:

1- No appearance of disease. 2- Leaves appear dry and shriveled but maintain normal coloring. 3- Leaves are dry, shriveled and are turning brown/black. 4- Leaves are dry, shriveled, are turning towards the stem and are brown/black 5- Leaves are dry, shriveled, are turning towards the stem and are brown/black, stem of plant is discolored 6- Leaves are dry, shriveled, are turning towards the stem and are brown/black, stem of plant is discolored and plant has ooze that exudes from cankers. 7- Plant is dead (entire plant is discolored and dry, all leaves and stem and brown/black).

Treatments #15-17: Data will be collected throughout spring/summer and times of disease appearance will be recorded to determine in Fire Quencher delays onset (suggesting multiple treatments may be necessary). For each tree, 50 blossoms will be infected with the Erwinia amylovora and each of the 50 scored for blight (color/withering) of the blossom (times 4 replicates) Old delicious trees are used since they are resistant to fire blight. The disease doesn’t travel very far into the wood before it stops.

7. Describe the pests to be controlled, the degree to which they are a problem in your state or region and the frequency that they occur (season long problem, every year, every few years).

The pest to be controlled is the gram-negative bacterium Erwinia amylovora, the causative agent of fire blight. Reported apple produce losses due to fire blight are in excess of $100 million annually in the United States alone (Norelli et al., 2003). The development of alternative treatment strategies for fire blight is imperative to protect the 5,710 acres of fruit bearing trees valued at 16.7 million in utilized production in Utah. There are no reported statistics for the frequency of fire blight in Utah, however when we called 18 local orchards along the Wasatch front all but one orchard was experiencing an infection of at least one tree in their orchard this year. Fire blight generally originates in the spring when the plant is blossoming. Insects carry it from plant to plant. It may also originate later in the season due to natural damage to the tree and/or pruning. It is a problem every year, however, the degree of the problem varies with weather conditions. Surveys of the fire blight pathogen in Utah County have demonstrated variable rates of antibiotic resistance from 10% to 90% (DG

5E

  13  

Aston, Utah State University). Washington State University reports a majority of Washington State Orchards infected with antibiotic resistant bacteria (as much as 70%)(Ngugi, 2011).

8. Will the crop be inoculated with the target pest or otherwise be brought into the test system to ensure that it will be available for evaluation? If not, describe the frequency of occurrence.  

Yes, in each treatment #1-17 the plants will be inoculated with Erwinia amylovora. For treatments #1-14 the plants will be inoculate by scoring the underside of a leaf and rubbing a 108 culture of Erwinia amylovora over the wound. For treatments #15-17 trees will be inoculated by applying directly to the 50 blossoms per tree.  

9. What is the proposed start date and completion date? Also describe this in chronological order in the context of the experimental plan.

In all, are goals are to: 1) further characterize the 41 Erwinia bacteriophages we have isolated through DNA sequencing and phage host specificity, 2) conduct small-scale efficacy tests in controlled greenhouses, 3) produce, characterize and compare liquid and solid Fire Quencher for large-scale distribution, and 4) test the efficacy of these solutions in conjunction with apple orchards. All tests of Fire Quencher efficacy will be performed with Fire Quencher alone or in combination with streptomycin sulfate, the current standard treatment for fire blight prevention. February - April 2014 Goal #1) Further characterize the 41 Erwinia bacteriophages. DNA sequencing and host range specificity of Erwinia phages will be completed. DNA sequencing results and analysis will verify our current data on whether the phages are lytic or temperate. Lytic phages simply infect their host and produce progeny through lysis and destruction of the host cell. These are desired for agricultural treatment. Temperate phages are able to infect a host and integrate their DNA into the host genome. They can lie ‘dormant’ until awakened by an environmental cue such as stress. Temperate phages are not desired. Temperate phages can be identified in the lab (see appendix) and verified by DNA sequencing because phage that are lytic should lack the DNA encoding for proteins necessary for integration into the host genome. DNA sequencing of entire phage genomes is relatively expensive so we have requested support for this analysis. Our research team has a combined total of 14 years of experience with phage isolation and characterization including DNA sequencing and analysis (see Appendix 3, Supplementary Preliminary Data). Host specificity tests are important for testing the safety of our phage. Host specificity tests have been performed for 13 of our 41 phage. These phage were tested for their ability to infect close relatives of Erwinia amylovora, the bacteria E. coli and Salmonella. None of the 13 phages were able to infect either of these hosts. We are in the process of testing the remaining 28 phages. In addition, we have tested for deleterious affects of Fire Quencher on healthy apple seedlings and have seen no negative affects.

Goal 3) Produce, characterize and compare liquid and solid Fire Quencher for large-scale distribution. Studies will be conducted on the stability of bacteriophage solutions for long-term use. Specifically, bacteriophage will be stored at room temperature and in the fridge in various solutions (nutrient broth versus a saline buffer) and analyzed each week for plaque

5E

  14  

forming units (viable bacteriophage). In addition, bacteriophages will be lyophilized using standard procedures (Paupermpoonsiri et al, 2010), and resuspended at one month intervals to determine phage viability. These tests will be initiated February and will continue through April. High quantities of bacteriophages are currently being produced successful to begin these tests on our target date. February 2014- December 2014 Goal 2) Conduct small-scale efficacy tests in controlled greenhouses. Treatments #1-14 will be performed to test efficacy of Fire Quencher Treatment of apple trees. Efficacy will be determined alone and in combination with streptomycin sulfate, the current standard treatment for fire blight prevention. Experiments #1-8 will be replicated, initiated in February and again in July to test reproducibility several months apart.

March 2014- August 2014 Goal 4) To test the efficacy of these solutions in conjunction with apple orchards. Treatments #15-17 will be performed. Efficacy will be determined alone and in combination with streptomycin sulfate, the current standard treatment for fire blight prevention.

 10. Describe the test facilities where these studies will be conducted.

Treatments #1-14 will all be performed at the Brigham Young University Life Science Greenhouses. This facility includes 12 wings, each 30 x 125 feet, including one quarantined facility that we will use. For a full description of this facility please visit: http://lsmagazine.byu.edu/Issues/Spring2012/LifeSciencesGreenhouses.aspx Treatments #15-17 will be performed once at two separate locations, Washington State University and Oregon State University. Each location is a one acre test orchard run by qualified fire blight investigators funded by the USDA. Letters of support and contact information for each of our collaborators is provided. Washington State University Oregon State University Tim Smith Kenneth B. Johnson WSU Integrate Pest Management Professor Dept. Botany and Plant Pathology Wenatchee WA 98801 Corvallis, OR 97330 97331-2902 [email protected] [email protected]

11. Budget: Provide an itemized budget, with categories such as labor, supplies, travel, etc.  Provided below (see Appendix 7).

12. Describe why this product is needed and why growers are likely to use this product. (Also list alternative conventional and alternative biopesticide treatments)

The need for an alternative form of fire blight control is imperative, as bacterial resistance to antibiotics and heavy metals has increased dramatically in recent years with 10- 90% of antibiotic treatments proving ineffective at preventing disease. Recent data have proven antibiotic and bacteriophage combination therapy effective in the treatment of a variety of diseases (Knezevic, P., 2013, Chhibber, S., 2012; Kirby, AE,2012; Zang, Q.G, 2012). In addition, for organic farmers, an alternative option is imperative because antibiotics will not

5E

  15  

longer be allowed beginning fall of 2014. Fire Quencher is a natural, bacteriophage-based biopesticide amplified from the environment. It is safe, biodegradable, easy to apply by conventional methods and proven to be extremely effective at destroying the causative agent of fire blight (Erwinia amylovora) in the lab. If we are able to show efficacy in orchards through this study, alone or in combination with antibiotics, the product will be widely received.

List  of  Appendix  (pages  16-­‐24  and  others  attached  separately):  

Appendix 1: PCR Forms. Embedded below  Appendix 2: Fire Quencher Label –Attached separately  Appendix 3: Supporting preliminary data – Embedded below  Appendix 4: Description of Principal Investigator and Co-PI’s is embedded below. Resumes are attached separately. Appendix 5- Not applicable Appendix 6- Submitted separately by registrant. Appendix 7- Budget Appendix 8- References. Embedded below  

5E

 

FOR OFFICE USE ONLY Date: Cat: PR#:

       

IR-4 Minor Use Biopesticide (*Required Fields) Project Clearance Request (PCR) Form

 1. *Requestor: Julianne H. Grose Affiliation: Brigham Young University

*Address 751 WIDB, 685 East University Parkway *City: Provo *State/Territory: UT *Zip: 84602 *Telephone: (801) 422-4940 FAX: (801) 422-0519 *E-mail address: [email protected]

 2. *Pest Control Product (Active Ingredient {a.i.}): Fire Quencher (Bacteriophages)

*Trade Name/Formulation: Fire Quencher / 5 Bacteriophages that infect Erwinia Registrant (manufacturer): Ben Miller and Eric Peery Method of Production (Fermentation, in vivo, extraction from plants): Amplification in Erwinia amylovora in nutrient broth (NB) followed by centrifugation, filtration (0.45 uM filter) and chloroform treatment to ensure no bacteria remain.

 3. *Commodity (one crop or crop group per form): Apple trees and produce

*Use Site (e.g., field, greenhouse, post-harvest): greenhouse and field/orchard Parts Consumed: 40 trees; produce from 60 Animal Feed By-Products: Yes No x Planting Season: Harvest Season: State/Territory Acreage: <.01 % National: <.01 Average Field Size: 1 acre

 4. Insect/Disease/Weed: Fire blight caused by the bacterium Erwinia amylovora

Damage caused by pest: destruction of fruit and tree  5. *Why is this use needed?: antibacterial/heavy metal resistance and pollution

 6. *Proposed Label Instructions

*Rate per Application (lbs a.i. per acre or 1000 linear ft): 100 gallons (108 pfu) per acre Type of sprayers that may be used (e.g., fixed wing, ground boom sprayer, chemigation, air blast, ULV, granular spreader): fixed wing, ground broom, chemigation, ULV, may all be used. Range of Spray Volume (if applicable): up to 1 galloon. Maximum Acreage Treated per Day: 1 acre

*Crop Stage during Application(s): early season (just prior to blossom or right at blossom) *Maximum no. of applications: 4 Minimum interval betw. applications: 2 days

Maximum lbs active ingredient per acre per year/season: (4 x108 pfu)*PHI:  7. *Availability of Supporting Data1: *Phytotoxicity(P) P _ *Efficacy(E) E *Yield(Y)

1Supporting data may be required before a residue study will be initiated.  

8. *Submitted By (print name): Julianne H. Grose *Signature: *Date: Dec. 7, 2013

Send this completed form to: IR-4 Project Headquarters, 500 College Road East; Suite 201 W; Princeton, NJ 08540-6635;

Telephone (732)932-9575 ext 4610 (Michael Braverman) FAX (609) 514-2612 or e-mail: [email protected]

5E

Appendix  2-­‐  Fire  Quencher  Label        

5E

DIRECTIONS  FOR  USE  It  is  a  viola4on  of  Federal  Law  to  use  this  product  in  a  manner  inconsistent  with  its  labeling.    Do  not  apply  this  product  in  a  way  that  will  contact  workers  or  other  persons,  either  directly  or  through  driG.    Only  protected  handlers  may  be  in  the  area  during  applica4on.    For  any  requirement  specific  to  your  State  and  Tribe,  consult  the  agency  responsible  for  pes4cide  regula4on.      USER  SAFETY  RECOMMENDATIONS  Wash  hands  before  ea4ng,  drinking,  chewing  gum,  using  tobacco,  or  using  the  toilet.      AGRICULTURAL  USE  REQUIREMENTS  Use  this  product  only  in  accordance  with  its  labeling  and  with  the  Worker  Protec4on  Standard,  40  CFR  part  170.    This  standard  contains  requirements  for  the  protec4on  of  agricultural  workers  on  farms,  forests,  nurseries,  and  green  houses,  and  handlers  of  agricultural  pes4cides.    It  contains  requirements  for  training,  decontamina4on,  no4fica4on  and  emergency  assistance.    It  also  contains  specific  instruc4ons  and  excep4ons  pertaining  to  the  statements  on  this  label  about  personal  protec4ve  equipment  (PPE),  no4fica4on  to  workers,  and  restricted-­‐entry  interval.    The  requirements  in  this  box  apply  to  uses  of  this  product  that  are  covered  by  the  Worker  Protec4on  Standard.      No  restricted  entry  interval  (REI)  –  0  hours  No  Pre-­‐Harvest  interval  (PHI)  –  0  hours  No  PPE  requirements.      For  preven4on  and  treatment  of  Fire  Blight  (Erwinia  amylovora)  in  apple  trees,  pear  trees,  cherry  trees,  rose  bushes  and  chrysanthemums.      Dilute  Fire  Quencher  at  a  rate  of  1  to  2  pints  per  100  gallons  of  water  to  cover  approximately  1  acre.    The  diluted  solu4on  should  be  applied  by  conven4onal  aerial  spray  equipment  prior  to  budding  and/or  flowering  and  every  other  day  for  the  next  six  days  (for  a  total  of  4  treatments)  depending  on  weather  condi4ons.    More  frequent  applica4on  may  be  necessary  during  periods  of  heavy  or  persistent  rains.      To  prepare  diluted  solu4on,  fill  the  mix  tank  with  the  desired  amount  of  water  and  add  Fire  Quencher  with  agita4on  to  mix  thoroughly.    The  volume  of  diluted  solu4on  necessary  for  adequate  coverage  will  depend  on  spray  equipment  weather,  and  local  condi4ons.    Apply  enough  solu4on  for  thorough  coverage  without  runoff.        

FIRST  AID  Call  a  poison  control  center  or  doctor  for  treatment  advice.      If  in  Eyes:    Hold  eye  open  and  rinse  slowly  and  gently  with  water  for  15-­‐20  minutes.    Remove  contact  lenses,  if  present,  aGer  the  first  5  minutes  ,  then  con4nue  rinsing  eye.      If  on  Skin  or  Clothing:    Take  off  contaminated  clothing.    Rinse  skin  immediately  with  plenty  of  water  for  15-­‐20  minutes.      Have  the  product  container  or  label  with  you  when  calling  a  poison  control  center  or  doctor,  or  going  for  treatment.      PRECAUTIONARY  STATEMENTS  ENVIRONMENTAL  HAZARDS  Do  not  apply  directly  to  water,  or  to  areas  where  surface  water  is  present  or  to  inter4dal  areas  below  the  mean  high  water  mark,    Do  not  contaminate  water  when  cleaning  equipment  or  disposing  of  equipment  washes.      STORAGE  AND  DISPOSAL  Do  not  contaminate  water,  food,  or  feed  by  storage  and  disposal.      Pes4cide  Storage:    Store  this  product  in  a  cool  dry  area,  away  from  direct  sunlight  and  heat  to  avoid  deteriora4on.      Pes4cide  Disposal:    Wastes  resul4ng  from  the  use  of  this  product  may  be  disposed  of  on  site  or  at  approved  waste  disposal  facility.      Container  Disposal:    Non-­‐refillable  container.    Do  not  reuse  or  refill  this  container.    Triple  rinse  empty  containers.    Then  offer  for  recycling  or  recondi4oning,  or  puncture  and  dispose  of  in  a  sanitary  landfill,  or  by  incinera4on,  or  if  allowed  by  state  and  local  authori4es,  by  burning.    If  burned,  stay  out  of  smoke.      WARRANTY  STATEMENT  XXXXXXX,  Inc.  warrants  that  this  material  conforms  to  the  descrip4on  on  the  label  and  is  reasonably  fit  for  the  purposes  referred  to  in  the  Direc4ons  for  Use.    XXXXXXX,  Inc.  makes  no  other  express  or  implied  warranty  or  fitness  or  merchantability,  or  any  other  express  or  implied  warranty.    In  no  case  or  circumstance  shall  XXXXXXX,  Inc.  or  seller  be  liable  for  consequen4al,  special,  or  indirect  damages  resul4ng  from  the  use  or  handling  of  this  product  including,  but  not  limited  to,  loss  of  profits,  business  reputa4ons,  or  customers;  labor  cost,  or  any  other  expenses  incurred  in  plan4ng,  cul4va4ng,  or  harves4ng.  

Fire Quencher !

Bactericide!for!Use!on!Apples!and!Pears!!

Biological!Control!for!Fire!Blight!!

Active!Ingredient! Bacteriophages*! 0.0002%!Other!Ingredients! ! 99.998%!Total! ! 100.000%!

!*For!(Erwinia'amylovora)!

!Contains!at!least!1012!phages!per!pint!!

!Keep!Out!Of!Reach!of!Children!

CAUTION!See!side!panels!for!precautionary!statements.!

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!EPA!Reg!No.!XXXXXNX! ! ! ! !EPA!Est.!No.!XXXXXXNUTN001!

!Manufactured!by:!

!!!!!!

Net!contents:!!!1!pint!!

5E

  17  

 APPENDIX 3 - Supporting preliminary data  

Phage Isolation Between Fall 2009-Spring 2013 the BYU Phage Hunters program has captured and isolated over 55 phages, sequenced 52 of the phages and published 20 of the sequences. Figure 1 is an example of a control plate with bacteria and a test plate of bacteria with exposure to a phage sample. Clear ‘plaques’ indicate an area where a phage has landed on the plate and devoured the bacteria. As the phage produce more progeny this clearing spreads radially through the plate.

Figure 1. Bacteria are grown on the surface of agar in a dish to generate a ‘lawn” of bacteria (A). when phage is added to the plate, clear plaques indicate where phage have infected and killed the bacteria (B).

Prior to this spring, only a single phage was isolated that infects Erwinia amylovora . As phage isolation conditions were optimized, the BYU Phage Hunters Program has isolated 40 more this spring, summer and fall bringing our library total to 41 phages that infect Erwinia amylovora. Electron micrographs of each of these phages have been taken, one DNA genome has been sequenced, and all 41 bacteriophages have been grown to a concentration of at least 1010.

Figure 2. Electron micrographs of two bacteriophages that infect Erwinia amylovora. (A) bacteriophage Hapsheptsut and (B) bacteriophage Phobos.

A B

5E

  18  

Phage Characterization

Lytic vs. Temperate Phage. There are two basic types of phage lifestyles, those of lytic phage and those of temperate phage. Lytic phages simply infect their host and produce progeny through lysis and destruction of the host cell. These are desired for agricultural treatment. Temperate phages are able to infect a host and integrate their DNA into the host genome. They can lie ‘dormant’ until awakened by an environmental cue such as stress. Temperate phages are not desired. Temperate phages can be identified in the lab through close inspection of the plaques produced by phage. Lytic phage produce a clear plaque of killing whereas temperate phage produce a turbid plaque since they can integrate into the host genome instead of lysing the host (Figure 3). Only one of the 41 bacteriophages that infect Erwinia amylovora appears to be a temperate phage. These results will be validated by whole genome DNA sequencing of all 41 bacteriophages. The bacteriophages that are temperate should contain DNA that codes for proteins necessary for the temperate lifestyle (proteins for integrating DNA into the host genome, etc.). Characterization of all 41 bacteriophages is desired so that we can use the more lytic and stabile in our fight against fire blight.

Figure 3. The plaque appearance is indicative of the phage’s ability to enter lysogeny. Lytic phage produce clear plaques (A) and lysogenic phage produce turbid plaques (B)

Bacteriophage Stability. Of the 41 bacteriophages, 12 we isolated by June of 2013. These 12 phages have been stored at a concentration of 1010 plaque forming units/mL (pfu/mL) for six months and have not lost titer. We will be conducting stability tests of all 41 phages in this study, but our initial results are encouraging.

DNA isolation. Of the 41 bacteriophages, we have successfully isolated DNA for 28. This DNA is of sufficient quantity and purity to ensure high quality whole genome sequencing as assessed by DNA gel electrophoresis (Figure 4).

5E

  19  

Figure 4. Purified whole genome DNA isolated from six bacteriophages that infect Erwinia amylovora. The DNA appears as a solid, bright, single band of appropriate size (lane 1 is a DNA size standard ladder, lanes 2-7 is genomic DNA isolated from six different bacteriophages).

Phage Safety Studies

Bacteriophage Specificity Tests. In order to ensure the safety of our bacteriophages, we have tested their ability to infect closely related bacteria, E. coli and Salmonella. No bacteriophage has ever been isolated that infects bacteria that are very distantly related, for example, no bacteriophage can infect gram-negative and gram-positive bacteria, however some have a broader host range than others. We desire bacteriophages that have a fairly narrow host specificity, broad enough to infect different Erwinia amylovora hosts but narrow enough to be unable to infect closely-related bacteria of a different genus such as E. coli and Salmonella. To perform these studies we have collected over 30 strains of Erwinia amylovora from Utah and obtained a strain from Canada. In addition, our collaborators Tim Smith and Ken Johnson are sending us strains from Washington and Oregon to expand our library. A variety of E. coli and Salmonella strains were obtained form Professor John Roth (UC Davis). We conducted host specificity test for 13 of the 41 phages using a three Erwinia amylovora strains, and two E. coli and two Salmonella strains. All 13 of our phages were unable to infect E. coli and Salmonella. Thus our bacteriophage have a high specificity for Erwinia amylovora and should not harm any other organism whether it be bacteria, plant or animal.

Fire Quencher Safety Tests. We have tested Fire Quencher for safety by spraying 100 mL at a concentration of 1010 onto ten apple seedlings. Apple seedlings appeared unaffected and remained healthy after treatment for the duration of the study (10 days) post treatment.

Figure 5. Healthy apple seedlings treated with Fire Quencher appear identical to healthy untreated apple seedlings for the duration of the study. Pictures were taken at day five. Treated (left tray), untreated (right tray).

5E

  20  

Production of Fire Quencher

Fire Quencher was produced by combining five of our most potent and lytic phage at equal concentrations to a final concentration of 1012 in spent nutrient broth (Difco). Because these phages were isolated and amplified from the environment by culturing in Erwinia amylovora, special precautions are taken to ensure the final product does not contain the pest, Erwinia amylovora. Specifically, cultures are centrifuged at high speed (10,000 x g) for 20 minutes, the supernate is treated with chloroform to eliminate any remaining bacteria, and the sample is then filtered through a 0.45 uM filter as a third precaution. Lysates are then streaked to NB to confirm the absence of bacterial growth.

Preparing for Trials in Apple Seedlings

We have tested our ability to infect apple seedlings with Erwinia amylovora. Thus far we have infected 12 apple seedlings with the bacterium by scoring the underside of a leaf at the vein and rubbing an overnight culture of Erwinia amylovora into the wound. All (100%) of the 12 infected apple seedlings were dead within five days. This novel method for testing fire blight treatments allows for testing large numbers in controlled/quarantined green houses without the lose of valuable trees.

Conclusions of Preliminary Data

Our preliminary data includes the isolation and partial characterization of 41 bacteriophages that infect Erwinia amylovora, the causative agent of fire blight. Our characterization of these bacteriophages indicates that they are highly lytic, reaching concentrations of 1012 pfu easily and forming clear plaques. In addition, we have performed tests on the safety of 13 of these phages by determining if they infect closely related bacteria, which they do not. They also do not affect the health of apple seedlings after four treatments at high concentration. Five of these phages were used to produce our product “Fire Quencher”, a mixture of Furthermore, we have demonstrated the ability to infect apple seedlings with Erwinia amylovora. These infections resulted in 100% of the plants showing a level seven infection (the highest rating on our scale). Together, our preliminary data suggests that we have produced a highly potent, safe, natural biopesticide that is ready for early stage testing on apple trees.

 

 

 

 

5E

  21  

 

 

APPENDIX 4 -Attach resume for Principal Investigator and Co-PI’s.

Principal Investigator: Julianne H. Grose Assistant Professor of Microbiology and Molecular Biology 751 WIDB Brigham Young University Provo, Utah 84602 Co-PI’s: Sandra H. Burnett, Ph. D., and Donald P. Breakwell, Ph. D.  Dr.  Julianne  Grose  obtained  her  Ph.D.  in  2003  under  the  direction  of  Dr.  John  Roth,  a  respected  Salmonella  geneticist  who  studies  many  aspects  of  Salmonella  and  bacteriophages  that  infect  it.    Erwinia  is  a  close  relative  to  Salmonella  making  many  of  the  experimental  approaches  and  scientific  designs  similar.    Dr.  Sandra  Burnett  and  Don  Breakwell  have  been  conducting  research  on  bacteriophage  since  2009  when  they  joined  the  national  research  project  established  by  the  Howard  Hughes  Medical  Institute  (HHMI).    In  2010  Dr.  Julianne  Grose  became  actively  involved  with  this  research  team  and  initiated  the  project  to  isolate  bacteriophages  that  infect  Erwinia  amylovora  in  2012.      Dr.  Grose  has  a  USDA  permit  (PPQ  526)  for  the  transportation  of  and  use  of  Erwinia  amylovora  (Application  number  P526-­‐120612-­‐015).    None  of  the  PI’s  have  experience  with  EPA  approval  or  bringing  a  product  to  market.    Thus,  we  have  joined  with  experienced  researchers  Tim  Smith  (Washing  State  University)  and  Ken  Johnson  (Oregon  State  University)  to  obtain  the  necessary  efficacy  data.    Letters  of  support  from  these  collaborators  are  attached.    In  addition,  we  are  working  with  Ben  Miller  and  Eric  Peery,  MBA’s  with  experience  in  entrepreneurship.    No  funding  is  currently  available  for  these  studies.    IR4  support  would  help  to  bridge  this  gap  between  these  PI’s  and  persons  experienced  with  efficacy  testing  as  well  as  bringing  products  to  market.  

5E

Appendix  4  Continued:    Principal  Investigator  and  Co-­‐PI  Resumes.      

5E

Julianne H. Grose Curriculum vitae

Julianne H. Grose, Ph.D.

Brigham Young University Email: [email protected] Microbiology and Molecular Biology Webpage: http://groselab.byu.edu 751 WIDB Office Phone: (801) 422-4940 Provo, UT 84602 Fax: (801) 422-0519 I am a tenure track professor in the Department of Microbiology and Molecular Biology. My university position consists of 45% effort for teaching, 45% effort for mentoring/research and 10% effort for citizenship. I teach approximately 12 credit hours of undergraduate courses per year and currently mentor 7 graduate students and 18 undergraduates in my lab. My teaching is dedicated to bringing novel research experiences into the classroom through our phage hunters program. My long term goal is to mentor students while contributing novel scientific findings to our field of study, the isolation and characterization of bacteriophages that infect the causative agent of fire blight, Erwinia amylovora. EDUCATION AND TRAINING Education 2003 Ph.D. Biology, University of Utah 1996 B.S. Chemistry, University of Utah Research Positions 2008 – Present Assistant Professor, Brigham Young University, Department of Microbiology and Molecular Biology. Includes research on Erwinia amylovora bacteria

and bacteriophages as part of the BYU Phage Hunters program. 2006 – 2008 Postdoctoral Research Associate for Bioenergenics, Department of Biochemistry, University of Utah. Development of compounds that inhibit PAS kinase. 2004 – 2008 Postdoctoral Scholar, Lab of Dr. Jared Rutter, Department of Biochemistry,

University of Utah. Molecular characterization of the regulation and function of yeast PAS kinase.

1996-2003 Ph.D. Student ,Lab of Dr. John Roth, Department of Biochemistry, University of Utah. Regulation of NAD(P) metabolism in Salmonella typhimurium.

1994-1995 Undergraduate Research Assistant, Lab or Dr. Marion Woods, MD, Department of Infectious Disease, University of Utah School of Medicine 1992-1993 ACCESS Program for Women in Mathematics and Science, instruction and laboratory work in Mathematics and Science, University of Utah PROFESSIONAL ACTIVITIES AND AWARDS: Member of the American Society for Microbiology Member of the Genetics Society of America ASM Early-career Travel Award (2009) Reviewer for Pilot Research Projects Southwest Environmental Health Sciences Center (2012) Ad Hoc Reviewer for the following journals: Acta Biochimica et Biophysica Sinica, Trends in Microbiology, FEMS Microbiology Letters EXTRAMURAL RESEARCH SUPPORT Principal Investigator: Julianne H. Grose National Institutes of Health R15 . Grant number R15 GM100376-01. Amount: $346,949 End date: 5/31/2015 Subaward Principal Investigator: Julianne H. Grose (I. Benjamin PI) National Institutes of Health Subaward. Grant number R10011765-01. Amount: $30,000 End date: 9/31/2013

5E

Julianne H. Grose Curriculum vitae

RELEVANT RESEARCH GRANTS A Phage-Based Treatment for Fire Blight and American Foulbrood Principal Investigator: Julianne H. Grose, Sandra H. Burnett, Donald P. Breakwell BYU Technology Transfer Bridging Fund Amount: $15,000 End date: 12/13/2012 RELEVANT PUBLICATIONS 1. Jordan D. Jensen, Bryan D. Merrill, Sandra H. Burnett, Julianne H. Grose, and Donald P. Breakwell# The Genomes of Three Novel Bacillus cereus Bacteriophages. Genome Announcements in December 2013. 3. Donald P. Breakwell, E. Zane Barrus, Alex B. Benedict, Alicia K. Brighton, Joshua N. B. Fisher, Adam V. Gardner, Brittany J. Kartchner, Kara C. Ladle, Bryce L. Lunt, Bryan D. Merrill, John D. Morrell, Sandra H. Burnett, and Julianne H. Grose. (2013) Genome Sequences of Five Cluster B1 Mycobacteriophages. Genome Announcements 1(6). 4. Michael A. Sheflo, Adam V. Gardner, Bryan D. Merrill, Joshua N. B. Fisher, Bryce L. Lunt, Donald P. Breakwell, Julianne H. Grose, Sandra H. Burnett. (2013) Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages. Genome Announcements 1(6). 5. Smith, KC, Castro- Nallor, E, Breakwell, DP, Grose, JH.,Burnett, S. (2013) Phage Cluster Relationships Identified Through Single Gene Analysis. BMC Genomics 19;14:410 6. Hatfull, G. et al., (2012) Complete genome sequences of 138 mycobacteriophages. Journal of Virology 86(4): 2382-2384. 7. Grose, JH. (2010), Ch. 15, The Lure of Bacterial Genetics: a Tribute to John Roth. Eds. Maloy, S., Hughes, K.T., and Casadesus, J, ASM Press, Washington, DC, 9-22. *In addition, I am a coauthor on over 20 fully sequenced and annotated whole bacteriophage genomes published in GenBank RELATED RESEARCH PRESENTATIONS NATIONAL/INTERNATIONAL MEETINGS 1. Grose, JH. Isolation and Characterization of Bacteriophages that Infect Erwinia amylovora. (2013) Podium presentation. Analytical Genetic Meeting. 2. Brown, A, Christopher, A, Harrison, C, Kiser, K, Lasko, D, Li, X, Mrrill, B, Peck, K, Perry, LJ, Sabin, N, Schellhous M, Smith, K, Koooyman, D, Price, P, Grose, JH. Phage Pharming. (2013) Podium and Poster presentations iGEM Worldchampionship Jamboree, MIT. 3. Brown, A, Christopher, A, Harrison, C, Kiser, K, Lasko, D, Li, X, Mrrill, B, Peck, K, Perry, LJ, Sabin, N, Schellhous M, Smith, K, Koooyman, D, Grose, JH. Phage Pharming. (2013) Podium and Poster presentations iGEM Regional Jamboree, Toronto, Canada. 4. Gardner,AV, Adawi, EC, Christiansen, MR, Ferguson, NC, Irons, DL, Jensen, J, Kennedy, A, Lloyd, JS, Marlow, S, Mason, S, McCord, TM, Merrill, BD, Nelson, EP, Norton, CS, Pettersson, SM, Poe, DE, , RC, Smith, TC, Sullivan, S, Williams, KR, Morrell, JD, Brighton, AK, Fisher, JNB, Sheflo, MA, Breakwell, DP, Burnett, SH, Grose, JH (2012) Proposal for A1 Subcluster Division and Evidence of Evolutionary Events in B1 and B4 Subcluster Phage. Howard Hughes Medical Institute Fourth Annual Phage Symposium, Ashburn, VA. 5. Brighton, AK, Joshua N. B. Fisher, JNB, Lunt, BL, Taylor, MA, Smith, KC, Baker, B, Barrus, EZ, Chapman, KM, Drake, EA, Jackson, KR, Kartchner, BJ, Kiser, CD, Kiser, JT, Kitchen, JCB, McDaniel, SW, Ormsby, WR, Parker, M, Sheide, MG, Steck, RP, Vance, KS, Breakwell, DP, Burnett, SH, and Grose, JH. (2011) Additional Evidence for Frameshifts in A2 and Gene Mosaicism in F Mycobacteriophage. Howard Hughes Medical Institute Third Annual Phage Symposium, Ashburn, VA. 6. Grose, JH, Breakwell, DP, and Burnett, SH. (2011) Out of the SEA: Getting Students to Crawl on Land. Howard Hughes Medical Institute Third Annual Phage Symposium, Ashburn, VA.

REGIONAL/LOCAL MEETINGS 1. Ferguson, NC, Irons, DL, Marlow, SC, McCord, TM, Brighton, AK, Fisher, JNB, Sheflo, MA, Breakwell, DP, Grose, JH, Burnett, SH (2012) Division of the Mycobacteriophage A1 Subcluster Based on Phylogenetic Comparison. ASM Intermountain Branch Meeting, Idaho State University. 2. Mason, SJ, Gardner, AV, Nelson, EP, Christiansen, MR, Brighton, AK. Fisher, JNB, Sheflo, MA, Breakwell, DP, Grose, JH, Burnett, SH (2012) Mislabeling of the Second Tape Measure Protein. ASM Intermountain Branch Meeting, Idaho State University.

5E

Julianne H. Grose Curriculum vitae 3. Jensen, JD, Merrill, BD, Russell, RC, Smith, TC, Brighton, AK, Fisher, JNB, Sheflo, MA, Breakwell, DP, Burnett, SH, Grose, JH. (2012) Phylogenetic Origin of Glutaredoxin Gene Shared by Mycobacteriophage A1 Sub-cluster, Distantly Related Bacteria, and other bacteriophages. ASM Intermountain Branch Meeting, Idaho State University. 4. Joshua S. Lloyd, Christian S. Norton, Shea Sullivan, Shanette M. Pettersson, Brighton, AK, Fisher, JNB, Sheflo, MA, Breakwell, DP, Erickson, D, Burnett, SH, Grose, JH. (2012) Lack of Correlation between Phage Clusters and Ecoregions in the United States. ASM Intermountain Branch Meeting, Idaho State University. 5. Williams, KR, Adawi, EC, Kennedy, AK, Poe, DE, Brighton, AK, Fisher, JNB, Sheflo, MA, Breakwell, DP, Burnett, SH, Grose, JH. (2012) Divergent evolution of a RuvC holliday junction resolvase in the B1 subcluster. ASM Intermountain Branch Meeting, Idaho State University. 6. Gardner, AV, Brighton, AK, Fisher, JNB, Sheflo, MA, Breakwell, DP, Grose, JH, Burnett, SH. (2012) Environmental Effect on Phage Genomes: Analysis of the B4 Subcluster. ASM Intermountain Branch Meeting, Idaho State University. 7. Brighton, AK, Kaitlyn, SV, Parker, M, Jackson, KL, Steck, RP, Ormsby, WR, Taylor, MA, Fisher, J, and Lunt, B, Burnett, S.H., Grose, JH. and Breakwell, DP. (2011) Gene Mosaicism Demonstrated in Mycobacteriophage Shauna1. ASM Intermountain Branch Meeting, Weber State University. 8. Barrus, EZ, Sheide, MG, Taylor, MA, Fisher, J, and Lunt, B, Burnett, SH, Grose, JH. and Breakwell, DP. (2011) Shauna1 Mycobacteriaphage holin gene confirms common ancestry of all F cluster phage. ASM Intermountain Branch Meeting, Weber State University. 9. Kartchner, BJ, Kiser, JT, Kiser, CD, McDaniel, SW, Taylor, MA, Fisher, J, Lunt, B, Burnett, SH, Grose, JH, and Breakwell, DP. (2011) Clustering of Mycobacteriophage in the Utah Landscape. ASM Intermountain Branch Meeting, Weber State University. 10. Smith, KC, Burnett, SH, Grose, JH, and Breakwell, DP. (2011) Degenerate PCR Primers to Identify Mycobacteriophage Clusters and Sub-Clusters. ASM Intermountain Branch Meeting, Weber State University. 11. Chapman, KM, Baker, B, Drake, EA, Kitchen, JCB, Taylor, MA, Fisher, J, and Lunt, B, Burnett, SH, Grose, JH, and Breakwell, DP. (2011) TA17A: A Unique Member of the Mycobacteriophage Sub-Cluster A2. ASM Intermountain Branch Meeting, Weber State University. 12. Kitchen, JCB, Brighton, AK, Chapman, KM, Baker, B, Taylor, MA, Fisher, J, and Lunt, B, Burnett, SH, Grose, JH, and Breakwell, DP. (2011) Morphological Traits of Mycobacteriophage Clusters and Sub-Clusters. ASM Intermountain Branch Meeting, Weber State University.

5E

Donald  Philip  Breakwell,  Ph.D.  

Professor  Department  of  Microbiology  and  Molecular  Biology  Brigham  Young  University  799  WIDB  Provo,  UT  84602  Telephone  (801)  378-­‐2378  Email  [email protected]    Education  Doctor  of  Philosophy,  August  1992,  Purdue  University  Master  of  Science,  August  1988,  Purdue  University  Bachelor  of  Science,  August  1986,  Brigham  Young  University    Honors  and  Awards  College  of  Life  Sciences  Teaching  Excellence  Award,  2008,  Brigham  Young  University  Alcuin  Fellowship  in  General  Education,  2003-­‐2006,  Brigham  Young  University    Professional  Service  American  Society  for  Microbiology  2009-­‐2012,  Editorial  Board,  Journal  of  Microbiology  and  Biology  Education.  American  Society  for  Microbiology  2008-­‐2009,  Chair  of  Steering  Committee,  American  Society  for  Microbiology  Conference  for  Undergraduate  Educators.  American  Society  for  Microbiology  2008-­‐2010,  Member,  Committee  on  Undergraduate  Education  American  Society  for  Microbiology  Co-­‐Chair,  13th  Annual  American  Society  for  Microbiology  Conference  for  Undergraduate  Educators.  Orlando,  FL.  May  19-­‐21,  2006.  American  Society  for  Microbiology  Session  Chair,  2010,  Intermountain  Branch  Meeting,  Provo,  UT.    Publications  (since  2011)  1. D.  P.  Breakwell,  E.  Z.  Barrus  ,  A.  B.  Benedict  ,  A.  K.  Brighton  ,  J.  N.B.  Fisher  ,  A.  V.  Gardner  ,  B.  J.  Kartchner  ,  

K.  C.  Ladle  ,  B.  Lunt  ,  B.  D.  Merrill  ,  J.  D  Morrell  ,  S.  H  Burnett  ,  J.  H.  Grose.    Genome  Sequences  of  Five  B1  Subcluster  Mycobacteriophages.    2013.    Genome  Announcements.    Genome  Announc.  November/December  2013  1:e00968-­‐13;doi:10.1128/genomeA.00968-­‐13  

2. M.  A.  Sheflo,  A.  V.  Gardner,  B.  D.  Merrill,  J.  N.  B.  Fisher,  B.  L.  Lunt,  D.  P.  Breakwell,  J  H.  Grose,  and  S.  H.  Burnett.    2013.    Complete  Genome  Sequences  of  Five  Paenibacillus  larvae  Bacteriophages.    Genome  Announc.  November/December  2013  1:e00668-­‐13;  

3. K.  C  Smith,  E.  Castro-­‐Nallar,  J.  N.  B  Fisher,  D.  P.  Breakwell,  J.  H.  Grose,  S.  H  Burnett.    2013.    Phage  Cluster  Relationships  Determined  by  Single  Gene  Analysis.    BMC  Genomics  2013,  14:410  (19  June  2013)  

4. P.S.  Shen,  M.  J.  Domek,  E.  Sanz-­‐García,  A.  Makaju,  R.  M.  Taylor,  R.  Hoggan,M.  D.  Culumber,  C.  J.  Oberg,  D.  P.  Breakwell,  J.  T.  Prince,  and  D.  M.  Belnap.    2012.  Sequence  and  Structural  Characterization  of  Great  Salt  Lake  Bacteriophage  CW02,  a  Member  of  the  T7-­‐Like  Supergroup.    J.  Virol.    86:15  7907-­‐7917  

5. Graham  F.  Hatfull,  the  Science  Education  Alliance  Phage  Hunters  Advancing  Genomics  and  Evolutionary  Science  Program,  the  KwaZulu-­‐Natal  Research  Institute  for  Tuberculosis  and  HIV  Mycobacterial  Genetics  Course  Students  and  the  Phage  Hunters  Integrating  Research  and  Education  Program.  2012.  Complete  Genome  Sequences  of  138  Mycobacteriophages.  J.  Virol.  86:2382-­‐2384  

6. Jordon  K.  March,  Kyle  C.  Jensen,  Nathan  T.  Porter,  and  Donald  P.  Breakwell.  2011.  Authentic  Active  Learning  Activities  Demonstrating  the  Use  of  Serial  Dilutions  and  Plate  Counts.  Journal  of  Microbiology  and  Biology  Education  12:  152-­‐156.  

 Presentations  (since  2010)  1. Jensen,  JD,  (2013), J.N.B. Fisher, J.H. Grose, S.H. Burnett, and D.P. Breakwell. Isolation and

Characterization of Three Novel Bacteriophages of Bacillus cereus. American Society for Microbiology General Meeting, Denver, CO.

5E

2. Ferguson,  NC,  Irons,  DL,  Marlow,  SC,  McCord,  TM,  Brighton,  AK,  Fisher,  JNB,  Sheflo,  MA,  Breakwell,  DP,  Grose,   JH,  Burnett,   SH   (2012)  Division  of   the  Mycobacteriophage  A1  Subcluster  Based  on  Phylogenetic  Comparison.  ASM  Intermountain  Branch  Meeting,  Idaho  State  University.  

3. Mason,  SJ,  Gardner,  AV,  Nelson,  EP,  Christiansen,  MR,  Brighton,  AK.  Fisher,   JNB,  Sheflo,  MA,  Breakwell,  DP,  Grose,   JH,  Burnett,  SH  (2012)  Mislabeling  of   the  Second  Tape  Measure  Protein.  ASM  Intermountain  Branch  Meeting,  Idaho  State  University.  

4. Jensen,   JD,   Merrill,   BD,   Russell,   RC,   Smith,   TC,   Brighton,   AK,   Fisher,   JNB,   Sheflo,   MA,   Breakwell,   DP,  Burnett,  SH,  Grose,  JH.  (2012)  Phylogenetic  Origin  of  Glutaredoxin  Gene  Shared  by  Mycobacteriophage  A1  Sub-­‐cluster,  Distantly  Related  Bacteria,   and  other   bacteriophages.  ASM   Intermountain  Branch  Meeting,  Idaho  State  University.  

5. Joshua   S.   Lloyd,   Christian   S.   Norton,   Shea   Sullivan,   Shanette   M.   Pettersson,   Brighton,   AK,   Fisher,   JNB,  Sheflo,  MA,  Breakwell,  DP,  Erickson,  D,  Burnett,  SH,  Grose,  JH.  (2012)  Lack  of  Correlation  between  Phage  Clusters  and  Ecoregions  in  the  United  States.  ASM  Intermountain  Branch  Meeting,  Idaho  State  University.  

6. Williams,   KR,   Adawi,   EC,   Kennedy,   AK,   Poe,   DE,   Brighton,   AK,   Fisher,   JNB,   Sheflo,  MA,  Breakwell,   DP,  Burnett,   SH,   Grose,   JH.     (2012)   Divergent   evolution   of   a   RuvC   holliday   junction   resolvase   in   the   B1  subcluster.    ASM  Intermountain  Branch  Meeting,  Idaho  State  University.  

7. Gardner,   AV,   Brighton,   AK,   Fisher,   JNB,   Sheflo,   MA,   Breakwell,   DP,   Grose,   JH,   Burnett,   SH.   (2012)  Environmental   Effect   on   Phage   Genomes:     Analysis   of   the   B4   Subcluster.   ASM   Intermountain   Branch  Meeting,  Idaho  State  University.  

8. JH  Grose,  DP  Breakwell,  SH  Burnett.  2011.  Out  of  the  SEA:  Getting  Students  to  Crawl  on  Land.  Howard  Hughes  Medical  Institute  NGRI  Third  Annual  Symposium,  Ashburn,  VA.  

9. Brighton, AK, Fisher, JNB, Lunt, BL, Taylor, MA, Smith, KC, Baker, B, Barrus, EZ, Chapman, KM, Drake, EA, Jackson, KR, Kartchner, BJ, Kiser, CD, Kiser, JT, Kitchen, JCB, McDaniel, SW, Ormsby, WR, Parker, M, Sheide, MG, Steck, RP, Vance, KS, Breakwell, DP, Burnett, SH, and Grose, JH. (2011) Additional Evidence for Frameshifts in A2 and Gene Mosaicism in F Mycobacteriophage. Howard Hughes Medical Institute Third Annual Phage Symposium, Ashburn, VA.  

10. Kartchner  BK  ,  JT  Kiser,  CD  Kiser  et  al.  2011.  Clustering  of  Mycobacteriophage  in  the  Utah  Landscape.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Ogden,  UT.  

11. KC  Smith,  SH  Burnett,  JH  Grose,  DP  Breakwell.  2011.  Degenerate  PCR  Primers  to  Identify  Mycobacteriophage  Clusters  and  Sub-­‐Clusters.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Ogden,  UT.  

12. AK  Brighton,  KS  Vance,  KR  Jackson  et  al.  2011.  Gene  Mosaicism  Demonstrated  in  Mycobacteriophage  Shauna1.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Ogden,  UT.  

13. JCB  Kitchen,  AK  Brighton,  KM  Chapman,  et  al.  2011.  Morphological  Traits  of  Mycobacteriophage  Clusters  and  Sub-­‐Clusters.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Ogden,  UT.  

14. EZ  Barrus,  MG  Sheide,  MA  Taylor,  et  al.  2011.  Shauna1  Mycobacteriaphage  holin  gene  confirms  common  ancestry  of  all  F  cluster  phage.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Ogden,  UT.  

15. KM  Chapman,  B  Baker,  EA  Drake,  et  al.  2011.  TA17A:  A  Unique  Member  of  the  Mycobacteriophage  Sub-­‐Cluster  A2.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Ogden,  UT.  

16. DP  Breakwell  and  SH  Burnett.  (2010)  Data  Overload:  Letting  Freshmen  Students  “Have  At”  Mycobacteriophage  Lab  Work  and  Comparative  Genomics.  Howard  Hughes  Medical  Institute  NGRI  Second  Annual  Symposium,  Ashburn,  VA.  

17. CJ  Sargent,  DE  Payne,  II,  BL  Lunt,  LB  Argueta,  PB,  AB  Benedict,  LA  Bull,  ME  Daetwyler,  BJ  Earley,  JM  Engle,  JNB  Fisher,  I  Giri,  E  Greenhalgh,  AW  Hansen,  KJ  Haskell,  TF  Issac,  KL,  ZS  Liechty,  SK  Petersen,  DS  Sabin,  MC  Severson,  KC  Smith,  MAR  Taylor,  TJ  Woodward,  BA  Wright,  SH  Burnett,  DP  Breakwell.  (2010)  Genomic  Analysis  of  the  Newly-­‐  Isolated  Subcluster  B1  Mycobacteriophage  KLucky39  Reveals  a  Novel  Putative  Peptidase  and  a  Primase,  the  Lack  of  Five  Anticipated  Genes,  and  the  Relationship  of  KLucky39  to  Other  Phage.  Howard  Hughes  Medical  Institute  NGRI  Second  Annual  Symposium,  Ashburn,  VA.  

18. Grose,  J.  and  D.P.  Breakwell.  2010.  Using  Bakers  Yeast  to  Teach  Life  Cycles  of  Eukaryotic  Microbes.  American  Society  for  Microbiology  Conference  for  Undergraduate  Educators,  San  Diego,  CA.  

19. KC  Smith,  ME  Daetwyler,  ZS  Liechty,  MC  Severson,  B  Wright,  BL  Lunt,  DE  Payne  II,  DP  Breakwell,  and  SH  Burnett  (2010)  Tape  Measure  Protein  in  Mycobacteriophage  KLucky39  Shows  Evolution  of  Phage  Clusters.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Provo,  UT.  

20. L  Argueta,  S  Petersen,  D  Sabin,  C  Sargent,  MA  Taylor,  BL  Lunt,  DE  Payne  II,  DP  Breakwell,  and  SH  Burnett  

5E

(2010)  Addition  of  Novel  Mycobacteriophage  to  Pre-­‐existing  Subclusters  of  the  B  Cluster.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Provo,  UT.  

21. A  Hansen,  K  Ladle,  A  Benedict,  BL  Lunt,  DE  Payne  II,  SH  Burnett,  and  DP  Breakwell  (2010)  Mycobacteriophage  Exhibit  Discrepancies  in  the  Distance  of  Shine-­‐Dalgarno  Sequences  from  the  Start  Codon.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Provo,  UT.  

22. J  Fisher,  I  Giri,  T  Issac,  S  Burnett,  D  Breakwell  (2010)  The  Mycobacteriophage  KLucky39  Genome  Lacks  Five  Genes  Commonly  Found  in  Other  Mycobacteriophage  Subcluster  B1  Genomes.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Provo,  UT.  

23. J  Engle,  T  Woodward,  E  Greenhalgh,  K  Haskell,  BL  Lunt,  DE  Payne  II,  DP  Breakwell  and  SH  Burnett  (2010)  The  Genome  of  Mycobacteriophage  KLucky39  Reveals  a  Putative  M23  Peptidase  Gene.  American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Provo,  UT.  

24. K  Haskell,  B  Earley,  P  Bajgain,  D  Breakwell,  and  S  Burnett  (2010)  Comparison  of  KLucky39  Mycobacteriophage  With  Bacterium  E.  Coli.  Microbiology  and  Molecular  Biology  Brigham  Young  University.    American  Society  for  Microbiology  Intermountain  Branch  Meeting,  Provo,  UT.  

 GENBANK  PUBLICATIONS    The  following  are  GenBank  publications  of  complete  phage  genomes.    All  genomes  include  full  genomes  (not  genome  fragments)  with  complete  annotation  of  all  genes  and  identification  of  any  present  tRNAs.    Genomes  were  peer  reviewed  by  GenBank  prior  to  acceptance  and  publication.    

Year   Phage   Accession  #   Authors  

2013  Alex  

(Mycobacterio-­‐phage)  

JX649100   Benedict,A.B.,  Fisher,J.N.B.,  Gardner,A.V.,  Lunt,B.L.,  Payne,D.E.,  Burnett,S.H.,  Breakwell,D.P.  and  Grose,J.H.  

2013  Gyarad  

(Mycobacterio-­‐phage)  

JX649099   Ladle,K.C.,  Fisher,J.N.B.,  Gardner,A.V.,  Lunt,B.L.,  Breakwell,D.P.,  Grose,J.H.  and  Burnett,S.H.  

2013  Nacho  

(Mycobacterio-­‐phage)  

JX649098   Kartchner,B.J.,  Fisher,J.N.B.,  Gardner,A.V.,  Lunt,B.L.,  Grose,J.H.,  Burnett,S.H.  and  Breakwell,D.P.  

2013  Piglet  

(Mycobacterio-­‐phage)  

JX649097  Barrus,E.Z.,  Adawi,E.C.,  Kennedy,A.K.,  Poe,D.E.,  Williams,K.R.,  Fisher,J.N.B.,  Gardner,A.V.,  Merrill,B.D.,  Grose,J.H.,  Burnett,S.H.  and  Breakwell,D.P.  

2013    

Serpentine  (Mycobacterio-­‐

phage)  JX649096   Brighton,A.K.,  Fisher,J.N.B.,  Gardner,A.V.,  Lunt,B.L.,  Breakwell,D.P.,  

Burnett,S.H.  and  Grose,J.H.  

2013  TA17A  

(Mycobacterio-­‐phage)  

 

Lunt,B.L.,   Payne,D.E.,   Fisher,J.N.B.,   Smith,K.C.B.,   Taylor,M.R.,   Baker,B.,  Barrus,E.Z.,   Brighton,A.K.,   Chapman,K.M.,   Drake,E.A.,   Jackson,K.R.,  Kartchner,B.J.,   Kiser,C.D.,   Kiser,J.T.,   Kitchen,J.C.B.,McDaniel,S.W.,  Ormsby,W.R.,   Parker,M.,   Sheide,M.G.,   Steck,R.P.,   Vance,K.S.,  Breakwell,D.P.,  Burnett,S.H.  and  Grose,J.H.  

2013   Basilisk  (B.  cereus  phage)   KC595511.1  

Jensen,J.D.,   Fisher,J.N.B.,   Gardner,A.V.,   Irons,D.L.,   Lloyd,J.,  Pettersson,S.M.,   Smith,C.,   Sullivan,S.,   Brighton,A.K.,   Sheflo,M.A.,  Burnett,S.H.,  Breakwell,D.P.  and  Grose,J.H  

2013   JL  (B.  cereus  phage)   KC595512.1  

Lloyd,J.,   Fisher,J.N.B.,   Gardner,A.V.,   Hallam,S.J.,   Jensen,J.D.,  Pettersson,S.M.,   Smith,C.,   Sullivan,S.,   Brighton,A.K.,   Sheflo,M.A.,  Burnett,S.H.,  Breakwell,D.P.  and  Grose,J.H.  

2013   Shanette  (B.  cereus  phage)   KC595513  

Pettersson,S.M.,   Fisher,J.N.B.,   Gardner,A.V.,   Hallam,S.J.,   Jensen,J.D.,  Lloyd,J.,   Smith,C.,   Sullivan,S.,   Brighton,A.K.,   Sheflo,M.A.,   Burnett,S.H.,  Breakwell,D.P.  and  Grose,J.H.  

2013   Jimmer1  (P.  larvae  phage)   KC595515   Merrill,B.D.,   Sheflo,M.A.,   Gardner,A.V.,   Merrill,C.A.,   Williams,K.R.,  

Lunt,B.L.,  Ayer,P.A.,  Grose,J.H.,  Breakwell,D.P.  and  Burnett,S.H  2013   Jimmer2  

(P.  larvae  phage)   KC595514  Sheflo,M.A.,   Gardner,A.V.,   Kennedy,A.K.,   Beckstead,A.P.,   Russell,R.C.,  Merrill,B.D.,   Merrill,C.M.,   Zimmerman,L.J.,   Lunt,B.L.,   Grose,J.H.,  Breakwell,D.P.  and  Burnett,S.H.  

2013   Abuou  (P.  larvae  phage)   KC595517  

Sheflo,M.A.,  Gardner,A.V.,  Kennedy,A.K.,  Beckstead,A.P.,  Russell,R.C.,  Merrill,B.D.,  Merrill,C.M.,  Zimmerman,L.J.,  Lunt,B.L.,  Grose,J.H.,  Breakwell,D.P.  and  Burnett,S.H.  

5E

Sandra Hale Burnett CURRICULUM VITAE 791 WIDB, Provo, UT 94602, (801) 422-1310, Fax: (801) 422-0519, [email protected] EMPLOYMENT AND POST-DOCTORAL EXPERIENCE 2010- Associate Professor

Microbiology and Molecular Biology Department Brigham Young University

2004- Director, Research Instrumentation Core Facility College of Life Sciences Brigham Young University

2004-2010 Assistant Professor Microbiology and Molecular Biology Department Brigham Young University

2003-2004 Research Associate Microbiology, Immunology and Molecular Genetics Department University of Kentucky Medical School

2000-2003 Post-Doctoral Fellow Microbiology, Immunology and Molecular Genetics Department University of Kentucky Medical School

EDUCATION 1994-2000 Ph.D., Veterinary Science, Focus: Virology and Immunology.

Gluck Equine Research Center, Veterinary Science Department University of Kentucky College of Agriculture

Dissertation: Development of a competitive reverse transcription PCR assay to quantify equine IFN-γ, IL-2, IL-4 and G3PDH. Preliminary study of equine arteritis virus (EAV) and cytokine responses in horses. 1992-1993 M.S., BioVeterinary Science, Focus: Virology and Biochemistry.

Animal, Dairy and Veterinary Science Department Utah State University

Thesis: Inhibitors of equine arteritis virus replication. 1989-1992 B.A., German with Chemistry minor, Focus: Pre-veterinary medicine.

Utah State University PERSONAL STATEMENT The main focus of my research is to identify new bacteriophage, including isolation, whole genome sequencing, and genome comparison work. I am one of three faculty members to run the Phage Hunters program established through a grant from Howard Hughes Medical Institute in 2009. Our program includes approximately 20 undergraduate students per year. Students isolate and purify phage, and prepare DNA extractions for sequencing. Samples are sequenced and the students verify assembly and perform genome annotation for submission to GenBank. Since 2009, our students have isolated and sequenced the genomes of over 55 unique phages, published 20 whole phage genomes with more to come. The Phage Hunter program provides an opportunity to pursue phage isolation and characterization for future phage therapy against pathogenic bacteria.

LEADERSHIP ACCOMPLISHMENTS AND SERVICE 2012- 2008-2012 2008-2012 2007-2011 2007- 2005- 2004-

Faculty Development Committee Member, Undergraduate Curriculum Committee Chair, Microbiology & Molecular Biology Dept., BYU College Curriculum Committee Member, College of Life Sciences, BYU Computer Resources Committee Member, College of Life Sciences, BYU Executive Board Member, Autumn Immunology Conference Specific Pathogen-Free Animal Facility Advisory Committee Member, College of Life Sci., BYU Core Facility Directors Committee Member, College of Life Sciences, BYU

5E

2

PROFESSIONAL AFFILIATIONS 2010- 2009- 2007- 2003- 1997- 1993-2006

Member, International Society for Transgenic Technology Science Education Alliance “Phage Hunters,” Howard Hughes Medical Institute Executive Committee Member, Autumn Immunology Conference, Chicago Member, American Association of Immunologists Member, American Society for Microbiology Associate Member, American Society for Virology

TRANSGENIC MOUSE DEVELOPMENT 2003 Submission of the new transgenic mouse strain to Jackson Laboratories: Macrophage

Fas-Induced Apoptosis (Mafia) mice. Jackson stock number 005070. Strain: C57BL/6J-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J

INTELLECTUAL PROPERTIES

U.S. Patents Pending (as well as 6 provisional patents pending and 2 invention disclosures) “Methods)and)Devices)for)Charged)Molecule)Manipulation,”)Aten,)Q.T.,)Burnett,)S.H.,)Howell,)L.L.,)Jensen,)B.D.,)assigned)to)Brigham)Young)University.)

Intellectual Property Agreements

“Methods)and)Devices)for)Charged)Molecule)Manipulation,”)Aten,)Q.T.,)Burnett,)S.H.,)Howell,)L.L.,)Jensen,)B.D.,)licensed)to)NanoInjection)Technologies,)LLC.))

SCHOLARSHIPS, HONORS AND AWARDS: 2002-2003 2001-2002 2000-2001 1997 1995 1994

NIH Research Training Grant in Microbial Pathogenesis, Univ. of Kentucky Medical School NIH Research Training Grant in Microbial Pathogenesis, Univ. of Kentucky Medical School NIH Research Training Grant in Cancer Etiology and Treatment, Univ. of KY Medical School Travel Grant, Graduate School, Univ. of KY, to American Society for Microbiology, Miami, FL Travel Grant, Society for Values in Higher Education, New Teacher Workshop, Claremont, CA Gamma Sigma Delta Honor Society of Agricultural, Univ. of KY

RESEARCH SUPPORT 2012-2013 2012 2011-2012 2011 2010-2011 2010 2009-2010

$ 16,000 $ 1,500 $ 49,950 $132,668 $ 97,500 $116,214 $127,386

Co-PI with J. Grose, D. Breakwell. A phage-based treatment for Fireblight and American Foulbrood. BYU Technology Transfer. PI. Transgenic mouse rederivation project. NIH-University of Utah. Co-PI with L.Howell, B.Jensen (PI). Cytoplasm-to-Pronucleus and YAC Nanoinjection. Nanoinjection and Cell Restraint Technologies. NanoInjection Technologies, LLC. Co-PI with L.Howell, B.Jensen (PI). Development of Nanoinjection Prototypes and Protocols, Phases I, II, and III. NanoInjection Technologies, LLC.

2009-2012 2008-2009 2006-2007 2005-2006

Co-PI with D. Breakwell to join Science Education Alliance, National Research Genomics Initiative to setup and run “Phage Hunters” research program, Howard Hughes Medical Institute. $15,000 Office of Research and Creative Activity Mentoring Grant, Brigham Young Univ. $30,000 Office of Research and Creative Activity Mentoring Grant, Brigham Young Univ. $19,900 College of Biology and Agriculture Mentoring Grant, Brigham Young Univ.

REPRESENTATIVE JOURNAL PUBLICATIONS (7 of 23 papers & 20 phage whole genomes) Breakwell DP, Barrus EZ, Benedict AB, Brighton AK, Fisher JNB, Gardner AV, Kartchner BJ, Ladle KC, Lunt BL, Merrill BD, Morrell JD, Burnett SH, Grose JH (20130) Genome Sequences of Five B1 Subcluster Mycobacteriophages Genome Announc. Nov/Dec 2013 1:e00968-13; doi:10.1128/genomeA.00968-13. Sheflo MA, Gardner AV, Merrill BD, Fisher JNB, Lunt BL, Breakwell DP, Grose JH, Burnett SH (2013)

5E

3

Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages. Genome Announc. Nov/Dec 2013 1:e00668-13; doi:10.1128/genomeA.00668-13. Smith KC, Castro-Nallar E, Fisher JNB, Breakwell DP, Grose JH, Burnett SH (2013) Phage cluster relationships identified through single gene analysis. BMC Genomics 14:410. Wilson AM, Aten QT, Toone NC, Black JL, Jensen BD, Tamowski S, Howell LL, Burnett SH (2013) Transgene delivery via intracellular electroporetic nanoinjection. Transgenic Res. 22:993-1002. Teichert, G.H., Aten, Q.T., Easter, M., Burnett, S.H., Jensen, B.D., Howell, L.L. (2012) A Metamorphic Erectable Cell Restraint (MECR). Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, Chicago, IL. Aten, QT, Jensen, BD, Tamowski, S, Wilson, AM, Howell, LL, and Burnett, SH (2012) Nanoinjection: Pronuclear DNA Delivery using a Charged Lance. Transgenic Res., 21(6), 1279-1290.

Hatfull, et al. (2012) Complete genome sequences of 138 mycobacteriophages. J. Virology, 86(4) 2382. REPRESENTATIVE RESEARCH PRESENTATIONS (7 of 48 since 2004) Merrill BD, Sheflo MA, Ayer PA, Beckstead AP, Fajardo CP, Ferguson NC, Fisher JNB, Gardner AV, Graves KA, Hartmann KA, Kennedy AK, Liu JE, Lunt BL, Merrill CA, Russell RC, Wake BN, WilliamsKR, Zimmerman LJ, Grose JH, Breakwell DP, Burnett SH. (2013) Discovery and Characterization of Novel Paenibacillus larvae Bacteriophages. 5th Annual SEA-Phages Symposium, Ashburn, VA. Herring JA, Deus LM, Manci AM, Meadows HN, Heiner ME, Willyerd HJ, Gardner AV, Fisher JNB, Smith K, Grose JH, Breakwell DP, Burnett SH (2013) Phage cluster and subcluster identification using Tape Measure Protein primers in a PCR reaction. 5th Annual SEA-Phages Symposium, Ashburn, VA. Merrill BD, Sheflo MA, Ayer PA, Beckstead AP, Fajardo CP, Ferguson NC, Fisher JNB, Gardner AV, Graves KA, Hartmann KA, Kennedy AK, Liu JE, Lunt BL, Merrill CA, Russell RC, Wake BN, WilliamsKR, Zimmerman LJ, Grose JH, Breakwell DP, Burnett SH. (2013) Discovery and Characterization of Novel Paenibacillus larvae Bacteriophages. ASM Intermountain Branch Meeting, Idaho State University, Pocatello, ID. Ferguson NC, Irons DL, Marlow SC, McCord TM, Brighton AK, Fisher JNB, Sheflo MA, Breakwell DP, Grose JH, Burnett SH (2012) Division of the Mycobacteriophage A1 Subcluster Based on Phylogenetic Comparison. ASM Intermountain Branch Meeting, Idaho State University, Pocatello, ID. Grose JH, Breakwell DP, Burnett SH (2011) Out of the SEA: Getting Students to Crawl on Land. Howard Hughes Medical Institute Third Annual Phage Symposium, Ashburn, VA. A Wilson, Q Aten, B Jensen, L Howell, S Tamowski and S Burnett. (2011) Next Generation pronuclear injection: MEMS replaces the pump. Transgenic Research 20(5), p. 1159. Presented at the Tenth Transgenic Technology Meeting, St. Pete Beach, FL. Brighton AK, Vance KS, Parker M, Jackson KR, Steck RP, Ormsby WR, Taylor MA, Fisher JNB, and Lunt BA, Burnett SH, Grose JH, Breakwell DP. (2011) Gene Mosaicism Demonstrated in Mycobacteriophage Shauna1. ASM Intermountain Branch Meeting, Weber State University, Ogden, UT.

5E

APPENDIX  7-­‐  Budget  and  Justification  

5E

  22  

$  1  

$  $  $  $  $  $  NOT ALLOWED  $  $  $    

Project Period: 2014 BIOPESTICIDE PROJECT BUDGET To:

Funds Requested Matching Funds Totals ($)

 

A. Senior/Key Person $ $ B. Other Personnel $ 6,000 $ $ $ Total Number, Other Personnel C. Fringe Benefits $ $ Total Salary, Wages and Fringe Benefits $ $

 

 D. Equipment NOT ALLOWED $

 

 E. Travel $ $ 1. Domestic $1,000 $1,000 2. Foreign NOT ALLOWED $

 

 F. Participant Support Costs $ $ 1. Travel $ $ 2. Other $ $

 

 G. All Other Direct Costs 1. Materials and Supplies 11,000 $11,000 2. Publication Costs $ 3. Consultant Services $ 4. Computer Services $ 5. Subawards/Consortium/Contractual Costs $ 6. Equipment or Facility Rental/User Fees 7,000 $3,000 7. Alterations and Renovations $ 8. Other 1 $ 9. Other 2 $ 10. Other 3 $

 

 Total Direct Costs $25,000 $15,000  

**Each budget item requires documentation** **IMPORTANT**

On a separate sheet provide the following information: Project title, PI name and one paragraph statement of work Identify each budget item individually - provide cost and a written description and/or purpose for the cost. For rentals and fees: identify type of rental or fee and provide rental rate & purpose for the cost Any contractual work will require a separate budget and statement of work including rate and purpose

The Other category MAY NOT include construction or indirect overhead. These costs are not permitted, under any circumstances, under this grant. 1Indicate in a footnote if the matching funds are monetary or in kind and their source

Please enter all values to the nearest hundred dollars.

5E

  23  

       

APPENDIX 7- Budget and Justification.

Budget  Justification  A Natural Treatment for Fire Blight: Pilot Tests

in Apple Orchards Julianne H. Grose

Personnel wages: $6,000 This will cover the stipend for a graduate student to be dedicated to this

project from January – August 2014. This graduate student will oversee all treatments and preparation of materials directly. Other undergraduate research assistants will also assist as either volunteers or for course credit.

Travel: $1,000 ($2,000 total with match from BYU) This will cover the costs of travel for Julianne H. Grose to meet directly

with Tim Smith (Washington State University) and Ken Johnson (Oregon State University) to discuss experimental designs, etc.

Supplies: $11,000 ($22,000 total with match from BYU) This will cover basic research supplies to grow and mass produce phages

(including culture containers, nutrient broth, filters for bacterial removal, storage and transportation containers, pipet tips, gloves, etc.), reagents for PCR analysis of Erwinia strains and as well as phages (TAQ polymerase, dNTP’s and DNA ladder, New England Biolabs), kits to prepare phages for DNA sequencing (Norgen Biotek catalog #46850 ) DNA sequencing reagents, and phage shipping costs. In addition, it will cover greenhouse reagents including soil, plants, and pots.

Facility user fees: $7,000 ($10,00 total with match from BYU) $3,000 for DNA sequencing. This will cover the BYU sequencing

facility costs for all 41 phages to be sequenced (with $3,000 matched funds from the MMBIO department at BYU).

$4,000 for studies done at Washington State University and Oregon State University

5E

  24  

APPENDIX 8- REFERENCES

Chhibber,  S.,  Kaur,  T.,  and  Sandeep,  K.  (2013).  Co-­‐therapy  using  lytic  bacteriophage  and  linezolid:  effective  treatment  in  eliminating  methicillin  resistant  Staphylococcus  aureus  (MRSA)  from  diabetic  foot  infections.  PloS  one  8,  e56022.  Escobar-­‐Paramo,  P.,  Gougat-­‐Barbera,  C.,  and  Hochberg,  M.E.  (2012).  Evolutionary  dynamics  of  separate  and  combined  exposure  of  Pseudomonas  fluorescens  SBW25  to  antibiotics  and  bacteriophage.  Evolutionary  applications  5,  583-­‐592.  Kirby,  A.E.  (2012).  Synergistic  action  of  gentamicin  and  bacteriophage  in  a  continuous  culture  population  of  Staphylococcus  aureus.  PloS  one  7,  e51017.  Khan,  M.,  Zhao,  Y.,  Korban,  S.    (2012)  Moleculr  Mechanisms  of  Pathogenesis  and  Resistance  of  the  Bacterial  Pathogen  Erwinia  amylovora,  Causal  Agent  of  Fire  Blight  Diseases  in  Rosaceae.    Plant  Mol  BIol  Rep:  1-­‐14.  Knezevic,  P.,  Curcin,  S.,  Aleksic,  V.,  Petrusic,  M.,  and  Vlaski,  L.  (2013).  Phage-­‐antibiotic  synergism:  a  possible  approach  to  combatting  Pseudomonas  aeruginosa.  Research  in  microbiology  164,  55-­‐60.  Lipsitch,  M.,  Singer,  R.S.,  and  Levin,  B.R.  (2002).  Antibiotics  in  agriculture:  when  is  it  time  to  close  the  barn  door?  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  99,  5752-­‐5754.  Martinez,  J.L.  (2009).  Environmental  pollution  by  antibiotics  and  by  antibiotic  resistance  determinants.  Environmental  pollution  157,  2893-­‐2902.  Martinez,  J.L.,  Fajardo,  A.,  Garmendia,  L.,  Hernandez,  A.,  Linares,  J.F.,  Martinez-­‐Solano,  L.,  and  Sanchez,  M.B.  (2009).  A  global  view  of  antibiotic  resistance.  FEMS  microbiology  reviews  33,  44-­‐65.  Mila,  A.L.,  and  Ngugi,  H.K.  (2011).  A  Bayesian  approach  to  meta-­‐analysis  of  plant  pathology  studies.  Phytopathology  101,  42-­‐51.  Ngugi,  H.K.,  Lehman,  B.L.,  and  Madden,  L.V.  (2011).  Multiple  treatment  meta-­‐analysis  of  products  evaluated  for  control  of  fire  blight  in  the  eastern  United  States.  Phytopathology  101,  512-­‐522.  Stockwell,  V.O.,  and  Duffy,  B.  (2012).  Use  of  antibiotics  in  plant  agriculture.  Revue  scientifique  et  technique  31,  199-­‐210.  Stockwell,  V.O.,  Johnson,  K.B.,  Sugar,  D.,  and  Loper,  J.E.  (2011).  Mechanistically  compatible  mixtures  of  bacterial  antagonists  improve  biological  control  of  fire  blight  of  pear.  Phytopathology  101,  113-­‐123.  Vanneste,  J.L.  (2000)  What  is  Erwinia  amylovora?    How  to  control  it?  CABI,  New  York.  

5E

Supplemental  Data  to  Accompany  Timothy  Smith’s  Letter  of  Support.      

5E

A  Summary  of  Recent  Results  in  Fire  Blight  Control  Product  Efficacy  Trials    

Timothy  J.  Smith,  Washington  State  University,  September  14,  2011    

Overview:  Fire  blight  is  a  bacterial  disease  that  may  attack  apples  and  pears  under  certain  weather  conditions  when  flowers  are  present  on  the  trees.    For  the  disease  to  occur,  a  series  of  unusual  events  must  occur  in  proper  order:        

  The  bacteria  Erwinia  amylovora  must  be  present  nearby,  usually  oozing  from  an  active  canker  carried  over  from  last  season’s  infections.      

  These  bacteria  must  be  transported  from  the  oozing  canker  to  the  stigma  surfaces  of  open  flowers,  usually  by  flies  or  pollinating  insects.    

  Warm  temperatures  must  occur,  with  sufficient  warmth  to  allow  the  bacteria  colony  to  grow  rapidly  to  large  numbers  on  the  stigma.    

  The  blossom  then  must  be  gently  wetted,  which  allows  the  bacteria  to  be  washed,  or  to  swim  from  the  tip  of  the  stigma  where  they  were  growing,  to  the  nectaries,  which  provide  them  the  necessary  open  entry  into  the  tree.    

The  bacteria  that  have  gained  entry  into  the  highly  susceptible  young  fruitlet  must  then  find  growing  conditions  to  their  benefit,  allowing  them  to  grow  rapidly  and  overwhelm  the  flower  tissues,  leading  to  infection.    Once  the  infection  of  the  flower  is  successful,  the  bacteria  move  out  of  the  flower  into  the  other  uninfected  flowers  of  the  cluster,  into  the  fruit  spur,  and  then  beyond  into  the  young  wood  of  the  tree.    Within  10  to  30  days  of  initial  infection,  the  damage  appears  on  the  tree  as  a  “strike.”    By  this  time,  the  bacteria  are  moving  symptomlessly  throughout  the  host  tree,  and  may  cause  further  damage  to  distant  structures,  such  as  shoot  tips  or  sensitive  rootstocks.    

There  are  key  points  of  this  infection  process  that  can  be  managed  in  the  effort  to  prevent  infection,  or  reduce  damage  to  the  host  tree  or  orchard.        First  point,  the  presence  of  blight  bacteria:  Sanitation  of  the  neighborhood  is  the  most  important  step  in  control.    Fire  blight  is  very  difficult  to  control  if  there  are  active  cankers  nearby,  providing  a  constant  source  of  high  numbers  of  blight  bacteria.    The  higher  the  number  of  live  active  cankers,  and  the  closer  they  are,  the  higher  the  difficulty  of  control.    Control  of  blight  depends  on  the  identification  and  removal  of  as  many  of  these  active  cankers  as  possible.    This  is  not  easy,  but  a  careful  inspection  and  sanitation  effort  should  be  carried  out  prior  to  the  normal  pruning  of  the  orchard.    Blight  cuttings  can  then  be  removed  from  the  orchard  prior  to  being  intermingled  with  the  non-­‐infected  pruning  wood.        Second  point,  the  transport  of  bacteria  to  the  blossoms:  Efforts  to  reduce  infection  by  controlling  insects  that  visit  blossoms  have  never  been  successful.            Third  point,  warm  temperatures  and  bacterial  multiplication:  Erwinia  amylovora  bacteria  multiply  best  on  the  flowers’  stigma  surfaces,  using  the  same  food  and  moisture  resources  that  the  pollen  needs  for  germination  and  growth.    The  multiplication  rate  of  the  bacteria  is  dependent  on  moment  by  moment  temperatures.    The  average  temperature  of  the  day  is  an  outdated  rough  way  to  estimate  bacterial  growth  rate.    Totaling  hourly  temperature  related  to  bacterial  growth  rate  values  over  the  time  that  the  flowers  are  open  is  more  precise.    Fire  blight  infection  risk  models  should  serve  as  a  method  to  

 

 

 

 

5E

determine  when  an  infection  is  likely  in  the  near  future,  or  if  infection  has  occurred  during  the  current  day.    (See  “CougarBlight  2010”  for  the  recommended  blight  risk  model,  or  WSU  DAS.)        If  the  infection  risk  forecast  indicates  infection  conditions  are  possible  in  about  three  or  four  days,  the  flowers  may  be  protected  during  the  days  leading  up  to  that  infection  with  products  that  retard  the  development  of  the  blight  bacteria  that  may  be  trying  to  grow  on  the  blossoms.    Most  non-­‐antibiotic  products  must  be  used  this  way.      The  “biological”  fire  blight  control  products  are  often  living  microorganisms,  and  are  most  effective  if  they  are  placed  in  the  newly  opened  flowers  soon  after  they  open,  in  time  to  allow  them  to  establish  prior  to  the  introduction  of  blight  bacteria.    Antibiotic  or  copper  sprays  used  during  this  same  time  can  hinder  the  development  and  effect  of  the  “biologicals.”        The  fourth  point,  wetting  of  flowers:      The  actual  infection  event  occurs  when  the  blossoms  are  wetted  by  rain,  dew,  or  light  irrigation.    If  the  infection  risk  model  you  trust  indicates  that  infection  conditions  have  occurred  within  the  past  several  hours,  and,  especially  if  you  believe  that  active  cankers  may  be  near  your  flowering  orchard,  antibiotics  are  the  only  effective  treatment  to  reduce  the  degree  of  infection  when  sprayed  at  this  timing.    The  antibiotic  must  be  applied  within  24  hours  before  or  after  the  infection  event  to  be  most  effective.    The  antibiotics  act  directly  against  the  blight  bacteria  in  the  nectary  by  stopping  their  growth  and  multiplication.    It  is  possible  that  the  yeast  product  applied  in  the  days  prior  to  the  infection  event  acts  against  the  blight  bacteria  by  changing  the  pH  and  sugar  content  in  the  nectary,  and  when  the  blight  bacteria  arrive,  they  don’t  have  the  conditions  or  resources  necessary  to  grow.        The  fifth  point,  infection  occurs  and  the  strikes  appear:  Nothing  good  happens  after  this  point.    Once  blight  appears,  the  degree  of  damage  depends  on  the  age  and  cultivar  of  the  orchard  host,  and  the  relative  number  of  blight  strikes  per  tree  or  acre.    In  a  young  apple  orchard,  or  a  pear  orchard  younger  than  15  –  20  years,  immediate  cutting  of  blight  strikes  usually  leads  to  a  reduction  of  total  bearing  surface  removal.    However,  the  blight  often  continues  to  occur  during  the  season,  and  the  blight  manager  often  believes  that  the  blight  cutting  is  ineffective.    It  is  best  to  put  extra  management  resources  into  prevention,  rather  than  reaction  to  this  disease.            Products  used  for  prevention  of  blossom  infection:    Over  the  past  decade,  the  author  has  tested  numerous  products  and  mixtures  to  assess  their  effect  on  fire  blight  infection.    The  results  are  summarized  below.    The  data  was  developed  using  standardized  evaluation  methods  that  assure  high  levels  of  infection  in  the  untreated  check,  and  the  “percent  control”  comparison  should  not  be  used  as  a  direct  indication  of  field  results  under  natural  infection  conditions.    To  overcome  the  variability  of  natural  infections,  the  test  trees  were  all  inoculated  with  high  numbers  of  blight  bacteria  at  full  bloom  to  assure  an  even  dose  of  bacteria  per  flower.    In  practice,  products  that  control  the  infection  of  inoculated  flowers  at  about  65%  and  above,  if  properly  applied,  will  perform  very  well  in  the  orchard  under  natural  conditions.    Most  of  the  products  have  specific  application  requirements,  and  if  correct  rate  and  timing  are  not  followed,  are  not  likely  to  perform  as  in  the  trials.    You  may  notice  that  results  from  the  same  product  vary  from  year  to  year.    This  is  likely  due  to  variations  in  weather  and  degree  of  successful  inoculation,  rather  than  variation  in  dependability  of  the  tested  product.    Generally,  the  various  antibiotics  have  performed  better  than  the  other  substances,  and  have  been  much  easier  to  apply,  as  most  other  products  require  multiple  applications  prior  to  the  infection  period.    However,  there  have  been  recent  results  with  products  that  compete  with  the  antibiotics  for  level  of  control.            

5E

   NOTE:    Many  of  these  products  may  not  be  registered  for  use  on  your  crop.    Results  are  provided  here  only  to  report  research  results,  and  are  not  intended  as  recommendations  or  endorsements.    Read  the  label  carefully  before  using  any  product  to  be  certain  that  the  product  is  registered  on  your  crop.    *Note  also  that  the  bacteria  used  to  inoculate  these  plots  were  selected  for  comparative  research  purposes,  and  are  susceptible  to  streptomycin.    Many  wild  blight  bacteria  in  the  western  USA  are  resistant  to  this  substance.    Streptomycin  will  not  be  as  effective  in  most  orchards  as  in  these  trials.        Antibiotics:    

Year     Product     Rate     Timing     Percent  Control*    

2011     Streptomycin  17%*     1  lb/A,  200  ppm     100%  bloom  @  inoculation     87.6    

2011     Oxytet.  (FireLine)     1  lb/A,  200  ppm     100%  bloom  @  inoculation     80.7    

2011     Kasumin  8L       pint/A,  100  ppm             100%  bloom  @  inoculation     74.4    

2010     Streptomycin  17%     1  lb/A,  200  ppm     100%  bloom  @  inoculation     80.0    

2010     Kasumin  2L  (1x)     2  qt./A,  100  ppm     100%  bloom  @  inoculation     79.5    

2010     Oxytet.  (FireLine)     1  lb/A,  200  ppm     100%  bloom  @  inoculation     77.7    

2009     Streptomycin  17%     1  lb/A,  200  ppm     100%  bloom  @  inoculation     93.4    

2009     Kasumin  2L     200  ppm     100%  bloom  @  inoculation     79.5    

2009     Oxytet.  17%     1  lb/A,  200  ppm     100%  bloom  @  inoculation     70.5    

2008     Gentamycin  10%  (three  treatments)    

2.5,  3,  &  3.5  lb/100/A    

100%  bloom  @  inoculation     90.2,  87.0  &  86.8    

2008     Oxytet.  17%            (two  treatments)    

1  lb/A,  200  ppm     100%  bloom  @  inoculation     91.8  &  96.0    

2008     Streptomycin   17%  (two  treatments)    

1  lb/A,  200  ppm     100%  bloom  @  inoculation     90.1  &  87.0    

2006     Oxytet.  17%     1  lb/A,  200  ppm     100%  bloom  @  inoculation     91.7    

2006     Streptomycin  17%     1  lb/A,  200  ppm     100%  bloom  @  inoculation     91.4    

2006     Kasumin  2L     200  ppm     100%  bloom  @  inoculation     89.1    

2005     Oxytet.  FireLine     1  lb/A,  200  ppm     100%  bloom  @  inoculation     93.0    

2005     Oxytet.  Mycoshield     1  lb/A,  200  ppm     100%  bloom  @  inoculation     92.0    

2005     Streptomycin  17%     1  lb/A,  200  ppm     100%  bloom  @  inoculation     89.6    

2004     Oxytet.  FireLine     1  lb/A,  200  ppm     100%  bloom  @  inoculation     92.5    

2004     Oxytet.  Mycoshield     1  lb/A,  200  ppm     100%  bloom  @  inoculation     86.4    

2004     Gentamycin  10%     3  lb/A     100%  bloom  @  inoculation                    +  1  day    after    

88.3    

2003     Oxytet.  Mycoshield     1  lb/A,  200  ppm     100%  bloom  @  inoculation     67.4                    

5E

                               Antibiotic  Mixes:    

Year     Product     Rate     Timing     Percent  Control*    

2011     Actigard  Pre-­‐bloom,    Sprayed  on  tree.    +    Strep,  100%  bloom  +    Act.  1  –  2”  shoots  *    

Actigard  2  oz./A  Strep.  200  ppm    Actigard  2  oz./A    

Actigard  50%  bloom                                      Strep.  100%  Bloom                                        Act.  @  1  -­‐  2”  shoot      

   98.5    

2011     Actigard  Pre-­‐bloom,    Sprayed  on  tree.    +    Strep    100%  bloom*      

Actigard  2  oz./A  Strep.  200  ppm      

Actigard  50%  bloom                                      Strep.  100%  Bloom      

   95.5    

   2010    

Actigard  Pre-­‐bloom,    Sprayed  on.          +    Strep    100%  bloom    

Actigard  1  oz./A,  Strep.  200  ppm    

Actigard   20   and   50%   bloom                        Strep.  100%  Bloom    

   98.2    

   2010    

Kasumin  2L      +  oxytetracycline    

2  qt./A,  100  ppm          1  lb/A,  200  ppm    

100%  bloom     82.4    

   2009    

“Blossom  Protect”  +  Buffer  A,            Then  oxytet.  17%    

1.34  lb/100gal/A    9.35  lb/100/A    1lb/100/A    

BP  +  buffer  @  20  &  50%  bloom,      Oxytet.  @    100%  bloom    

   70.4    

2006     Oxytet.  +      Cal/Phos  fertilizer    

1 lb./A  200  ppm    2 qt./A    

100%  bloom     72.5    

       Copper  and  other  fungicides:    

Year     Product     Rate     Timing     Percent  Control*    

         2011    

Copper  Product    GWN-­‐9979  

64  fl.oz./A     50%  and  100%  bloom        

81.5    

   2011    

Copper  Product    GWN-­‐9979  

48  fl.oz./A     50%  and  100%  bloom        

81.5    

2011     Cueva  (copper  soap)     1  gallon/100/A     20  &  50%  100%  bloom     79.8    

   2011    

Copper  Product    GWN-­‐9979  

96  fl.oz./A     50%  and  100%  bloom        

76.7    

2010     Kocide  3000     0.5  lb/100/A     80&  100%  bloom     52.3    

   2010    

Copper  Product    GWN-­‐4620    

4  qt./A       80,  100%  bloom  &  1  day  post  inoculation    

   90.0    

5E

   2009    

Copper  Product    GWN-­‐4620    

4  qt./A       80,  100%  bloom  &  1  day  post  inoculation    

   98.4    

   2009    

Copper  Product    GWN-­‐4620    

2  qt./A     80,  100%  bloom  &  1  day  post  inoculation    

   87.6    

   2009    

Copper  Product    GWN-­‐4620    

1  qt./A     80,  100%  bloom  &  1  day  post  inoculation    

   53.3    

2009     Kocide  3000     0.5  lb/100/A     80&  100%  bloom     61.1    

2006     Manzate     3.2  lb./A     80&  100%  bloom     41.1    

2005     Kocide  3000     0.5  lb/100/A     80&  100%  bloom     56.1    

2005     Dithane  (manzate)     3.2  lb.  /  A     80&  100%  bloom     44.0    

2004     Dithane  +                  Champ  (Cu  hydrox.)    

3.2  lb.  /  A          +0.67  pint    

Pink  +  100%  bloom,  then  3,  6  and  9  days  later    

   71.0    

2004     Champ  (copper  hydroxide  37.5%)    

0.67  pint/A     Pink  +  100%  bloom,  then  3,  6  and  9  days  later    

   27.4    

Yeasts  (Blossom  Protect)  and  Bacteria  (Serenade):    

Year     Product     Rate     Timing     Percent  Control*    

2011    “Blossom  Protect”    +  Buffer  A  full  rate    

1.34  lb/100gal/A    9.35  lb.  /100/A    

20  &  50%  100%  bloom        

85.7    

2011    “Blossom  Protect”        +    Buffer  A    ½  rate    

1.0  lb/100gal/A    5.0  lb.  /100/A    

20  &  50%  100%  bloom     85.4    

2011    Bacillus  subtilis    QRD146    

1.5  lb/100gal./A     30  &  50%  100%  bloom     70.0    

2011     Serenade  MAX     3.0  lb/100gal./A     30  &  50%  100%  bloom     63.1    

   2010    

“Blossom  Protect”      +    Buffer  A    ½  rate    

1.34  lb/100gal/A          4.7  lb/100/A    

20,  50  &  100%  bloom        

82.4    

   2010    

“Blossom   Protect”  +  Buffer-­‐A    ½    rates    

0.68  lb/100gal/A        4.7  l  b/100  A    

20,  50  &  100%  bloom        

82.4    

   2010    

“Blossom  Protect”      +  Buffer  A    

1.34  lb/100gal/A    9.35  lb.  /100/A    

20,  50  &  100%  bloom        

81.1    

   2010    

Blossom   Protect     +  alternative  buffer    

1.34   lb/100gal/A  to  pH  5    

20,  50  &  100%  bloom        

62.8    

         2009    

“Blossom  Protect”    +  Buffer  A      

1.34  lb/100gal/A    9.35  lb/100/A    

20,  40,  70  &  100%  bloom        

80.8    

   2009    

“Blossom  Protect”      +  Buffer  A    

1.34  lb/100gal/A    9.35  lb/100/A    

40  &  80%  bloom  (fewer  applications  than  above)    

   73.0    

   2009    

“Blossom   Protect”    full  rate    No  Buffer    

1.34  lb/100gal/A        

20,  40,  70  &  100%  bloom        

69.5    

2009    “Blossom  Protect”          NO  Acid  Buffer    Then  Oxytet.  17%    

1.34  lb/100gal/A        1  lb/100/A    

BP  @  20  &  50%  bloom  Oxytet.  @  100%  bloom    

69.0    

5E

2009     Serenade  Max     1  lb/100/A     20,  50  &  100%  bloom     66.0    

2009     Serenade  QRD  146     0.5  lb/100/A     20,  50  &  100%  bloom     44.2    

2008    “Blossom  Protect”    (full  rate)+  Buffer  A      

1.34  lb/100gal/A    9.35  lb/100/A    

10,  40,  70  &  90%  bloom        

90.0    

2005     Serenade  ASO     6  qt.  /100  gal/  A     20,  50  &  100%  bloom     84    

2005     Serenade  Max     2  &  3.5  lb/100/A     20,  50  &  100%  bloom     63  &  71    

2004        

Serenade  AS       6  qt.  /100  gal/  A     90%  Bloom,  day  before  inoc.              

14        

2003     Serenade       6  lb./A     @  100%  bloom,  pre-­‐inocul.     26.7    

2003     Serenade       6  lb./A    @  100%  bloom,  pre-­‐inocul.                          +  3  days  after    

   42.1    

       

   

   

   Other:    

Year     Product     Rate     Timing     Percent  Control*    

2011     Actigard  Pre-­‐bloom,  Sprayed  3  times  prior  to  inoculation    

Actigard  1  oz./A  each  spray    

20  &  50%  100%  bloom        56.5    

2011     Actigard,   Sprayed  twice  after  1st    symptoms  seen    

1.34  oz  /  A     Sprayed  twice,  three  day  interval,  after  1st  symptoms  seen    

   37.8    

2011     Actigard  (SAR)  soil        treatment    

1  oz./A     Tight  Cluster  &  50%  Bloom     40.5    

2010     Acid  Buffer  (pH  5)     2  qt./A     20,  50  &  100%  bloom     38.5    

2010     Buffer  A     9.35  lb.  /100/A     20,  50  &  100%  bloom     37.9    

2008     Organic  nutrient  spray  series    

Various,  N,  P,  K  Calcium,  micro    

Pre-­‐bloom     32.0    

2006     Cal/Phos  Fertilizer     Series  of  various     Pre-­‐bloom     21.9    

2006     Physpe  (SAR)     Series  of  various     4  times  Pre-­‐bloom     18.0    

2006     Physpe  (SAR)     Series  of  various     2  times  Pre-­‐bloom     0    

2005     Cal/Phos  Fertilizer     Series  of  various     Pre-­‐bloom     5.0            

5E

   Treatment   Number of  

Valid  Treatments  

Highest  Percent  Control  

Lowest  Percent  Control  

Average Percent Control  

Strep + ASM*   6   98.4   90.6   95.1  Copper (new)   9   98   76.7   85.8  Streptomycin   9   90   75   85.3  BCYP + Buffer A   12   90   72   82.6  Oxytetracycline   15   93   53   78.9  Kasugamycin   8   89   62   77.5  Gentamycin   6   88   51   74.5  Serenade   12   84   38   63.5  Copper (old)   7   80   26   49.5  Fungicides   6   57   33   48.6  Acid Buffers   4   39   19   30.5  SAR (Claims)   10   46   0   30.2  Nutrient minerals   3   32   5   18.8  Summary of author’s current and past fire blight control efficacy trial results. Plots all inoculated. *ASM = Actigard, BCYP = Aureobasidium pullulans, “Blossom Protect.”  

   

5E

'HFHPEHU�����������,5���%LRSHVWLFLGH�3URJUDP�,5���3URMHFW�+HDGTXDUWHUV������&ROOHJH�5RDG�(DVW��6XLWH�����:��3ULQFHWRQ��1-��������������'HDU�,5���%LRSHVWLFLGH�*UDQW�&RPPLWWHH���,�DP�ZULWLQJ�WKLV�OHWWHU�RI�VXSSRUW�IRU�WKH�,5���%LRSHVWLFLGH�(DUO\�6WDJH�*UDQW�SURSRVDO�HQWLWOHG�³$�1DWXUDO�7UHDWPHQW�IRU�)LUH�%OLJKW���3LORW�7HVWV�LQ�$SSOH�2UFKDUGV´�SUHSDUHG�E\�3�,��-XOLDQQH�+��*URVH�IURP�%ULJKDP�<RXQJ�8QLYHUVLW\����,�DP�D�SURIHVVRU�DW�2UHJRQ�6WDWH�8QLYHUVLW\�ZKHUH�,�KDYH�VWXGLHG�ILUH�EOLJKW�IRU����\HDUV���,Q�P\�UHVHDUFK�SURJUDP��ZH�URXWLQHO\�HYDOXDWH�ELRORJLFDO�DJHQWV�IRU�ILUH�EOLJKW�VXSSUHVVLRQ��VHYHUDO�RI�ZKLFK�KDYH�EHFRPH�ELRSHVWLFLGHV�ZLWK�,5���VXSSRUW�����,�KDYH�VSRNHQ�ZLWK�'U��*URVH�DQG�ZH�KDYH�VFKHGXOHG�D�WHVW�WUHDWPHQW�RI�DSSOH�WUHHV�XVLQJ�WKHLU�SKDJH�EDVHG�SURGXFW��)LUH�4XHQFKHU���7KHVH�H[SHULPHQWV�DUH�VFKHGXOHG�IRU�WKH�VSULQJ�RI�������EHJLQQLQJ�MXVW�SULRU�WR�EORRP�SHULRG���7KH�3DFLILF�1RUWKZHVW�UHJLRQ�SURGXFHV�QHDUO\�DOO�RI�WKH�SHDUV�DQG�RYHU�KDOI�RI�WKH�DSSOHV�JURZQ�LQ�WKH�8�6���,Q�������ILUH�EOLJKW�ZDV�UDWHG�DV�µKLJK�SULRULW\¶�IRU�UHVHDUFK�LQ�ERWK�WKH�SHDU�DQG�DSSOH�LQGXVWULHV���2ZLQJ�WR�D�XQLTXH�LQIHFWLRQ�ELRORJ\��ILUH�EOLJKW�UHVHDUFKHUV�KDYH�VSHFXODWHG�IRU�PDQ\�\HDUV�WKDW�D�SKDJH�EDVHG�SURGXFW�FRXOG�SURYLGH�H[FHOOHQW�GLVHDVH�VXSSUHVVLRQ���7KXV��ZH�DUH�HDJHU�WR�HYDOXDWH�WKLV�DOWHUQDWLYH�ILUH�EOLJKW�WUHDWPHQW����6LQFHUHO\��

Kenneth B. Johnson

'HSDUWPHQW�RI�%RWDQ\�DQG�3ODQW�3DWKRORJ\�

������

��������

�����&RUGOH\�+DOO�&RUYDOOLV��2UHJRQ�

����������������������������������

.HQQHWK�%��-RKQVRQ�3URIHVVRU�

7HO������������������)D[�����������������

�����������(PDLO���MRKQVRQN����������#VFLHQFH�RUHJRQVWDWH�HGX������

5E

DEPARTMENT OF MICROBIOLOGY & MOLECULAR BIOLOGY

BRIGHAM YOUNG UNIVERSITY 775 WIDB PROVO, UTAH 84602 (801) 422-2889/ FAX: (801) 422-0519

December 9, 2013 Dr. Michael Braverman IR-4 Project Headquarters 5000 College Road EastSuite 201 W Princeton, NJ 08540-6635 Dear Dr. Braverman, Please accept this letter of support for the IR-4 grant proposal submitted by Dr. Julianne Grose of Brigham Young University entitled, “A Natural Treatment for Fire Blight: Pilot Tests in Apple Orchards.” This project has received financial support from our department for the past four years, and we are enthusiastic about its progress and potential. We are glad to learn about the IR-4 funding mechanism because this project is rapidly approaching the point at which it will require EPA approval, and Brigham Young University has no institutional experience with or support system in place for navigating the EPA approval process. The IR-4 grant would be most helpful in that regard. The phage-based treatment for fruit tree Fire Blight being developed by Dr. Grose and her collaborators, Dr. Don Breakwell and Dr. Sandra Burnett, is potentially very valuable for combating diseases in fruit tree orchards while also decreasing the use of chemical toxins that pollute the environment. Our departmental commits to continue supporting this project, as we have done for the past four years, by supplementing the IR-4 funding as follows: we commit a $3,000 match toward DNA sequencing costs, a $1,000 match toward travel, and a $11,000 match toward supplies, for a total of $15,000. This proposal addresses a widespread problem in a novel and creative way, and it fits well within the scope of the IR-4 funding mechanism. I support it without reservation. Respectfully yours,

Laura C. Bridgewater, Ph.D. Chair, Department of Microbiology & Molecular Biology