9
7/23/2019 CREIIUnit4heateffectsduringrxn http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 1/9 CHEMICAL REACTION ENGINEERING-II Solid Catalyzed Reactions - Heat Effects During Reaction B.Manikandan B.Manikandan  CHEMICAL REACTION ENGINEERING-II  1 / 9

CREIIUnit4heateffectsduringrxn

Embed Size (px)

Citation preview

Page 1: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 1/9

CHEMICAL REACTION ENGINEERING-IISolid Catalyzed Reactions - Heat Effects During Reaction

B.Manikandan

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   1 / 9

Page 2: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 2/9

Introduction

Introduction

When reaction is so fast that the heat released (or absorbed) in the pelletcannot be removed rapidly enough to keep the pellet close to thetemperature of the fluid, then nonisothermal effects intrude.

In such a situation two different kinds of temperature effects may beencountered:

Within-particle ∆T. There may be a temperature variation within thepellet. Film ∆T. The pellet may be hotter (or colder) than the surroundingfluid.

Thus present research on catalysts is strongly centered on the surfacestructure of solids.

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   2 / 9

Page 3: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 3/9

Introduction

Introduction

For Film ∆T we equate the rate of heat removal through the film with therate heat generation by reaction within the pellet. ThusQ generated   = (V pellet ) (−r ”

A  ,obs ) (−∆Hr )

Q removed   = h S pellet   (T g − T s )and on combining we find

∆T  film  =(T g − T s ) =where L  is the characteristic size of the pellet.

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   3 / 9

Page 4: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 4/9

Introduction

Introduction

For within-particle ∆T the simple analysis by Prater (1958) for anyparticle geometry and kinetics gives the desired expression.

Since the temperature and concentration within the particle arerepresented by the same form of differential equation (Laplace equation)

Prater showed that the T and C A  distributions must have the same shape;thus at any point in the pellet x

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   4 / 9

Page 5: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 5/9

Introduction

Introduction

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   5 / 9

Page 6: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 6/9

Introduction

PERFORMANCE EQUATIONS FOR REACTORS

CONTAINING POROUS CATALYST PARTICLESFor Plug Flow

Take a thin slice of the PFR.

Then following the analysis for homogeneous reactions we have thesituation shown in following Fig.

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   6 / 9

I d i

Page 7: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 7/9

Introduction

PERFORMANCE EQUATIONS FOR REACTORS

CONTAINING POROUS CATALYST PARTICLESFor Plug Flow

At steady state a material balance for reactant A gives

input = output + accumulation . . .

  molA

F A0 − F A0X Ain  = F A0 − F A0X Aout  + (−r 

A  ) ∆W

In differential form ,F A0dX A  = (−r 

A  ) dW   = (−r ”

A   ) dV S 

Integrating over the whole reactor gives

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   7 / 9

I t d ti

Page 8: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 8/9

Introduction

PERFORMANCE EQUATIONS FOR REACTORS

CONTAINING POROUS CATALYST PARTICLESFor Plug Flow

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   8 / 9

Introduction

Page 9: CREIIUnit4heateffectsduringrxn

7/23/2019 CREIIUnit4heateffectsduringrxn

http://slidepdf.com/reader/full/creiiunit4heateffectsduringrxn 9/9

Introduction

PERFORMANCE EQUATIONS FOR REACTORS

CONTAINING POROUS CATALYST PARTICLESFor Mixed Flow

B.Manikandan   CHEMICAL REACTION ENGINEERING-II   9 / 9