69
Credits Chapter One Fig. 1.1 Diagram by the authors. Fig. 1.2 From Gullan, P. J.and P. S. Cranston. 2004. The Insects. An Outline of Entomology, 3rd edition. Wiley-Blackwell, Oxford. By permission of Wiley-Blackwell. Fig. 1.3 Photograph courtesy of S. Alexious and The Archaeological Museum of Heraclion, Crete. See also LaFleur, R. A., R. W. Matthews, and D. B. McCorkle, Jr. 1979. A reexamination of the Mallia insect pendant. American Journal of Archeology 83:208–212 & PI. 29. Fig. 1.4 Modified from Bodenheimer, F.S. 1928. Materialien zur Geschichteder Entomologie bis Linné, Vol. I, Junk, Berlin. Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa Metamorphosis,a compilation published in Amsterdam 1718. See also Todd, K. 2007. Chrysalis. Maria Sibylla Merian and the Secrets of Metamorphosis. Harcourt, Inc. Fig. 1.6 (left, right) Portraits from Kelly, H. A. 1906. Walter Reed and Yellow Fever. McClure, Phillips and Co., NY. (center) Mosquito photograph by James Gathany, downloaded 8 May 2009 from http://commons.wikimedia.org/ wiki/File:Aedes_aegypti_bloodfeeding_CDC_Gathany.jpg/ Fig. 1.7 Photographs courtesy of Marla Spivak and Gary Reuter, University of Minnesota. See also www.extension.umn.edu/honeybees/ Fig. 1.8 Diagram by the authors after Rothenbuhler, W. B. 1967. Genetic and evolutionary considerations of social behavior of honey bees and some related insects. pp. 61–l06 In J. Hirsch (Ed.), Behavior-Genetic Analysis, McGraw-Hill, NY. See also Lapidge, K., R. Oldroyd, and M. Spivak. 2002. Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568. 445 R.W. Matthews, J.R. Matthews, Insect Behavior, 2nd ed., DOI 10.1007/978-90-481-2389-6_BM2, C Springer Science+Business Media B.V. 2010

Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits

Chapter One

Fig. 1.1 Diagram by the authors.

Fig. 1.2 From Gullan, P. J. and P. S. Cranston. 2004. The Insects. An Outline ofEntomology, 3rd edition. Wiley-Blackwell, Oxford. By permission ofWiley-Blackwell.

Fig. 1.3 Photograph courtesy of S. Alexious and The Archaeological Museum ofHeraclion, Crete. See also LaFleur, R. A., R. W. Matthews, and D. B. McCorkle, Jr.1979. A reexamination of the Mallia insect pendant. American Journal ofArcheology 83:208–212 & PI. 29.

Fig. 1.4 Modified from Bodenheimer, F.S. 1928. Materialien zur GeschichtederEntomologie bis Linné, Vol. I, Junk, Berlin.

Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, boundtogether in Erucarum Ortus, Alimentum et Paradoxa Metamorphosis, acompilation published in Amsterdam 1718. See also Todd, K. 2007. Chrysalis.Maria Sibylla Merian and the Secrets of Metamorphosis. Harcourt, Inc.

Fig. 1.6 (left, right) Portraits from Kelly, H. A. 1906. Walter Reed and YellowFever. McClure, Phillips and Co., NY. (center) Mosquito photograph by JamesGathany, downloaded 8 May 2009 from http://commons.wikimedia.org/wiki/File:Aedes_aegypti_bloodfeeding_CDC_Gathany.jpg/

Fig. 1.7 Photographs courtesy of Marla Spivak and Gary Reuter, University ofMinnesota. See also www.extension.umn.edu/honeybees/

Fig. 1.8 Diagram by the authors after Rothenbuhler, W. B. 1967. Genetic andevolutionary considerations of social behavior of honey bees and some relatedinsects. pp. 61–l06 In J. Hirsch (Ed.), Behavior-Genetic Analysis, McGraw-Hill,NY. See also Lapidge, K., R. Oldroyd, and M. Spivak. 2002. Seven suggestivequantitative trait loci influence hygienic behavior of honey bees.Naturwissenschaften 89:565–568.

445R.W. Matthews, J.R. Matthews, Insect Behavior, 2nd ed.,DOI 10.1007/978-90-481-2389-6_BM2, C© Springer Science+Business Media B.V. 2010

Page 2: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

446 Credits

Fig. 1.9 Diagram by the authors.

Fig. 1.10 Diagram by the authors.

Fig. 1.11 Drawing by Arthur Rackham, reproduced from Aesop’s Fables,translated by V. S. Jones. Published 1912, William Heinemann, London.

Fig. 1.12 (left) Roth, L. M. 1970. Evolution and taxonomic significance ofreproduction in Blattaria. Annual Review of Entomology 15:75–96. Reprinted, withpermission, from the Annual Review of Entomology, volume 15 © 1970 by AnnualReviews www.annualreviews.org. (right) Drawing by the authors. See also Roth, L.M. 2003. Systematics and phylogeny of cockroaches. Oriental Insects 37:1–186;and Klass, K.-D. and R. Meier. 2006. A phylogenetic analysis of Dictyoptera(Insecta) based on morphological characters. Entomologische Abhandlungen63:3–50.

Fig. 1.13 Photograph by the authors.

Fig. 1.14 Photograph by Andy Phillips.

Fig. 1.15 Diagram by the authors, based on updated information and Evans, H. E.and R. W. Matthews. 1973. Systematics and nesting behavior of Australian Bembixsand wasps (Hymenoptera: Sphecidae). Memoirs of the American EntomologicalInstitute No. 20, 386 pp.

Fig. 1.16 Lewis, S. M. and C. K. Cratsley. 2008. Flash signal evolution, matechoice, and predation in fireflies. Annual Review of Entomology 53:293–321.Reprinted, with permission, from the Annual Review of Entomology, volume 53 ©2008 by Annual Reviews www.annualreviews.org.

Fig. 1.17 Holzenthal R. W., R. J. Blahnik, A. L. Prather, et al. 2007. OrderTrichoptera Kirby 1813 (Insecta), Caddisflies. pp. 639–698 In Z.-Q. Zhang andW. A. Shear (Eds.) 2007. Linnaeus tercentenary: Progress in invertebratetaxonomy. Zootaxa 1668:1–766.

Fig. 1.18 Toma, D., G. Bloch, D. Moore, et al. 2000. Changes in period mRNAlevels in the brain and division of labor in honey bee colonies. Proceedings of theNational Academy of Sciences USA. 97:6914–6919. Copyright (2000), NationalAcademy of Sciences, USA.

Table 1.1 By the authors, based on Tinbergen, N. 1963. On the aims and methodsof ethology. Zeitschrift fur Tierpsychologie 20:410–463.

Chapter Two

Fig. 2.1 Diagram by the authors, based on Snodgrass, R. E. 1935. Principles ofInsect Morphology. McGraw-Hill, NY.

Page 3: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 447

Fig. 2.2 From Wilson, D. M. 1968. The flight-control system of the locust.Scientific American 218:83–90 (May). Copyright © (1968) by Scientific American,Inc. All rights reserved. See also Marder, E., D. Bucher, D. Schulz, et al. 2003.Invertebrate central pattern generator moves along. Current Biology15(17):R685–R699.

Fig. 2.3 (above) Redrawn after Roeder, K. D. 1967. Nerve Cells and InsectBehavior, revised edition. Harvard University Press, Cambridge, MA. (below)From Camhi, J. M. 1980. The escape system of the cockroach. Scientific American243:151–172. Copyright © (1980) by Scientific American, Inc. All rights reserved.See also Levi, R. and J. M. Camhi. 2000. Wind direction coding in the cockroachescape response: winner does not take all. Journal of Neurosciences20(10):3814–3821.

Fig. 2.4 Modified from Dethier, V. G. 1971. A surfeit of stimuli: a paucity ofreceptors. American Scientist 59:706–715.

Fig. 2.5 Roeder, K. D. 1970. Episodes in insect brains. American Scientist58:378–389. Reprinted by permission, American Scientist, journal of Sigma Xi,The Scientific Research Society of North America.

Fig. 2.6 From Alcock, J. 1975 Animal Behavior. An Evolutionary Approach. 1sted. Sinauer Associates, Sunderland, MA.

Fig. 2.7 (above) Redrawn after Rains, G. C., J. K. Tomberlin, and D. Salasiri.2008. Using insect sniffing devices for detection. Trends in Biotechnology 26(6):288–294. (below) From Olson, D. M., G. C. Rains, T. Meiners, et al. 2003.Parasitic wasps learn and report diverse chemicals with unique conditionablebehaviors. Chemical Senses 28: 545–549. See also Salazar, B. A. and D. W.Whitman. 2001. Defensive tactics of caterpillars against predators and parasitoids.Chapter 8 In T. N. Ananthakrishnan, Insects and Plant Defence Dynamics. SciencePublishers, Enfield, NH, USA.

Fig. 2.8 Reproduced with permission from Lent, D. D. and H-W. Kwon. 2004.Antennal movements reveal associative learning in the American cockroachPeriplaneta americana. Journal of Experimental Biology 207: 369–375.

Fig. 2.9 Tinbergen, N. 1951. The Study of Instinct. Clarendon Press of the OxfordUniversity Press, London. By permission of Oxford University Press. See alsoTinbergen, N. 1972. The Animal in its World. Explorations of an Ethologist,1932–1972. Vol. 1. Field Studies (especially pp. 103–145). Harvard UniversityPress, Cambridge, MA.

Fig. 2.10 Drawing by Charles Clare from Janzen, D. H. 1974. The deflowering ofCentral America. Natural History 83:48–53.

Fig. 2.11 (above, center) Modified from Gandolfi, M., L. Mattiacci and S. Dorn.2003. Preimaginal learning determines adult response to chemical stimuli in aparasitic wasp. Proceedings of the Royal Society of London B 270:2623–2629.

Page 4: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

448 Credits

Reproduced with permission of the Royal Society of London. (below) FromGullan, P. J. and P. S. Cranston. 2004. The Insects. An Outline of Entomology, 3rdedition. Wiley-Blackwell, Oxford. By permission of Wiley-Blackwell.

Fig. 2.12 Modified from Gandolfi, M., L. Mattiacci and S. Dorn. 2003.Preimaginal learning determines adult response to chemical stimuli in a parasiticwasp. Proceedings of the Royal Society of London B 270:2623–2629. Reproducedwith permission of the Royal Society of London.

Fig. 2.13 Drawing by the authors, based on Kerfoot, W. B. 1967. The lunarperiodicity of Sphecodogastra texana, a nocturnal bee. Animal Behaviour15:478–485.

Fig. 2.14 From Truman, J. W. and L. M. Riddiford. 1970. Neuroendocrine controlof ecdysis in silkmoths. Science 167:1624–1626. Reprinted with permission fromAAAS.

Chapter Three

Fig. 3.1 Drawings by Paul H. Matthews.

Fig. 3.2 Photograph courtesy of Poramate Manoonpong, Bernstein Center forComputational Neuroscience, Goettingen, Germany.

Fig. 3.3 Drawing by the authors. See also Dickinson, M. 2005. Insect flight.Current Biology 16(9): R309–314.

Fig. 3.4 Drawing by Joan W. Krispyn. See also Fraenkel, G. S. and D. L. Gunn.1940. The Orientation of Animals. Kineses, Taxes and Compass Reactions. Dover,NY.

Fig. 3.5 Redrawn and modified from Schöne, H. 1951. Die Lichtorientierung derLarven von Acilius sulcatus L. und Dytiscus marginalis L. Zeitschrift VergleichenPhysiologie 33:63–98, with kind permission of Springer Science+BusinessMedia.

Fig. 3.6 From Alcock, J. 1975. Animal Behavior. 1st ed. Sinauer Press,Sunderland, MA. See also Lindauer, M.1971. Communication Among the Bees.Harvard University Press, Cambridge, MA.

Fig. 3.7. Photographs courtesy of Prof. Dr. Helmut Schmitz, Universität Bonn,Institut für Zoologie. See also Schmitz, H, H. Bleckmann, and M. Murtz. 1997.Infrared detection in a beetle. Nature (Lond.) 386:773–774.

Fig. 3.8 Photograph by the authors.

Fig. 3.9 Redrawn after Dingle, H. 1972. Migration strategies of insects. Science175:1327–1334. See also Dingle, H. 1996. Migration. The Biology of Life on theMove. Oxford University Press, New York.

Page 5: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 449

Fig. 3.10 (left) From Askew, R. R. 1971. Parasitic Insects, HeinemannEducational Books Ltd. and American Elsevier. (right) Redrawn from Evans, H. E.1969. Phoretic copulation in Hymenoptera. Entomological News 80:113–124.Reproduced with permission from the American Entomological Society.

Fig. 3.11 From Solensky, M. J. 2004. (Above) Chapter 10. Overview of monarchmigration and (below) Chapter 15. Overview of monarch overwintering biology. InOberhauser, K. S. and M. J. Solensky (Eds.) 2004. The Monarch Butterfly. Biologyand Conservation. Cornell University Press, Ithaca, NY. Above by permission ofCornell University Press; below by permission of Wiley-Blackwell.

Fig. 3.12 Reproduced with permission from Brower, L.P. 1996. Monarch butterflyorientation: missing pieces of a magnificent puzzle. Journal of ExperimentalBiology 199:93–103.

Fig. 3.13 From Wehner, R. 1989. Neurobiology of polarization vision. Trends inNeurosciences 12:353–359.

Chapter Four

Fig. 4.1 Photograph by the authors.

Fig. 4.2 Photograph by the authors.

Fig. 4.3 Stoffolano, J. G. Jr. 1974. Control of feeding and drinking in diapausinginsects. In L. Barton Browne (Ed.), Experimental Analysis of Insect Behaviour,Springer Verlag, NY, with kind permission of Springer Science+Business Media.

Fig. 4.4 Weires, R. W. and H. G. Chiang, 1973. Integrated control prospects ofmajor cabbage insect pests in Minnesota-based on the faunistic, host varietal, andtrophic relationships. University of Minnesota Agricultural Experiment StationTechnical Bulletin 291, 42 pp.

Fig. 4.5 Diagram by the authors. See also Charnov, E.L. 1976. Optimal foraging:the marginal value theorem. Theoretical Population Biology 9:129–136.

Fig. 4.6 From Alcock, J. 1975. Animal Behavior. An Evolutionary Approach.1st ed. Sinauer Associates, Sunderland, MA.

Fig. 4.7 Photograph by the authors.

Fig. 4.8 Drawing by Joan W. Krispyn.

Fig. 4.9 Courtesy of Ulrich G. Mueller. From Mueller, U. G. and N. Gerardo.2002. Fungus-farming insects: multiple origins and diverse evolutionary histories.Proceedings of the National Academy of Science 99(24):15247–15249.

Fig. 4.10 Courtesy of Bert Hölldobler. From Hölldobler, B.1971. Communicationbetween ants and their guests. Scientific American 224:86–93 (March). Copyright© (1971) by Scientific American, Inc. All rights reserved.

Page 6: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

450 Credits

Fig. 4.11 Drawing by Turid Hölldobler-Forsyth. Hölldobler, B. 1970.Orientierungsmechanismen des Ameisengastes Atemeles (Coleoptera:Staphylinidae) bei der Wirtssuche. In W. Herre (Ed.) Verhandlungen derZoologischen Gesellschaft (Zoologischer Anzeiger Supplement)33:580–585.

Fig. 4.12 Geiselhardt, S., K. Peschke and P. Nagel. 2007. A review ofmyrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking earlyobservations with recent findings. Naturwissenschaften 94: 871–894, with kindpermission of Springer Science+Business Media.

Fig. 4.13 Photograph by the authors. See also Ruehlmann, T. E., R. W. Matthewsand J. R. Matthews. 1988. Roles for structural and temporal shelter-changing byfern-feeding Lepidopteran larvae. Oecologia 75:228–232.

Fig. 4.14 (left) Image downloaded 24 April 2009 fromhttp://www.cefe.cnrs.fr/coev/albums/ficus_carica.htm. (right) Drawings adaptedfrom Wigglesworth, V. B. 1964. The Life of Insects. The New AmericanLibrary, NY.

Fig. 4.15 Courtesy of Braulio Dias. See also Dias, B. F. 1975. Comportamentopre-social de sinfitas do Brazil Central. 1. Themos olfersi (Klug) (Hym., Argidae).Studia Entomologia 18:401–432.

Fig. 4.16 Modified from Wilson, E. O. and T. Eisner 1957. Quantitative studies ofliquid food transmission in ants. Insectes Sociaux 4:157–166, with kind permissionof Springer Science+Business Media.

Chapter Five

Opening quote from Owen, D. 1980. Camouflage and Mimicry, p. 15. Universityof Chicago Press.

Fig. 5.1 Photographs by Robert E. Silberglied.

Fig. 5.2 From Cott, H. B. 1940. Adaptive Coloration in Animals. Methuen, NY,with kind permission of Springer Science+Business Media.

Fig. 5.3 Kettlewell, H. B. D. 1973. The Evolution of Melanism. The Study of aRecurring Necessity, with Special Reference to Industrial Melanism in theLepidoptera. Clarendon, NY. See also Hopper, J. 2003. Of Moths and Men: AnEvolutionary Tale: The Untold Story of Science and the Peppered Moth. W. W.Norton & Co., NY.

Fig. 5.4 Courtesy of Terrence D. Fitzgerald. See also Fitzgerald, T. D. 2008. Toxichairs enable some caterpillars to venture forth in conspicuous processions. NaturalHistory 117(7):28–33.

Page 7: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 451

Fig. 5.5 (left) Photograph by Douglas W. Whitman. (right) From Greene E., L. J.Orsak, D. Whitman. 1987. A tephritid fly mimics the territorial displays of itsjumping spider predators. Science 236:310–312. Reprinted with permission fromAAAS.

Fig. 5.6 Photographs by the authors.

Fig. 5.7 Photograph by Robert E. Silberglied.

Fig. 5.8 (left) Photograph by the authors. (right) Photograph by Douglas W.Whitman.

Fig. 5.9 (left) Photograph by Abraham Hefetz. (right). Photograph courtesy ofThomas Eisner. See also Aneshansley, D., T. Eisner, J. M. Widom et al. 1969.Biochemistry at 100oC. The explosive discharge of bombardier beetles(Brachinus). Science 165:61–63.

Fig. 5.10 Photograph by Robert E. Silberglied.

Fig. 5.11 (above) Photograph by the authors. (center and below) Photographs byRobert E. Silberglied.

Fig. 5.12 Photograph by the authors.

Fig. 5.13 From Stradling, D. J. 1976. The nature of the mimetic patterns of thebrassolid genera, Caligo and Eryphanus. Ecological Entomology 1:135–138. Bypermission of Wiley-Blackwell.

Fig. 5.14 From Cott, H. B.1940. Adaptive Coloration in Animals. Methuen, NY,with kind permission of Springer Science+Business Media.

Fig. 5.15 Drawing courtesy of Daniel Otte. See also Otte, D. 1977. Acousticalcommunication in Orthoptera. In T. A. Sebeok (Ed.), How Animals Communicate.Indiana University Press, Bloomington, IN.

Chapter Six

Fig. 6.1 Drawing by Paul H. Matthews, based on Billen, J. and E. D. Morgan.1998. Pheromone communication in social insects: sources and secretions.pp. 3–33 In R. K. Vander Meer, M.D. Breed, M.L. Winston et al. (Eds.),Pheromone Communication In Social Insects: Ants, Wasps, Bees, And Termites.Westview Press, Boulder, CO.

Fig. 6.2 Photograph by Albert Dietz.

Fig. 6.3 Hangartner, W. 1967. Spezifität und Inaktivierung des Spurpheromonsvon Lasius fuliginosus Latr. Und Orientierung der Arbeiterinnen in Duftfeld.Zeitschrift für Vergleichen Physiologie 57:103–136, with kind permission ofSpringer Science+Business Media.

Page 8: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

452 Credits

Fig. 6.4 Photograph by Kevin Wanner, Montana State University. See alsoSteinbrecht, R. A. 1999. Olfactory receptors. pp. 155–176 In E. Eguchi,Y. Tominaga & H. Ogawa, Atlas of Arthropod Sensory Receptors. DynamicMorphology in Relation to Function. Springer-Verlag.

Fig. 6.5 Adapted from Birch, M. C. 1984. Aggregation in bark beetles.pp. 331–354 In W. J. Bell and R. T. Cardé (Eds.) Chemical Ecology of Insects,Chapman and Hall, London, with kind permission of Springer Science+BusinessMedia.

Fig. 6.6 Diagram by the authors.

Fig. 6.7 (left) Photograph by Eleanor Smithwick and U. Eugene Brady. (right)Photograph by Rob Peakall. See also Schiestl F. P., R. Peakal, J. G. Mant, et al.2003. The chemistry of sexual deception in an orchid-wasp pollination system.Science 302(5644):437–438.

Fig. 6.8 Photograph by Robert L. Silberglied.

Fig. 6.9 Photograph by Patricia J. Moore. See also Moore, A. J. and P. J. Moore.1999. Balancing sexual selection through opposing mate choice and malecompetition. Proceedings of the Royal Society of London Series B – BiologicalSciences. 266:711–716.

Fig. 6.10 Drawing by Lee C. Ryker. See also Ryker, L.C. 1984. Acoustic andchemical signals in the life cycle of a beetle. Scientific American 250:113–124.

Fig. 6.11 From Ishii, S. 1970. Aggregation of the German cockroach Blattellagermanica L. pp. 93–109 In D. L. Wood, R. M. Silverstein, and M. Nakajima(Eds.). Control of Insect Behavior by Natural Products, Academic Press, NY.

Fig. 6.12 From Beggs, K. T., K. A. Glendining, N. M. Marechal, et al. 2007.Queen pheromone modulates brain dopamine function in worker honey bees.Proceedings of the National Academy of Sciences of the US. 104(7):2460–2464.Copyright (2007) National Academy of Sciences, USA.

Fig. 6.13 (left) Drawing by Paul H. Matthews. (right) Photograph by Terrence D.Fitzgerald. See also Fitzgerald, T. D. 1995. The Tent Caterpillars. CornellUniversity Press, Ithaca, NY.

Fig. 6.14 Drawings by Joan W. Krispyn. See also Beale, M. H., M. A. Birkett,T. J. A. Bruce, et al. 2006. Aphid alarm pheromone produced by transgenic plantsaffects aphid and parasitoid behavior. Proceedings of the National Academy ofSciences of the USA 103(27):10509–10513.

Fig. 6.15 Courtesy of CSIRO Division of Entomology, Canberra, Australia.

Fig. 6.16 From Price, P.W. 1972. Behavior of the parasitoid Pleolophus basizonus(Hymenoptera: Ichneumonidae) in response to changes in host and parasitoiddensity. Canadian Entomologist 104:129–140. Courtesy of the EntomologicalSociety of Canada.

Page 9: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 453

Fig. 6.17 From Wilson, E. O. and W. H. Bossert, 1963. Chemical communicationamong animals. Recent Progress in Hormone Research 19:673–716.

Fig. 6.18 From Wilson, E. O. and W. H. Bossert, 1963. Chemical communicationamong animals. Recent Progress in Hormone Research 19:673–716.

Fig. 6.19. Drawing by Paul H. Matthews. See also Cook, S. M., Z. R. Khan, andJ. A. Pickett. 2007. The use of push-pull strategies in integrated pest management.Annual Review of Entomology 52:375–400.

Table 6.1 Based on Hölldobler, B. and E. O. Wilson. 1978. The multiplerecruitment systems of the African weaver ant Oecophylla longinoda (Latreille)(Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology 3:19–60.

Table 6.2 Based on Howard, R. W. and G. J. Blomquist. 2005. Ecological,behavioral, and biochemical aspects of insect hydrocarbons. Annual Review ofEntomology 50:371–395.

Table 6.3 Compiled from various sources.

Table 6.4 Based on Wilson, E. O. and W. H. Bossert, 1963. Chemicalcommunication among animals. Recent Progress in Hormone Research19:673–716.

Chapter Seven

Fig. 7.1 Reproduced with permission from Timmins, G. S., F. J. Robb, C. M.Wilmot, et al. 2001. Firefly flashing is controlled by gating oxygen tolight-emitting cells. Journal of Experimental Biology 204(16):2795–2801.

Fig. 7.2 Drawing by D. Otte. See also Lloyd, J. E. 1966. Studies on the flashcommunication system of Photinus fireflies. Miscellaneous Publications of theMuseum of Zoology, University of Michigan, No. 130, 95pp.

Fig. 7.3 (above) Photograph by Douglas W. Whitman. (below) Photograph bySusan Ellis, Bugwood.org. See also Cronin, T.W., M. Jarvilehto, M. Weckstrom, et.al. 2000. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera:Lampyridae). Journal of Comparative Physiology A 186:1–12.

Fig. 7.4 Drawings by Joan W. Krispyn.

Fig. 7.5 (left) Photograph by Robert E. Silberglied. See Silberglied, R. E. andO. R. Taylor. 1973. Ultraviolet differences between the sulfur butterflies, Coliaseurytheme and C. philodice, and a possible isolating mechanism. Nature241:406–408. (right) Kemp, D. J. 2006. Ultraviolet ornamentation and malemating success in a high-density assemblage of the butterfly Colias eurytheme.Journal of Insect Behavior 19:669–684, with kind permission of SpringerScience+Business Media.

Page 10: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

454 Credits

Fig. 7.6 Photographs copyright by Elizabeth A. Tibbetts. See also Tibbetts,E. A. and R. Lindsay. 2008. Visual signals of status and rival assessment in Polistesdominulus paper wasps. Biology Letters 4:237–239. For an alternative view seeCervo, R., L. Dapporto, L. Beani, et al. 2008. On status badges and quality signalsin the paper wasp Polistes dominulus: body size, facial colour patterns andhierarchical rank. Proceedings of the Royal Society B 275:1189–1196.

Fig. 7.7 Drawing by Joan W. Krispyn.

Fig. 7.8 Photograph by the authors.

Fig. 7.9 From Brower, L. P., J. V.-Z. Brower, and F. P. Cranston. 1965. Courtshipbehavior of the queen butterfly, Danaus gilippus berenice (Cramer). Zoologica50:1–39. Reprinted with permission of the Wildlife Conservation Society.

Fig. 7.10 Magnus, D.1958. Experimentalle Untersuchunger zur Bionomie undEthologie des Kaisermantels Argynnis paphia L. (Lep. Nymphalidae). Zeitschriftfur Tierpsychologie 15:397–426, with kind permission of SpringerScience+Business Media.

Fig. 7.11 Magnus, D. 1958. Experimentalle Untersuchunger zur Bionomie undEthologie des Kaisermantels Argynnis paphia L. (Lep. Nymphalidae). Zeitschriftfur Tierpsychologie 15:397–426, with kind permission of SpringerScience+Business Media.

Chapter Eight

Fig. 8.1 Courtesy of Rex Cocroft. From Cocroft, R. B. and R. L. Rodríguez. 2005.The behavioral ecology of insect vibrational communication. BioScience55(4):323–334. Copyright, American Institute of Biological Sciences.

Fig. 8.2 Photograph by Douglas W. Whitman.

Fig. 8.3 Courtesy of Rex Cocroft. From Cocroft, R. B., T. D. Tieu, R. R. Hoy,et al. 2000. Directionality in the mechanical response to substrate vibration in atrehopper (Hemiptera:Membracidae: Umbonia crassicornis). Journal ofComparative Physiology A 186:695–705.

Fig. 8.4 Drawing by Paul H. Matthews, based on Yak, J. and R. Hoy. 2003.Hearing. pp. 498–505 In V. H. Resh and R. T. Cardé (Eds.), Encyclopedia ofInsects. Academic Press, New York.

Fig. 8.5 Drawing by the authors. See also Cooper, K. W. 1957. Biology ofeumenine wasps. V. Digital communication in wasps. Journal of ExperimentalZoology 134:469–514.

Fig. 8.6 Drawings by the authors.

Fig. 8.7 From Alexander, R. D. and T. E. Moore. 1962. The evolutionaryrelationships of 17-year and 13-year cicadas, and three new species (Homoptera,Cicadidae, Magicacada). Miscellaneous Publications of the Museum of Zoology,

Page 11: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 455

University of Michigan No. 121, 59 pp. See also Cooley, J. R., G. Kritsky, M. J.Edwards, et al. 2009. The distribution of periodical cicada brood X in 2004.American Entomologist 55(2):106–113.

Fig. 8.8 Photograph by Justin O. Schmidt. See also Schmidt, J. O. and M. S. Blum.1977. Adaptations and responses of Dasymutilla occidentalis (Hymeoptera:Mutillidae) to predators. Entomologia Experimenta et Applicata 21:99–111.

Fig. 8.9 Courtesy of Richard D. Alexander.

Fig. 8.10 Stevenson P. A., Dyakonova, V., Rillich J., et al. 2005. Octopamine andexperience-dependent modulation of aggression in crickets. The Journal ofNeuroscience 25(6):1431–1441.

Fig. 8.11 Modified from Hoy, R., J. Hahn, and R. C. Paul. 1977. Hybrid cricketauditory behavior: evidence for genetic coupling in animal communication.Science 195:82–83. Reprinted with permission from AAAS.

Fig. 8.12 Modified from Gibson, G. and I. Russell. 2006. Flying in tune: sexualrecognition in mosquitoes. Current Biology 16(11):1311–1316.

Figs. 8.13 and 8.14 Drawings copyright Emily A. Matthews, based on Frisch,K. von 1967. The Dance Language and Orientation of Bees. Harvard UniversityPress, Cambridge, MA.

Fig. 8.15 From Michelsen, A., Andersen, B. B., Storm J., et al. 1992. Howhoneybees perceive communication dances, studied by means of a mechanicalmodel. Behavioral Ecology and Sociobiology 30(3–4):143–150. With kindpermission of Springer Science+Business Media.

Fig. 8.16 From Nieh, J. C. 1999. Stingless bee communication. American Scientist87(5):428–435. Reprinted by permission of American Scientist, journal of SigmaXi, The scientific Research Society of North America.

Fig. 8.17 (above) Photographs by Thomas D. Seeley. (below) From Dyer, F. C.2002. The biology of the dance language. Annual Review of Entomology47:917–949. Reprinted, with permission, from the Annual Review of Entomology,volume 47 © 2002 by Annual Reviews www.annualreviews.org.

Table 8.1 Based on DuMortier, B. 1963. Morphology of sound emission apparatusin Arthropoda. pp. 277–345 In R. G. Busnel (Ed.), Acoustic Behaviour of Animals,and on Haskell, P. T. 1974. Sound production. pp. 353–410 In M. Rockstein (ed.),The Physiology of Insecta, Volume II, 2nd ed., Academic Press, NY. See also,Bailey, W. J. 1991. Acoustic Behaviour of Insects. An evolutionary perspective.Chapman and Hall, London.

Table 8.2 Based on Schwartzkopff, J. 1974. Mechanoreception. pp. 273–352 InM. Rockstein (Ed.), The Physiology of Insecta, Volume II, 2nd ed., AcademicPress, NY. See also Ewing, A. W. 1989. Arthropod Bioacoustics. Neurobiology andBehaviour. Comstock Press of Cornell University Press, Ithaca, NY.

Page 12: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

456 Credits

Chapter Nine

Fig. 9.1 Drawing by Joan W. Krispyn. See also Thornhill, R. 1976. Reproductivebehavior of the lovebug, Plecia nearctica (Diptera: Bibionidae). Annals of theEntomological Society of America 69:843–847.

Fig. 9.2 Drawing by Joan W. Krispyn.

Fig. 9.3 From Stone G. N., R. J. Atkinson, A. Rokas„ et al. 2008. Evidence forwidespread cryptic sexual generations in apparently purely asexual Andricusgallwasps. Molecular Ecology 17:652–665.

Fig. 9.4 From Hardy, I. C. W., P. J. Ode, and M. T. Siva-Jothy. 2005. Matingbehavior. pp. 219–260 In M. A. Jarvis (Ed.), Insects as Natural Enemies: APractical Perspective. Springer, Dordrecht Netherlands, with kind permission ofSpringer Science+Business Media.

Fig. 9.5 Drawing by Joan W. Krispyn. See also Stich, H. F. 1963. An experimentalanalysis of the courtship pattern of Tipula oleracea (Diptera). Canadian Journal ofZoology 41:99–109.

Fig. 9.6 From Dressler, R. L. 1968. Pollination by euglossine bees. Evolution22:202–210.

Fig. 9.7 Photograph by Robert E. Silberglied.

Fig. 9.8 From Kullenberg B. and G. Bergström, 1976. Hymenoptera aculeatamales as pollinators of Ophrys orchids. Zoologica Scripta 5:13–23. By permissionof Wiley-Blackwell.

Fig. 9.9 Photograph by the authors. See also Crankshaw, O. S. andR. W. Matthews. 1981. Sexual behavior among parasitic Megarhyssa wasps(Hymenoptera: Ichneumonidae). Behavioral Ecology and Sociobiology 9:1–7.

Fig. 9.10 Drawing by Emile Blanchard, In Figuier, L. 1869. The Insect World.Chapman and Hall, NY.

Fig. 9.11 From Otte, D. 1974. Effects and functions in the evolution of signalingsystems. Annual Review of Ecology and Systematics 5:385–417. Reprinted, withpermission, from the Annual Review of Ecology, Evolution, and Systematics,volume 5 ©1974 by Annual Reviews www.annualreviews.org.

Fig. 9.12 Photograph by Garry Wall.

Fig. 9.13 Photograph by the authors. See also Matthews, R. W., J. M. González,J. R. Matthews, et al. 2009. Biology of the parasitoid Melittobia (Hymenoptera:Eulophidae). Annual Review of Entomology 54:251–266.

Fig. 9.14 Photograph courtesy of Randy Thornhill. See Thornhill, R. 1976. Sexualselection and nuptial feeding behavior in Bittacus apicalis (Insecta: Mecoptera).American Naturalist 110:529–548. See also Thronhill, R. and J. Alcock. 1983. TheEvolution of Insect Mating Systems. Harvard University Press., Cambridge, MA.

Page 13: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 457

Fig. 9.15 (left) Photograph by Douglas W. Whitman. (right) Photograph by JudyBaxter, Hahira, GA. See also Eisner, T., M. Eisner, and M. Siegler. 2005. SecretWeapons: Defenses of Insects, Spiders, Scorpions, and Other Many-LeggedCreatures. Belknap Press of Harvard University Press, Cambridge, MA.

Fig. 9.16 Photograph by Robert E. Silberglied. See also F. R. Prete, H. Wells,P. H. Wells, and L. E. Hurd (Eds.). 1999. The Praying Mantids. Johns HopkinsUniversity Press, Baltimore, MD.

Fig. 9.17 From LeBas, N. R. and L. R. Hockham 2005. An invasion of cheats: Theevolution of worthless nuptial gifts. Current Biology 15(1):64–67.

Fig. 9.18 Drawing by the authors. Based on Trivers, R. L. 1972. Parentalinvestment and sexual selection. pp. 1871–1971 In B. Campbell (Ed.), SexualSelection and the Descent of Man, Aldine, Chicago, IL.

Fig. 9.19 Drawing by Joan W. Krispyn.

Fig. 9.20 Photograph by Paul H. Williams, University of Wisconsin.

Fig. 9.21 From Kogan, M. 1975. Plant resistance in pest management. pp. 103–146In R. L. Metcalf and W. H. Luckmann (Eds.), Introduction to Insect PestManagement. Wiley, NY. By permission of Wiley-Blackwell.

Fig. 9.22 Drawing by Joan W. Krispyn. See also Daanje, A. 1975. Some specialfeatures of the leaf-rolling technique of Byctiscus populi L. (Coleoptera:Rhynchitini). Behaviour 53:285–316.

Quote p. 363 from Wilson, E. O. 1975. Sociobiology. The New Synthesis. HarvardUniversity Press, p. 320.

Chapter Ten

Fig. 10.1 Photograph by the authors.

Fig. 10.2 (left) Photograph by Bonnie S. Heim. See also Evans, H. E. andJ. E. Gillaspy. 1964. Observations on the ethology of digger wasps of the genusSteniolia (Hymenoptera: Sphedcidae: Bembicini). American Midland Naturalist72:257–280. (right) From Paluch, M., M. M. Casagrande, O. H. H. Mielke. 2005.Comportamente de agregaçåo noturna dos machos de Actinote surima surima(Schaus) (Lepidoptera; Heliconinae; Acraeini). Revista Brasileira de Zoologia22(2):410–418.

Fig. 10.3 Photograph by the authors.

Fig. 10.4 Courtesy of Braulio Dias. See also Dias, B. F. 1975. Comportamentopresocial de Sinfitas do Brazil Central. I. Themos olfersii (Klug) (Hymenoptera:Argidae). Studia Entomologia 18:401–432.

Page 14: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

458 Credits

Fig. 10.5 Modified from Smith, R. L.1976. Male brooding behavior of the waterbug Abedus herberti (Hemiptera: Belostomatidae). Annals of the EntomologicalSociety of America 69:740–747.

Fig. 10.6 Photograph by Robert L. Smith. See also Smith, R. L. 1997. Theevolution of paternal care in the giant water bugs (Heteroptera: Belostomatidae).pp.116–149 In J. C. Choe and B. J. Crespi (Eds.), The Evolution of Social Behaviorin Insects and Arachnids. Cambridge UniversityPress, UK.

Fig. 10.7 From West, M. J. and R. D. Alexander. 1963. Sub-social behavior in aburrowing cricket, Anurogryllus muticus (De Geer). Orthoptera. Gryllidae. OhioJournal of Science 63:19–24.

Fig. 10.8 From Gullan, P. J. and P. S. Cranston. 2004. The Insects. An Outline ofEntomology, 3rd ed. Wiley-Blackwell, Oxford. By permission of Wiley-BlackwellSee also Halffter, G. 1997. Subsocial behavior in Scarabaeine beetles. pp. 237–259In J. C. Choe and B. J. Crespi (Eds.), The Evolution of Social Behavior in Insectsand Arachnids. Cambridge University Press, UK.

Fig. 10.9 Drawing by Joan W. Krispyn.

Fig. 10.10 Drawings by Sarah Landry from Evans, H. E. and R. W. Matthews1973. Systematics and nesting behavior of Australian Bembix sand wasps(Hymenoptera: Sphecidae). Memoirs of the American Entomological Institute20:1–386. See also Evans, H. E. and K. M. O’Neill. 2007. The Sand Wasps.Natural History and Behavior. Harvard University Press, Cambridge, MA.

Fig. 10.11 From McCook, H. C. 1909. Ant Communities and How They AreGoverned, Harper & Brothers, NY.

Fig. 10.12 Photograph by the authors.

Fig. 10.13 (above) Photograph by Robert E. Silberglied. (below) Photograph byCarl W. Rettenmeyer.

Fig. 10.14 Drawing by Turid Hölldobler-Forsyth, In Wilson, E. O. 1976. A socialethogram of the Neotropical arboreal ant Zacryptocerus varians (Fr. Smith).Animal Behaviour 24:354–363.

Fig. 10.15 From Tophoff, H. 1972. The social behavior of army ants. ScientificAmerican 227:70–79 (November). Copyright © (1972) by Scientific American,Inc. All rights reserved. See also Gotwald, W. H. 1996. Army Ants: The Biology ofSocial Predation. Comstock Press, Ithaca, NY.

Fig. 10.16 From West-Eberhard, M. J. 1969. The social biology of polistine wasps.Miscellaneous Publications of the Museum of Zoology, University of Michiganno. 140, 101 pp.

Fig. 10.17 (left) Drawing by Amy Bartlett Wright from Jeanne, R. L. 1991. Theswarm founding Polistinae. pp. 191–231. (right) Photograph by C. K. Starr from

Page 15: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 459

Turillazzi, S. The Stenogastrinae. pp. 74–98. Both chapters in Ross, K. G. andR. W. Matthews (Eds.). The Social Biology of Wasps. Cornell University Press,Ithaca, NY. Reproduced by permission of Cornell University Press.

Fig. 10.18 Drawings by Joan W. Krispyn.

Fig. 10.19 Drawing by Amy Bartlett Wright from Matthews, R. W. 1991.Evolution of social behavior in sphecid wasps. pp. 570–602 In Ross, K. G. andR. W. Matthews (Eds.). The Social Biology of Wasps. Cornell University Press,Ithaca, NY. Reproduced by permission of Cornell University Press.

Fig. 10.20 Photographs by Robert L. Jeanne., University of Wisconsin.

Fig. 10.21 Photograph by Elaine Evans, courtesy of the University of MinnesotaExtension Service.

Fig. 10.22 Photograph courtesy of Michael Schwarz. See also Schwarz, M. P.,N. J. Bull, and K. Hogendoorn. Evolution of sociality in the allodapine bees: areview of sex allocation, ecology and evolution. Insectes Sociaux 45: 349–368.

Fig. 10.23 From (left) M. Lüscher, M. 1961. Air-conditioned termite nests.Scientific American 205:138–145. Copyright © (1961) by Scientific American, Inc.All rights reserved. (right) Photograph by the authors.

Fig. 10.24 From Eberhard, W. G. 1975. The ecology and behavior of a subsocialpentatomid bug and two scelionid wasps: strategy and counterstrategy in a host andits parasites. Smithsonian Contributions to Zoology No. 205. 39 pp. Reprinted bypermission of the Smithsonian Institution.

Fig. 10.25 Diagram by the authors. Based on Lin, N. and C. D. Michener, 1972.Evolution of sociality in insects. Quarterly Review of Biology 47: 131–159.

Fig. 10.26 Photograph by Justin O. Schmidt.

Fig. 10.27 Drawing by Paul H. Matthews. Based on Wilson, E. O. andB. Hölldobler. 2005. Eusociality: origin and consequences. Proceedings of theNational Academy of Sciences of the USA 102(38):13367–13371. See alsoWest, S. A., A. S. Griffin, and A. Gardner. 2007. Social semantics: altruism,cooperation, mutualism, strong reciprocity and group selection. Journal ofEvolutionary Biology 20:415–432.

Fig. 10.28 Drawing by Sarah Landry from Wilson, E. O. 1975. Slavery in ants.Scientific American 232:32–36 (June). Copyright © (1975) by Scientific American,Inc. All rights reserved.

Table 10.1 Compiled from various sources, but primarily based on Wilson, E. O.1975. Sociobiology. Harvard University Press, Cambridge, MA and on Lindauer,M. 1974. Social behavior and mutual communication. pp. 149–228 InM. Rockstein (Ed.) The Physiology of the Insecta, 2nd ed., Vol. 3, AcademicPress, NY.

Page 16: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

460 Credits

Table 10.2 Based on Wilson, E. O. 1971. The Insect Societies. Harvard UniversityPress, Cambridge, MA.

Plates

Plate 1 (above) Photograph by the authors. (below) Image downloaded 31 January2009 from the Virtual Atlas of the Honeybee Brain,http://www.neurobiologie.fu-berlin.de/beebrain/

Plate 2 Photograph by Darren Wong and David Merritt.

Plate 3 Photograph copyright by Dave Bonta.

Plate 4 (above) Photograph by Greg Sword. (below, left) Image downloaded 3February 2009 from http://www.nri.org/images/migrantpests2.jpg. (below, right)Photograph by Diane Earl.

Plate 5 (above) Photograph by the authors. (below) Photographs by DouglasW. Whitman.

Plate 6 Photograph by Sean McCann, copyright 2006.

Plate 7 Photograph by the authors.

Plate 8 Photographs © Dan L. Perlman/EcoLibrary.org. See also Janzen, D. H.1967. Interaction of the bull’s horn acacia (Acacia cornigera L.) with an antinhabitant (Pseudomyrmex ferruginea F. Smith) in Eastern Mexico. University ofKansas Science Bulletin 67:315–558.

Plate 9 Photograph by the authors.

Plate 10 Photograph by Charlie Charlton.

Plate 11 Photograph by Dave Bonta.

Plate 12 Photograph by Dean Gugler.

Plate 13 From Majerus, M. E. N., F. F. A. Brunton and J. Stalker. 2000. A bird’seye view of the peppered moth. Journal of Evolutionary Biology 13:155–159. Bypermission of Wiley-Blackwell. See also Majerus, M. E. N. 1998. Melanism:Evolution in Action. Oxford University Press.

Plate 14 Photographs by Carl W. Rettenmeyer.

Plate 15 Photographs by Carl W. Rettenmeyer.

Plate 16 Downloaded 24 August 2009 from http://topicstock.pantip.com/wahkor/topicstock/2006/02/X4102342/X4102342-0.jpg. See also Birch, M. C., G. M.Poppy and T. C. Baker. 1990. Scents and eversible scent structures of male moths.Annual Review of Entomology 35: 25–54.

Plate 17 Photograph by the authors.

Page 17: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Credits 461

Plate 18 Photographs copyright of Masato Ono, Tamagawa University, Tokyo. Seealso Ono, M., T. Igarashi, E. Ohno, et al. 1995. Unusual thermal defence by ahoneybee against mass attack by hornets. Nature 377:334–336.

Plate 19 Photograph by Douglas W. Whitman.

Plate 20 Photograph by the authors.

Plate 21 (above) Photograph by Anthony O’Toole and David Merritt. (below)Photograph by David Merritt.

Plate 22 Photograph by James E. Lloyd. See also Lloyd, J.E. 1975. Aggressivemimicry in Photuris fireflies: signal repertoires by femmes fatales. Science197:452–453.

Plate 23 Courtesy of John R. Meyer. See also Briscoe, A. D. and L. Chittka. 2001.Evolution of color vision in insects. Annual Review of Entomology 46:471–510.

Plate 24 Photograph by Klaus Schmitt. See http://www.phase.com/kds315/uv_photos

Plate 25 Photograph by Robert Duncan, courtesy of Douglas W. Whitman.

Plate 26 Photographs by D. L. Hu. Reprinted by permission of MacmillanPublishers, Ltd. from Hu, D. L., B. Chan, and J. W. L. Bush. 2003. Thehydrodynamics of water strider locomotion. Nature 424:663–666. See also Wilcox,R. S. 1979. Sex discrimination in Gerris remigis: role of a surface wave signal.Science 180:1325–1327.

Plate 27 Photograph by Rex Cocroft. See also Cocroft, R. B. 1999.Offspring-parent communication in a subsocial treehopper (Hemiptera:Membracidae: Umbonia crassicornis). Behaviour 136(1):1–21.

Plate 28 Moth photographs from Hristov, N. I. and W. E. Conner. 2005. Soundstrategy: acoustic aposematism in the bat–tiger moth arms race. Naturwisschaften92(4):164–169, with kind permission of Springer Science+Business Media. Batseries from Barber, J. R. and W. E. Conner. 2007. Acoustic mimicry in apredator-prey interaction. Proceedings of the National Academy of Sciences of theUSA 104(22):9331–9334. Copyright (2007) National Academy of Sciences, USA.Graph by the authors.

Plate 29 Photograph by Douglas W. Whitman. See also Brown, A. W. 1999. Matechoice in tree crickets and their kin. Annual Review of Entomology 44:371–396.

Plate 30 Image downloaded 14 February 2009 fromhttp://commons.wikimedia.org/wiki/File:Aphid-giving-birth.jpg

Plate 31 Photograph by Gerald S. Wilkinson, University of Maryland. See alsoWilkinson, G. S. and P. R. Reillo. 1994. Female choice response to artificialselection on an exaggerated male trait in a stalk-eyed fly. Proceedings of the RoyalSociety of London 255:1–6.

Page 18: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

462 Credits

Plate 32 Photograph by the authors. See also Gilbert, L. E. 1982. Coevolution of abutterfly and a vine. Scientific American 110–118.

Plate 33 Photographs by Marshall M. Kerr. See also Waage, J. K. 1986. Evidencefor widespread sperm displacement ability among Zygoptera (Odonata) and themeans for predicting its presence. Biological Journal of the Linnean Society28:285–300.

Plate 34 Photographs by W. E. Conner and N. Hristov. Conner, W. E., R. Boada,F. C. Schroeder, et al. 2000. Chemical defense: Bestowal of a nuptial alkaloidalgarment by a male moth on its mate. Proceedings of the National Academy ofSciences of the USA 97(26):14406–14411. Copyright (2000) National Academy ofSciences, USA.

Plate 35 Photograph by the authors.

Plate 36 Photograph by Susan VanMeter, Hampshire County, WV.

Plate 37 Photograph by Terrence D. Fitzgerald. See also Costa, J. T. 2006. TheOther Insect Societies. The Belknap Press of Harvard University Press, Cambridge,MA.

Plate 38 Photograph by the authors.

Plate 39 Photograph by Christine A. Nalepa. See also Nalepa, C. A. andW. J. Bell. 1997. Postovulation parental investment and parental care incockroaches. pp. 26–51 In J. C. Choe and B. J. Crespi (Eds.), The Evolution ofSocial Behavior in Insects and Arachnids. Cambridge University Press, UK.

Plate 40 (left) From Crespi, B. J., D. C. Morris and L. A. Mound. 2004. Evolutionof ecological and behavioural diversity: Australian acacia thrips as modelorganisms. Australian Biological Resources Study, Canberra and AustralianNational Insect Collection, Canberra. 328 pp. (right) photograph by Laurence A.Mound.

Plate 41 Photograph by Robert L. Smith. See also García-González, F.,E. R. S. Roldán, F. Ponz and M. Gomendio. 2007. The adaptive significance ofmale egg carrying in the golden egg bug. Ecological Entomology 32:578–581.

Plate 42 Photograph by the authors.

Plate 43 Photograph by Alan Melville. See also Kölliker, M. 2007. Benefits andcosts of earwig (Forficula auricularia) family life. Behavioral Ecology andSociobiology 61(9):1489–2497.

Plate 44 Photograph by the authors.

Plate 45 Photograph by the authors.

Plate 46 Photograph by the authors.

Page 19: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates

Plate 1 Proximal analysis of honey bee foraging. (above) A foraging worker depends on its highlydeveloped spatial navigation abilities to search for pollen and nectar outside its hive or nest, returnhome, and communicate this information to others. (below) Clusters of neurons called mushroombodies (shown in red) located at the top front of its brain are involved in spatial learning; the yellowglobes are the optic lobes of the bee brain

463

Page 20: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

464 Plates

Plate 2 Amplifying power for a remarkable jump. As the flea crouches before takeoff, a resilinpad (insert) at the base of the leg is squeezed and two cuticular catches are cocked. When these letgo, all of the energy imparted via the leg muscles is released from the pad in about a millisecond,thrusting the flea’s hind trochanters against the substrate

Page 21: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 465

Plate 3 Two monarch butterflies, Danaus plexippus, on their host plant, the milkweed Asclepiastuberosa

Page 22: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

466 Plates

Plate 4 Swarming behavior. (top) Two morphs of Schistocerca gregaria; the gregarious form ison the left, the solitary form is on the right; (bottom left) locusts swarming in Africa; (bottom right)a group of adults and nymphs feeding on cabbage in a laboratory colony

Page 23: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 467

Plate 5 Aggregating for hibernation. (above) Paper wasps, Polistes carolina, move to shelteredsites in the fall, then eventually disperse to establish new nests in the spring. (below) Somecoccinelliid beetle species gather in large numbers before hibernating, as this aggregation fromArizona illustrates

Page 24: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

468 Plates

Plate 6 Stylopsized paper wasp. Three strepsipteran parasites protrude from between the abdom-inal segments of this Polistes exclamans worker. The parasites modify the behavior of the wasp totheir benefit

Page 25: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 469

Plate 7 Cuckoo wasps such as this one, Stilbum cyanura, attack their host, in this case a muddauber wasp, by first chewing through the nest wall to reach the helpless offspring. They thenlay a egg on the host using their telescoping terminal abdominal segments. If disturbed, the heav-ily armored cuckoo wasp can retract its abdomen into a tight ball; its thick cuticle is relativelyimpenetrable

Page 26: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

470 Plates

Plate 8 Living in a thorn. (above) Nest of Pseudomyrmex ants in a swollen thorn of the bull’shorn Acacia, which the ant hollows out to house its brood. The entrance hole near the tip is clearlyvisible, as are extrafloral nectaries (three swellings on the adjacent leaf petiole). (below) Portion ofan Acacia leaf, showing the protein-rich yellow Beltian bodies on the leaflet tips being collectedby a Pseudomyrmex worker ant

Page 27: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 471

Plate 9 The carrion plant, Stapelia, produces a strong odor like decaying carrion; this is highlyattractive to calliphorid and sarcophagid flies that are duped into depositing their eggs at theflower’s base. Two flies are visible at the flower base here

Plate 10 An ant, probably Formica, tends a batch of black bean aphids

Page 28: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

472 Plates

Plate 11 Vivid aposematic colors characterizes these nymphs of Oncopeltus fasciatus, themilkweed bug; this warning is backed by chemical defenses gained from the milkweed plant

Page 29: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 473

Plate 12 Two adults of the willow leaf beetle, Plagiodera versicolora; their larvae practice bothgroup feeding and cannibalism

Page 30: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

474 Plates

Plate 13 The two forms of peppered moths, Biston betularia, on foliose lichen, (above) as theywould look in normal ‘visible’ light, and (below) under UV illumination

Page 31: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 475

Plate 14 Three examples of crypsis among insects of the tropical rain forests. Top: nymph of anunidentified preying mantis. Middle: a well-camouflaged walking stick. Below: a katydid restingon a moss- and lichen-covered branch demonstrates both crypsis and disruptive coloration

Page 32: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

476 Plates

Plate 15 Four examples of apparently Batesian mimics resembling many tropical ‘tarantula hawk’wasp species. (upper left) a carnivorous katydid from Panama; (upper right and lower left) twodifferent coreid bugs from Ecuador; (lower right) an assassin bug from Panama

Page 33: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 477

Plate 16 The expanded coremata of a displaying male of an arctiid lekking moth, Creatonotos

Page 34: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

478 Plates

Plate 17 A cluster ofNeodiprion sawfly larvae on apine branch exhibit theircharacteristic defensiveposture, with the anteriorparts of their bodies tiltedbackward and droplets ofregurgitated fluids exposedfrom their mouths. Vigorousjerking movements enhancethe effectiveness of this groupdisplay. The secretioncontains primarilyplant-derived substances

Page 35: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 479

Plate 18 The Japanese hornet Vespa mandarinia japonica preys on worker honeybees that it cap-tures at the hive entrance; instead of attempting to sting or succumbing as most domestic honeybeespecies would, workers of the native Apis cerana honeybees grasp the intruder, and dozens morequickly surround and engulf it into a living, buzzing ball of warm bees, producing a temperaturethe bees can withstand but the hornet cannot

Page 36: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

480 Plates

Plate 19 Green tree antsbuild nests by stitching leavestogether with larva-producedsilk. Dominant canopy antsthroughout the Old Worldtropics, Oecophylla formcolonies many thousandsstrong and can be ferociouswhen their nests are disturbed

Page 37: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 481

Plate 20 Attracting a crowd. The secret to creating a bee beard lies in knowing that the honeybee queen’s pheromones makes her the center of attention. To make the beard, the queen must belocated in a bee swarm and moved into a small screen cage with an attached string that can bequickly hung like a necklace. Within minutes the workers sense that their queen is missing andtake flight in a huge cloud; when they discover her, the workers quickly settle as close as possibleto their queen. (She is under the author’s chin, hidden by the swarm.)

Page 38: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

482 Plates

Plate 21 Dinner by glowworm light. (above) The predatory Australian glowworm Arachnocampaflava inhabits caves, where the larvae spin silk hammocks adorned with glistening droplets. (below)A time-lapse photo of a group of glowworms; the source of one glowworm’s luminescence isspotlighted in the upper photo

Page 39: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 483

Plate 22 Playing femme fatale, a female Photuris firefly has seized a male of another fireflyspecies in a fatal embrace after attracting him by mimicking the mating signal of females of thatspecies. Photuris are such significant predators on other fireflies in the Americas that they arethought to be the driving force that has caused several firefly species to become diurnal

Page 40: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

484 Plates

Plate 23 Perception of color by humans (top), bichromatic insects (center), and (bottom)trichromatic insects such as honey bees

Page 41: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 485

Plate 24 A bumblebee, here just leaving a Mexican zinnia, sees a very different color palettethan the human who planted the flower. (above, left), human view; (above, right), the same flowerunder ultraviolet (UV) light. (below) Simulated bee vision shows the way a flower with a visitingbumblebee would look to humans if our light sensitivity were like that of the bees. In this photo-graph of a bee on a yellow flower, colors have been remapped so that UV reflectance is shown asviolet/blue and the whole image only contains UV-blue-green

Page 42: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

486 Plates

Plate 25 Butterflies drinking at a mud puddle. When disturbed, they will swirl up together to forma confusing mass of colorful forms

Plate 26 Using a thin layer of thymol blue on the water surface reveals the way in which a waterstrider (Gerridae) propels itself across the surface of a pond or river by hemispherical vortices shedby its driving legs

Page 43: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 487

Plate 27 An adult female thorn bug treehopper (Umbonia crassicornis) guards her nymphs. Theywill use substrate vibrations to signal her as a group if a predator such as a coccinellid beetleshould approach, and she will respond by blocking the invader, fanning her wings aggressively,and sometimes buzzing

Page 44: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

488 Plates

Plate 28 ‘Speaking’ to bats. (A) All possible combinations of palatability and sound productiontraits occur naturally in four different species of sympatric North American tiger moths: C+ andC– refer to presence or absence of defensive chemistry and S+ and S– refer to ability or inabilityto produce ultrasonic clicks. (B) Four stages in prey capture. (graph) Predictions arising from threealternative hypotheses for the function of moth sound (jamming, startle, or warning) are depicted;any would result in a trained bat aborting its usual prey capturing sequence. Results were consistentonly with a hypothesis of acoustic mimicry (‘observed’ line on graph); apparently the sounds are awarning to bats that the moths are unpalatable, and the bats quickly learn to ignore clicks that arenot associated with distastefulness

Page 45: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 489

Plate 29 Mating pair of snowy tree crickets, Oecanthus fultoni. For as much as an hour, the female(above) will remain in position, chewing on a thick glutinous liquid from the male’s metanotalgland; later she will also consume the white spermatophore that is visible here. Mating in thissubfamily is entirely female-controlled

Plate 30 An aphid giving birth to live young, one of the ways in which aphids reproduce

Page 46: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

490 Plates

Plate 31 Stalk-eyed flies, Cyrtodiopsis dalmanni, gather to roost. A male (above) will fight offother males to be the sole male in such aggregations, in which mating occurs at dusk or dawn.Males with wider eye spans usually win these altercations, and females prefer to group with maleswith the longest eye spans

Page 47: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 491

Plate 32 Heliconius hewitsoni butterfly male, guarding a pupa (attached to a Passiflora vine in aCosta Rican rain forest) from which his future mate will soon emerge

Page 48: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

492 Plates

Plate 33 Ebony jewelwing damselflies, Calopteryx maculata. (above), a male on his territorialperch. (below), a mating pair in the classic “wheel” position; the female has white wing spots

Page 49: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 493

Plate 34 Chemical defense in the arctiid moth, Cosmosoma myrodora. (A) An aposomatic malerests on its larval food plant, a source of pyrrolizidine alkaloids (PA). (B) A courting male has justejected a flocculent cloud (arrow) that will festoon the female in PA-rich fibers

Page 50: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

494 Plates

Plate 35 Mud nest of a large Australian potter wasp, Abispa ephippium. Strictly solitary, onefemale builds this fortress and progressively provisions each of up to seven cells. The nest entrancefunnel, thought to play a role in parasite deterrence, is dismantled and constructed anew with eachadded cell

Page 51: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 495

Plate 36 A tumblebug (Scarabaeinae) rolls its ball of dung carved from manure. The flesh fly(Sarcophagidae) riding on the ball also breeds in dung and is a competitor for this rich foodresource. After rolling the ball for some distance, the pair of beetles will cooperatively excavate aburrow and bury it, thereby making it inaccessible to flies. Underground in their burrow, the pairmay spend long periods preparing the ball to receive their egg

Page 52: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

496 Plates

Plate 37 Phelypera distigma weevil larvae in their ‘circle the wagons’ (cycloalexic) defensiveformation between feeding bouts

Plate 38 Mastotermes darwiniensis worker being attacked by three green tree ants, Oecophyllasp. Worldwide, ants undoubtedly pose the single greatest threat to termites

Page 53: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 497

Plate 39 Parental care in a wood-feeding cockroach, Cryptocercus punctulatus. The mother pro-tects a clutch of offspring that infect themselves with needed cellulose-digesting symbionts byfeeding on the mother’s feces as well as on fluids from the mother’s hind gut

Plate 40 (left) Australian gall-making thrips, Kladothrips morrisi, display striking polymorphism,shown by a stout foundress female and her more heavily sclerotized soldier daughter (right) Afoundress female (black) and her offspring inhabit a domicile (here opened) formed from gluingtogether two phyllodes of an Acacia

Page 54: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

498 Plates

Plate 41 Golden egg bugs, Phyllomorpha laciniata, carry one another’s eggs, keeping them safefrom ant predation. The odd, leafy spines help the bug blend in with dried parts of its host plant

Plate 42 A Manduca hawk moth paying a night visit to a moonflower, Ipomea alba. The flow-ers have coevolved for moth pollination; they do not open until evening, and they close the nextmorning

Page 55: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 499

Plate 43 Maternal care in the earwig, Forficula auricularia. Here, a female retrieves displacedeggs and returns them to her nest. In addition to guarding the eggs, she will bring food to hernymphs while they are very young

Page 56: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

500 Plates

Plate 44 After spending most of their life feeding on roots underground, cicada nymphs emergefrom the soil in great numbers, split their exoskeleton, and become short-lived adults whose solepurpose is reproduction. Males produce noisy songs, using their tymbals, and receptive femalesrespond with timed wing flicks that attract males for mating

Page 57: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Plates 501

Plate 45 Termites swarming from a railroad tie

Plate 46 To a human observer, all bumblebees and carpenter bees appear quite similar, but to afemale Xylocopa virginica, this yellow face mask indicates a conspecific carpenter bee male

Page 58: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Index

AAbedus, 396–400, 428Abies, 127, 169Abispa, 401, 494Ablation, 49, 50, 89Acanthomyops, 240, 251, 252Acheta, 316, 317–319, 400Acid, formic, use in defense, 187, 207Acilius, 104Acripeza, 209Actinote, 393Action potentials, 47, 53, 55, 59, 60, 219, 265Active space, 249, 250–252, 257Adjustment, spatial, 93–129Adrenaline, 86Aedes, 12, 132, 324–327, 346Aggregations, 127, 151–168, 197, 214–215,

406, 420, 472adult, 111, 116, 127, 151–152, 267,

281–283, 294, 310, 364–368,390–394, 466, 467, 490

classification of, 392feeding, 177–180, 478of immatures, 293, 300, 394, 472, 478, 496pheromones in, 224, 231–241, 255, 258,

326See also Clustering

Aggression, 14, 153, 201, 252, 282, 283,314–317, 318, 371, 372, 443

See also Mimicry, aggressiveAgriculture, insect, 154–157Agrotis, 45Alarm, 27, 172, 207, 208, 214, 226, 240–242,

251, 252, 254, 256, 257, 258,283–284, 294, 300, 306, 314–317,319, 442

in aphids, 171, 241in honey bees, 240, 242

Allatectomy, 84, 345

Allee effects, 232, 236Allelochemicals, definition, 226Allomone, 194, 204, 226, 227, 254–256Altruism, 197, 236, 434, 436, 437Ambush, 50, 146–148Amitermes, 108Ammophila, 58, 81, 82, 170, 272, 404Ampulex, 145, 146Analysis, proximate and ultimate, 40–41Anaphylaxis, 205Anax, 68Andrena, 151, 358Andricus, 348–349Androconia, 229Anisomorpha, 206Anolis, 209Antennae

behaviors involving, 7, 70, 71, 78, 146,159–162, 183, 219, 228, 236, 246,247–248, 254, 317–319, 349, 402,417, 433

as sensory receptors, 49, 60, 107, 109,134, 182, 221–223, 229, 230, 258,296–297, 298, 312, 323–326, 333,335

Antheraea, 90, 253, 344Anthonomus, 259Anthropomorphism, 26Antiteuchus, 432–434Ant lions, 147, 401Ants, 2, 13, 26, 29, 31, 36, 68, 69, 72, 81,

105, 109, 113, 125, 128, 129, 139,147, 149, 151, 156–158, 161–163,170, 179, 181, 183, 184, 197, 201,205–208, 213, 214, 220–222, 227,231, 248, 249, 251, 256, 273, 276,300, 389, 392, 296, 404, 406, 407,409, 418, 420, 422, 427–429, 432,434, 436, 438, 441, 442, 498

503

Page 59: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

504 Index

acacia, 171–173, 470Amazon, 442aphid-tending, 155, 171, 241, 349, 428,

471Argentine, 19army, 116, 158, 237, 238, 412, 413–416attine, see Ants, leaf-cuttercarpenter, 207, 254, 412citronella, 251fire, 131, 204, 237, 238–240, 418formicine, 186, 208green tree, see Oecophyllaharvester, 27, 252, 327, 439leaf-cutter, 107, 124, 139, 154–155, 183,

252, 410myrmecine, 412shampoo, 255thief, 153, 154trail-following, 222, 239velvet, 308, 314, 315, 405weaver, 29, 108, 246, 255, 410wood, 159–160

Anuraphis, 155Anurogryllus, 402Aphids, 59, 121, 125, 140, 141, 144, 148, 155,

167, 185, 194, 197, 227, 231, 241,248, 299, 348, 389

alternation of generations, 349bean, 117, 471birth, 348, 489gall-forming, 409, 425, 427–428mutualisms, 171social, 428

Aphis, 349Aphodius, 321Aphrodisiacs, 195, 254Apiomerus, 170Apis, 42–44, 248, 336, 422

See also Bees, honeyAposematism, 152, 188, 198–204, 232,

319–321, 433, 472Appeasement, 160, 161, 256, 349, 377Apterygote, 342Arachnocampa, 263, 482Argogorytes, 358Argynnis, 58, 285, 286–288Argyrotaenia, 218Arms race, see CoevolutionAsobara, 145Assembly, 231–240Associations, classification of, 392Atemeles, 158, 159–161Atta, 107, 139, 156, 183, 252

Attractants, sexual, 27, 83, 221, 225, 226, 229,250, 253, 254, 257, 344

Austroplatypus, 428Autographa, 385Autotomy, 213Axons, giant, 53

BBackswimmers, 261, 298Ballooning, 125Bats, 62–68, 99, 194, 303, 319, 320, 321, 461,

488Bee beard, 481Bee fly, 405Bees, 3, 7, 26, 42, 59, 72, 73, 74, 102, 105,

106, 116, 129, 143, 144, 151, 153,163, 174, 181, 183, 202, 205, 221,231, 248, 269, 272, 275, 355, 359,391, 404, 409, 420, 424, 427, 434,436, 485

allodapine, 422, 424bumble, see Bumblebeescarpenter, 319, 371, 501coevolution with orchids, 355–357dances of, 45, 59, 72, 105, 106, 238, 276,

299, 323–338, 420euglossine, 72, 356, 357, 361gravity perception, 104, 106halictid, 420, 422, 438, 440honey, 8, 20, 21, 42–44, 45, 59, 60, 69, 72,

81, 87, 94, 102, 105, 106, 108, 109,114, 128, 133, 139, 151, 175, 182,221, 231, 238, 240, 242, 254, 262,272, 273, 276–279, 293, 294, 299,328–339, 380, 389, 407, 409, 410,418, 420, 422, 423, 435, 438, 463,479, 481, 484

hygienic behavior, 20–22mimicry of, 197, 199, 319orchid, see Bees, euglossineretinue behavior, 237, 238, 254sleeping, 390–393sociality in, 163, 299, 409, 420–423,

434–440solitary, 149, 151, 271, 305, 306, 393, 401,

406stingless, 185, 241, 252, 335, 336, 422,

423, 440sweat, 87, 420, 421, 422

Beetles, 3, 4, 6, 10, 19, 75, 81, 96, 97, 104,105, 110, 111, 113, 116, 121, 122,125, 132, 150, 155, 158, 162, 163,165, 170, 186, 197, 201, 206, 208,

Page 60: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Index 505

231, 248, 258, 303, 320, 321, 347,358, 373, 374, 385, 392, 407

ambrosia, 155, 156, 428bark, 117, 122, 155, 167, 168, 224,

232–236, 251, 255, 317, 328, 342,409, 428

blister, 195, 204bombardier, 207, 208, 293buprestid, 47, 107, 383carabid, 162, 207, 315carrion, 246, 319, 404cerambycid, 93, 109, 165, 189, 197, 200,

247click, 94, 97coccinellid, 167, 185, 376, 467, 487deathwatch, 291, 294diving, 97, 104dung, 58, 105, 152, 153, 275, 276, 389,

401–404, 495jewel, 107ladybug (lady, ladybird), 116, 144, 203,

232See also Beetles, coccinellid

lampyrid, see Firefliesleaf, 170, 179–181, 206, 473long-horned, see Beetles, cerambycidlycid, 194, 200, 232passalid, 392, 408, 417, 431potato, 111, 134, 137, 165rove, see Beetles, staphylinidscarab, 29, 394, 395, 401–402scolytid, see Beetles, barkstag, 362staphylinid, 98, 158–161, 404, 431tenebrionid, 208tiger, 94, 147, 204, 269whirligig, 96, 109, 296wood-boring, 93, 109, 294, 296See also Weevils

Bee wolf, 59, 73, 133, 404Behavior

altruistic, see Altruismbiological basis, 2, 3–5, 16, 245, 249, 291,

343group, advantages of, 56, 64, 83, 105history of study, 1–44, 45, 140, 201hormonal coordination, 83–89‘retinue’, 237, 238, 254social, see Sociality

Beltian bodies, 171, 470Bembix, 32, 34, 215, 406Bertholdia, 320Bioassay, 78, 80, 224, 225, 241

Bioluminescence, 262–268See also Light production

Biston, 191–194, 474Bittacus, 373Bivouac, of army ants, 413, 415Blastophaga, 175–177Blatella, 236, 237, 393Bledius, 431Bleeding, reflex, 205Blood, as insect diet, 86, 114, 132, 148, 325Blowflies, 58, 59, 81, 137, 138, 338, 495Bombus, 115, 422, 424

See also BumblebeesBombykol, 226Bombyx, 89, 223, 225–227

See also Moths, silkwormBooklice, 293, 294Brachinus, see Beetles, bombardierBradysia, 359Brain, insect, 40–51, 59, 67, 68, 75, 83, 85–86,

89, 90–91, 106, 113, 137, 146, 219,221, 269, 277, 345, 438, 441, 463

Brevisana, 292Bristletails, 4, 158, 164, 213Brood, 21, 30, 87, 114, 115, 116, 148, 150,

151, 153, 155, 156, 157, 159, 160,161, 163, 183, 186, 234, 242, 246,346, 387, 389, 398, 399, 400, 402,403, 404, 408, 414, 415, 416, 418,422, 423, 432, 439, 442, 443, 470

Bugs (Hemiptera), 84, 101, 105, 107, 111, 117,148, 157, 170, 189, 195, 205, 207,214, 240, 255, 262, 292, 293, 294,296, 300, 304, 372, 394, 396, 407,409, 428

assassin (reduviid), 86, 92, 147, 170, 189,206, 213, 476

See also Rhodniusbed, 131, 148, 157, 241, 342belostomatid (giant water), 396–401, 428bomb-sniffing, 69fire, 168–169fulgorid, 209, 210golden egg, 321, 428–430, 498lightning, see Firefliesmilkweed, 24, 118–121, 472pentatomid (stink), 157, 185, 204, 291,

294, 432–434Bullacris, 303Bumblebees

foraging, 133, 143heat regulation, 114–116sociality in, 390–397

Page 61: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

506 Index

Burrow, accessory, 405Butterflies, 3, 4, 7, 58, 60, 72, 101, 104, 107,

110, 11, 114, 115, 116, 160, 167,174, 191, 197, 199, 200, 203, 212,213, 227, 262, 276, 277, 278, 279,283, 289, 293, 375, 384, 392, 393,486

courtship, 284–285, 290, 342fritillary, 286–288grayling, 101, 103, 229heliconiine, 164, 170, 385

See also Heliconiusmonarch, 109, 119, 120, 122, 127–128,

167, 187, 195, 197, 200, 229, 276,465

‘owl’, 209, 211queen, 284–285, 370swallowtail, 198, 199, 202, 204, 390

Byctiscus, 387Byrsotria, 344

CCaddisflies, 38, 39, 56, 97, 98, 125, 148, 204,

213, 401Caedicia, 321Caligo, 209, 211, 212Calling, 88, 228, 229, 253, 259, 293, 295, 308,

310, 313, 314, 316, 321, 322, 344,359

Calloconophora, 328Callosobruchus, 384–385Calopteryx, 370, 492Camouflage, see CrypsisCamponotus, 254, 412Campsoscolia, 358Cannibalism, 159, 179–181, 183, 371, 377,

378, 385, 426, 473Cantharadin, 195, 373Caprification, 174–177Care, parental, 177, 300, 380–382, 384,

389–407, 428–434, 487, 499Cassida, 206Castes, 29, 248, 249, 409–412, 417, 418, 422,

426, 427, 439, 442, 443Cataglyphis, 45Catasetum, 355Caterpillar, 61, 77, 85, 96, 186, 225, 269

defenses, 186–187, 190, 191, 195, 196,202–204, 211, 319

feeding by, 135, 164, 195, 196as hosts, 70, 79–80, 148, 177, 387orientation, 101, 103, 105

sound detection, 296, 304tent, 177, 239, 240, 392, 408as wasp prey, 32, 45, 58, 82

Cecropia (plant), 171Celerio, 110Central pattern generator (CPG), 51, 52, 53,

56, 96Centris, 369Cephalodesmius, 404Cephalotes, 139, 156, 268Ceratitis, 243Cerci, 30, 47, 53, 54, 55, 56, 93, 296, 317Ceropales, 153, 154Cerula, 186Chaeborus, 228Chalicodoma, 393Chemoreception, 60–62, 137, 219, 221, 222,

231, 243, 258Chorthippus, 323Chorusing, see Songs, insectChrysomela, 206Chrysopa, 83, 148Chrysoperla, 45Cicadas, 86, 88, 94, 110, 114, 116, 292, 294,

296, 308, 310, 311, 323, 392, 500Cicindela, 94, 269Cimex, 241Clade, definition of, 28Cladistics, 33–36, 38Clock, 86–88, 89, 90, 94, 99, 112, 128, 135,

139, 193, 276Clunio, 88Clustering, 114, 152, 163, 179–181, 197, 231,

232, 237, 241, 364, 368, 478, 479See also Aggregations

Clypeadon, 31Coadaptation, see Coevolution, mutualism,

symbiosisCockroaches, 45, 83, 88, 94, 145, 157, 208,

230, 294, 344, 393, 425, 431, 497aggregation in, 236–237classification of, 29–31, 409escape behavior, 52–56feeding responses, 71–72reproduction in, 345–349

Code-breaking, see EavesdroppingCoefficient of relationship (r), 436, 437, 439,

440Coevolution, 141, 164–171, 173, 204, 354,

364, 365, 378Colias, 278, 289–290Colletes, 358

Page 62: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Index 507

Colonycycle, 413–416, 417, 418, 419odor, 248, 249, 443

Colorationaposematic, 203, 209, 232, 375, 472disruptive, 188, 189, 192, 475flash, 209, 212

Color vision, 277–279Commensalism, 161, 163Communal activities, 72, 151, 177–184, 215,

392, 395, 400–407, 424, 439Communication

acoustical, 257, 291, 307, 313, 315, 319,323, 326

chemical, 60, 78, 166, 181, 214, 217–259,283, 298, 345

mass, 239, 240mechanical, 291–340sematectonic, 305tactile, 306visual, 257, 261–290

Competitive exclusion principle, 153Conceptual pitfalls, 25–28Conditioning

classical, 69, 70, 71, 72instrumental, 69, 72preimaginal, 75

Congruency hypothesis, 136Conophthorus, 248Copidosoma, 148Copris, 395, 402Coprophagy, 402Coptotermes, 183Copulation, 58, 59, 125–126, 247, 293, 343,

346, 352, 370–380, 381, 397–399,429

See also MatingCoremata, 219, 229, 477Corixa, 94, 293Cornicles, 227, 241, 427, 471Cosmosoma, 374–376Cost/benefit analysis, 393

See also Optimality theoryCotesia, 75Countershading, 188, 190, 191Courtship, 37, 38, 50, 58, 177, 228, 229, 231,

275, 279, 284–290, 295, 316, 326,341–379, 399

Creatonotos, 477Crickets, 4, 248, 294, 298, 312, 314

ground, 74, 295, 312snowy tree, 86, 295, 308, 489

Critical period, 75, 85

Crotalaria, 374Crypsis, 186, 187–191, 194, 197,

279, 475Cryptocercus, 423, 431, 497Cuticular hydrocarbons, 231, 246–248, 256,

289, 335Cychrus, 315Cyclic-reflex hypothesis, 51Cydia, 76, 77, 259Cyrtodiopsis, 365–368, 490

DDamselflies, 4, 33, 282, 343, 369–371, 492Danaus, 119, 127, 285, 465Dance flies, 228, 272, 378–379Dances, honey bee, 45, 59, 72, 105–106, 238,

276, 299, 328, 329–338, 420Dance language controversy, 333–335Dasymutilla, 314–315, 320Defense, 185–216

See also PredationDeinacrida, 213Dendroctonus, 232–234Description, pitfalls of, 25–27Deutocerebrum, 48, 49, 219Diamesa, 113Diapause, 83, 86, 111, 112, 113, 117, 119–121,

126, 152, 386, 439Diaretiella, 140Diaritiger, 248Diceroprocta, 114Dicrocheles, 67Dimorphism, sexual, 361–369

See also PolymorphismDimorphothynnus, 126Dinoponera, 248Diplura, 343, 387Disguise, 148, 209, 261, 262

See also CrypsisDisparlure, 221Dispersal, 93, 116, 117, 120, 123, 124–129,

214, 240, 241, 244, 281, 372Displacement activities, 59, 315Displays, 186, 188, 201–203, 228–229, 246,

261, 266–267, 279, 282–284, 289,300, 310, 320, 322, 349, 364, 371,395, 433, 477

See also StartleDissoteira, 202Division of labor, 392, 407, 409, 410Dominance, 183, 248, 249, 316–318, 371–372,

417, 426, 443Dormancy, 110–113

See also Diapause

Page 63: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

508 Index

Dragonflies, 4, 68, 98, 100, 104, 115, 116, 118,141, 261, 269, 274, 279, 281, 283,341, 343, 361, 371, 417

Drakea, 229, 359Drepana, 319Drosophila, 12, 19, 60, 68, 69, 75, 87, 88, 94,

97, 109, 113, 121, 132, 145, 231,248, 361

Dysdercus, 101, 117, 240

EEars, insect, 303–305Earwigs, 387, 389, 401, 499Eavesdropping, 236, 255, 256, 311, 314Ecdysone, 85, 168, 169Ecdysteroid, 85, 86, 92Echolocation, 62, 65, 67, 303Eciton, 116, 412, 413–415Eggs, trophic, 184, 402, 426Elaphrosyron, 154Elasmucha, 214Electroantennogram, 222, 258Eleodes, 186Endocrine system, 2, 46, 48, 83–85, 117, 226,

344–345See also Hormones

Endosymbiont, 157Endothermy, 114–116Enhanced fecundity hypothesis, 400Ephippiger, 298Epicordulia, 274Eryphanis, 209Escape behavior, 46, 52–56, 62–65, 84, 98,

101, 209, 212, 262, 290Ethogram, 13Ethology, 2, 13–15, 42, 53, 81, 261Eucalyptus, 294, 428Eufriesea, 357Euplusia, 74Eupatorium, 375Euschistus, 3Eusociality, 409–428, 434–440

in aphids, 427–428in bees, 420–423in thrips, 427in wasps, 416–420

Evolutionary convergence, 36, 187, 198, 252Evolution by natural selection, 2, 9, 15–16, 24,

27See also Selection, natural

Exocrine glands, see Glands, insectExoneura, 424

Eyes, insectapposition, 270, 271, 274compound, 49, 88, 91, 269, 270, 273, 274,

275, 281superposition, 270, 271

Eye spot, 209, 210, 212, 262

FFables, insect, 6, 8, 26, 389Facilitation, social, 393, 394Feedback, 51, 52, 56, 57, 59, 84, 138, 240Feeding, 70–71, 77, 79, 111, 117–119, 122,

123, 124, 126, 131–184, 188, 196,203, 228, 232, 239, 241, 271, 303,327, 338, 359, 373, 378, 384–386,387, 392, 394, 395, 402, 404–405,408, 415–416, 422, 466, 473, 497

Femmes fatales, 200, 266, 392, 483Ficus, 175Figs and fig wasps, 174, 177Filter, sensory, 60, 219Fireflies, 37, 147, 262–268, 271, 361, 392, 483Fixed action patterns (FAPs), 57, 58, 83, 84Flash coloration, 209, 212Fleas, 86, 94–97, 228, 464Flicker vision, 272–275Flies

bombyliid (bee flies), 405bush, 390, 391crane, 209, 213, 351–354, 379dance, 228, 272, 378–380dung, 370fruit (Drosophila), 12, 19, 69, 121, 132,

231fruit (Rhagoletis), 243glowworm, 263, 482house, 40, 99, 137, 153, 201, 269, 275, 276

Flight, 117, 119, 379muscles, 51, 99, 100, 114–117, 212tandem, 343, 370, 492

Food web, 141, 142Foraging, 42–44, 72, 74, 87, 113, 124,

131–184, 239, 240, 254, 255, 275,329–339, 390, 413, 416–418, 425,463

Foraging (for) gene, 44, 438Foraging strategies, 140–163Formica, 81, 158, 159, 160, 182, 207, 213,

442, 471Formicoxenus, 255Form perception, 268–272Foulbrood, 20, 21Foundress, 151, 416, 417, 427, 497

Page 64: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Index 509

Free run, 88Fungiculture, 155–156

GGall insects, 133, 143, 348, 409, 427–428, 497Game theory, 27, 141, 319Ganglia, 47–51, 54–56, 72, 81, 145–146, 219,

290, 377Gargaphia, 394Genetic drift, 17–19, 27, 200Geotaxis, 105Geotrupes, 389Gestalt, 57, 188Glands, insect

Dufour’s, 239, 254, 418endocrine, see Endocrine systemexocrine, 219, 220, 252, 254, 255mandibular, 208, 220, 236, 252, 254, 335prothoracic, 83, 85, 86, 92, 187pygidial, 252tergal, 230

Glossina, 114, 248Glowworms, 263, 482Gomphocerippus, 84Good genes hypothesis, 368–369Grasshoppers, 18, 26, 48, 72, 84, 94, 97, 110,

121, 122, 123–124, 136, 206, 209,212, 294, 303, 309, 314, 323, 345,382

See also LocustsGravity perception, 104–106Gregarization, 123Grooming, 1, 50, 59, 146, 158, 159, 183, 186,

254, 255, 256, 398, 426, 441Group selection, see Selection, groupGroups, simple, 177–181, 390–394Group vigilance effect, 393Gryllus, 317–319Gynes, 152, 417Gyrinus, 109

HHabituation, 69, 221, 259Hairpencils, 229, 230, 285Halictus, 420Hamilton’s Rule, 437, 438Handicap Principle, 368–369Hardy-Weinberg equilibrium, 19Harpegnathos, 248Heat production, 114–116Heliconius, 58, 72, 164, 170, 369, 385, 491Helicoverpa, 124Heliothis, 122, 124, 294Hemeroplanes, 197

Hemileuca, 196Herd, selfish, 214, 236Heritability, 23, 24, 365Herpetogramma, 169Heterotheca, 170Heterothermy, 110, 114Hibernacula, 111Hipparchia, 229Hippodamia, 116Homeostasis, metabolic, 138Home range, 72, 109, 116Homing, 109, 127, 229, 276Homologies, 36, 37, 99Hopkins’ host-selection principle, 75Hormones, 13, 42, 46, 83–89, 90, 121, 168,

225, 228, 253, 345Hornets, see Wasps, hornetHost-marking, 242–246Host-searching, 77, 243–244Hyalophora, 90, 218Hygienic behavior, 20, 21, 22Hyla, 209, 211Hyssopus, 76, 77–81

IIchneumon, 148, 243–245Imprinting, 248–249Inclusive fitness, 150, 436, 437Infochemicals, 226

See also Allomone; Kairomone;Pheromones; Semiochemical

Innate releasing mechanism, 58, 60, 350Inquiline, 157, 441Insecta

abundance, 199classification, 3

Insemination, 342, 343, 346, 369Insight, 82Instinct, 10, 13, 45, 57, 82, 196, 404Intelligence, 81–83Interneurons, giant, 53, 54, 56Interspecific social interactions, 440–443Investment, parental, 380–382, 396

See also Care, parentalIps, 224, 234IRM, see Innate releasing mechanismIsolation, reproductive, 136, 231, 267, 314,

323, 350Isophya, 372

JJohnston’s organ, 299Jumping, mechanisms, 97, 164, 372

Page 65: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

510 Index

Juvenile hormone (JH), 85, 86, 92, 152, 168,169, 253, 254, 344, 345, 346

KKairomone, 226, 227, 236, 246, 255, 256Katydids, 114, 189, 209, 213, 308, 372, 475,

476Kinesis, 101, 102, 297Kleptoparasitism, 152–154, 407Klinotaxis, 102K -selection, 431

LLacewings, 45, 67, 83, 148, 213Lanternaria, 210Lasius, 105, 155, 222, 240, 248Learning, 13, 27, 49, 60, 68–81, 93, 102, 107,

139, 172, 199–204, 248, 256, 330,404

Legs, modifications, 96, 97Lekking, 152, 477Leks, 231, 311, 364–365Lepanthes, 359Leptinotarsa, 165Leptothorax, 248Lestrimelitta, 241Lice, feather, 126, 157Lice, plant, 231, 427

See also AphidsLight, orientation to, 104–105Light, polarized, see PolarizationLight production, physiology of, 263–264Light reception, physiology of, 109, 268–279Limenitis, 197Linepithea, 19Lions, ant and worm, 147, 401Liris, 81, 404Locomotion, 50–51, 94–100, 103, 105, 117,

322Locusts, 51–52, 97, 103, 123–124, 135, 136,

191, 202, 222, 276, 296, 345,382–383, 392

See also GrasshoppersLomechusa, 158Lovebugs, 341, 370Lucanus, 362Luciferase, 263, 264Luciferin, 263Lures, use of, 147, 258, 259, 375Lycorea, 230Lymantria, 259Lynchia, 380Lysiphlebus, 248

MMacrotermes, 156, 411, 425Maculinea, 148Magicicada, 310Magnetic field orientation, 108–109Malacosoma, 239–240Malvolio (mvl) gene, 44Manduca, 61, 190, 498Manipulation, adaptive, 150, 152Mantises, 45, 50, 67, 69, 132, 137, 141, 146,

147, 268, 274, 377, 378, 385, 475Marginal value theorem, 144, 145Mating

disruption of, 258, 259evolution of types, 321–322, 361–365function and complexity, 45–92, 227–249physiological control, 84, 114, 133, 168,

344–346, 350, 354, 381systems, 380–382See also Copulation; Courtship;

InseminationMayflies, 4, 88, 98, 132, 275, 276, 344, 386Mechanocommunication, 291–339Megarhyssa, 359–360Melanism, in peppered moths, 191–194Melanophila, 107, 383Melipona, 335Melittobia, 19, 149, 349, 371, 372, 386Memory, 49, 68–81, 198Microplitus, 70Microstigmus, 420, 421Midges, 62, 88, 99, 113, 115, 125, 143, 228,

299, 392Migration, 116–129, 276, 392, 413–415Mikania, 375Mimetic polymorphism, 188, 198Mimicry, 95, 162–164, 188, 191, 197–202,

209–212, 248, 256, 266, 319, 321,358–359, 379, 483

acoustic, 319–321, 488aggressive, 148, 200, 266automimicry, 200Batesian, 188, 198–202, 320, 476Mullerian, 188, 198–200, 320transformational, 201–202Wasmannian, 188, 201

Mites, 3, 67, 125, 146, 163, 165Mobbing, 215Model, use in research, 58, 261, 262, 285, 334,

354Monophagy, 133, 136Morgan’s canon, 25

Page 66: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Index 511

Mosquitoes, 12, 57, 84, 99, 121, 125, 132,148, 157, 277, 294, 299, 311–312,323–327, 346, 359, 383, 386

Moths, 30, 60, 88, 103, 104, 111, 115, 121,122, 140, 146, 164, 167, 169, 185,186–187, 190, 196, 197, 204, 205,209, 217, 218–219, 229, 290, 319,344, 370, 373, 374, 400

arctiid, 219, 294, 319, 374–376,477, 493

cecropia, 90, 111, 218codling, 75–80, 259gypsy, 85, 111, 125, 131, 164, 221, 250,

259hawk (hornworm, sphinx), 110, 116, 133,

174, 291, 294, 303, 383, 498noctuid, 62–68, 120, 124, 148, 385peppered, 191–194, 474polyphemus, 60, 167, 253, 344silk, 89–90, 132, 253silkworm, 9, 89, 221, 223, 225–226, 251tiger, 194, 320–321, 488

Motivation, 58–59, 68, 83, 283Musca, 137, 391Mushroom bodies, 42, 43, 49, 60, 463Myrmecophiles, 158–163Myrmica, 160, 161, 254, 255, 410Myzus, 241

NNasonia, 295, 344Nasutitermes, 208, 213, 386Nature–nurture controversy, 82Nauphoeta, 230Navigation, 42, 101, 105, 109, 124, 126, 128,

129, 282, 463Nectar guides, 279, 485Nemobius, 72, 295Neobarettia, 213Neoconocephalus, 114Neodiprion, 232, 243, 244, 478Neopyrochroa, 373Nephila, 374Nerve cord, 49, 54–56, 67Nervous system, 46–68, 83–90, 121, 139, 146,

219, 226, 227, 253, 277, 345, 441Nests, 105, 157–163, 401, 421, 470Neural inhibition, 50Neuropil, 47, 49Nicrophorus, 246, 404Nomadacris, 135, 345Noradrenaline, 86Notonecta, 261

Nuptial gifts, 372–378Nutrition, 131, 134, 181, 240, 386, 400, 426Nymphalis, 262

OOccam’s razor, 25Ocelli, 269, 334Ochthera, 279Odontotaenius, 408, 431Odors, 60–61, 70–71, 75–81, 133, 134, 150,

160–162, 167, 172, 182, 206, 211,217–260, 331–335, 426, 471

See also PheromonesOecophylla, 246–247, 255, 480, 496Oenothera, 87, 279Oligophagy, 133Ommatidia, 104, 269–275Omophron, 320Oncopeltus, 118–119, 121, 472Onthophagus, 403Oogenesis-flight syndrome, 120–121Ophrys, 357–358Optimality theory, 41, 140–145Orchid pollination, 34, 58, 229, 354–359Organization, social, 241, 390–407, 408Orientation, 73, 100–109, 126–129, 276, 297,

305–306, 333Oscillogram, 308–309Oscinella, 121Osmeterium, 204, 211Ostrinia, 290Oviposition behaviors, 30, 243–244, 346,

382–387, 396–400

PPaedogenesis, 349Palmacorixa, 293Panesthia, 431Paper factor, 168Papilio, 198, 202, 211Parasites and parasitoids, 31–33, 67, 75–81,

124, 125, 134, 140, 142, 145,148–152, 243–245, 248, 255, 295,299, 301, 306, 349, 359–361,371–372, 385, 386, 387, 405–406,433–434, 441–442, 468

Parasitism, social, 426, 441Parasitism, temporary, 443Parental behavior, see Care, parentalParischnogaster, 418Parthenogenesis, 347–349Parsimony, principle of, 25Passiflora, 164, 170, 491Patterns, fixed action (FAP), 57–58, 83–84

Page 67: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

512 Index

Patterns, repeated motor, 50–56Pemphigus, 125Perga, 393, 394Period (per) gene, 112Periplaneta, 30, 53–56, 69, 71, 145Phaeophilacris, 295Phanuropsis, 433, 434Phase, nomadic vs. statary, 412–416Pheidole, 113Pheromonal parsimony, 252Pheromones, 217–260, 284, 285, 288,

289–290, 326, 331, 344–345, 359,375, 380, 415, 420, 426, 442, 481

See also AllomonePhilanthus, 73, 133, 272, 404Phloeophana, 394Phlugis, 309Phonatomes, 307–308Phoresy, 125–126Phormia, 137, 138Photinus, 37, 38, 200, 262, 264, 266, 267Phototaxis, 102, 105, 278Photuris, 37, 147, 200, 264, 266, 483Phrixothrix, 262Phyllomorpha, 428–430, 498Phyllonorycter, 299Phylogenetic systematics, see CladisticsPhylogenetic tree, 35, 36, 38, 115, 420Phylogeny, 28–38, 263, 387Physogastry, 163, 411, 427Phytophagy, see HerbivoryPieris, 135, 384Pimpla, 140Plagiodera, 179–181, 473Plathemis, 282–283Platymeris, 206Platypus, 428Plecia, 341Pleolophus, 243–245Plodia, 229Podisus, 255Pogonomyrmex, 248, 252, 327, 393, 439Polarization, 105, 128, 129, 275–276Polistes, 7, 150–152, 248, 280, 283–284, 417,

418, 467, 468Pollination, 11, 173–177, 279, 354–359, 498Pollinia, 355–358Polybia, 418Polyergus, 442Polyethism, 410Polygamy, 380

See also Mating, systemsPolygyny threshold model, 361

Polymorphism, 123, 188, 198–199, 409–410,497

Polyphagy, 132, 136Polyphenism, phase, 123, 466Potentilla, 279Predation, 53, 62–64, 75, 141, 146–148,

164, 185–216, 262, 274, 320, 392,396–399, 412, 479, 483, 488

Prey capture, 81, 94, 133, 145–148, 274,378–380

Prey theft, see KleptoparasitismPrey transport, 31–33, 73Prociphilus, 171Promiscuity, 380–382Proprioceptors, 104, 298, 299, 304, 332Proteomics, 146Prothoracicotropic hormone (PTTH), 85, 92Protocerebrum, 48, 49, 50Pseudabispa, 32Pseudergates, 426Pseudocopulation, 359Pseudomyrmex, 171–173, 470Psychology, 2, 13, 14Ptilocerus, 147Puddling, 283, 486Pulse, in insect song, 308Pyrophorus, 263Pyrrhocoris, 168Pyrrolizidine alkaloids (PA), 374, 375, 493

QQ/K ratio, 249–251Queen substance, 254, 420Quiescence, 111, 112, 397

See also Diapause

RRadiation, adaptive, 32–34, 165Ranatra, 94Reaction chain, 58, 285, 343, 350, 351Reactions, types of, 104–105Recognition, chemical, 228, 246–249Recruitment, 231–242, 246, 247, 252, 255,

328–339, 350, 392, 426Reflex bleeding, 205Reflexes, 50–56, 89, 96, 205Releaser, 57–60, 84, 134, 182, 188, 226, 227,

255, 261, 281, 314, 344Reproduction, modes of, 346–349Reproductive ground plan hypothesis, 439Resilin, 97, 464Reticulitermes, 183, 248Rhabdoms, 269, 270, 271

Page 68: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

Index 513

Rhagoletis, 243Rhagovelia, 94Rhodnius, 84–85, 92, 94Rhopalus, 205Rhyparobia, 345Rhythms, circadian, 43, 87, 88, 89, 118, 253

See also ClockRhythms, gated, 89–91Rhythms, reiterative, 86–88Ritualization, 261, 378Robots, 56, 94, 95, 331, 334Rotational orientation hypothesis, 128

SSarcophaga, 113Sawflies, 96, 167, 177–178, 187, 232, 243,

244, 293, 393, 394, 395, 478Scaptotrigona, 440Scatophaga, 370Scarabeus, 275Schistocerca, 123–124, 276, 294, 345,

382–383, 466Search image apostatic, 199, 204Secondary plant metabolite (SPM), 166–169Seducin, 230Selection, artificial, 22, 23, 24, 365

directional, 22–23, 191disruptive, 22group, 181, 436, 440kin, 436–440natural, 2, 9, 15–29, 40, 58, 140, 214, 235,

256, 359, 362, 400, 434–435r and K, 388sexual, 199, 228–229, 310, 344, 361–371,

379, 382, 390Selective attention, 311–312Semiochemicals, 226, 227, 256, 258, 335Senotainia, 33Sensilla, 47, 107, 219, 221, 297, 298, 299, 304,

323, 383Sensitization, 69, 80Sex attractant, see PheromonesSignaling, multimodal, 288–290Signals, honest and dishonest, 198–199, 290,

368Silverfish, 4, 86, 213Sinigrin, 140, 166, 167Slavery, 441Sociality, 249, 389, 392, 395–396, 409, 439

implications and correlates, 428–443paradoxes, 434–440pathways to, 434–435See also Eusociality

Social Register, 401, 407–428Solenopsis, 204, 238–239, 418Sonagram, 308–309Songs, insect, 51, 307–311, 392Sound, 186, 202, 207, 233–234, 257, 281, 283,

291–340, 408, 488Spanish Fly, 195Sperm competition, 343, 350, 430Sperm mixing, 430Sperm precedence, 370, 399, 400, 430Sperm transfer, 343Sphecodogastra, 87SPM, see Secondary plant metabolitesSpodoptera, 124Spontaneous generation, 6, 7, 9Springtails, 146, 164Startle, 54, 55, 56, 188, 204, 209–213, 215,

315, 488Stenus, 98Stictia, 152Stilbocoris, 373Stimulus, 59–83

conditioned, 13, 69–70, 278filtering (tuning), 60–68, 219, 272, 288,

312generalization, 200, 202orientation to, 101–109sign, see Releasersupernormal, 58, 288, 379token, 58, 134

Stoneflies, 293Strepsipterans, 150–152, 468Streptomyces, 155Stridulation, 293Stylopization, 150, 152Stylops, 151, 468Subgenual organ, 299Summation, spatial and temporal, 53Superorganism, 436Suprachiasmatic nucleus (SCN), 86Swarm-founding, 418Swarming, 214, 326–328, 392, 501

honey bee, 242, 254, 481locust, 123–124, 266, 466mating, 364

Swimming, see LocomotionSyconium, 175, 176Symbionts, 155–159, 163, 410, 431, 441, 443,

497Sympiesis, 299Synapsis, 402Syritta, 272

Page 69: Credits - link.springer.com978-90-481-2389-6/1.pdf · Fig. 1.5 Engravings reproduced from M. S. Merian’s caterpillar books, bound together in Erucarum Ortus, Alimentum et Paradoxa

514 Index

Ttau gene, 87Taxis, 101–103

See also Geotaxis; Klinotaxis; Phototaxis;Vibrotaxis

Taxon, definition of, 28Teleogryllus, 322Teleology, 26Teleutomyrmex, 441Termites, 30–31, 108–109, 155–157, 163, 181,

183, 208, 213, 220, 248, 252, 294,316, 386, 392, 409–411, 423–427,496, 501

Termitophiles, 157, 163Territoriality, 153, 245, 246, 371–372,

426Tetramorium, 441Thaumetopoea, 196Themos, 178, 395Thermoregulation, 93, 110–116, 119,

240Thrips, 94, 409, 427–428, 438, 497tim gene, 87Tinbergen’s Four Questions, 40Tiphia, 365Tipula, 351–354Token stimuli, 134Tommy Tucker syndrome, 173–177Touch, see Communication, tactileToxorhynchites, 312, 326, 327Triatoma, 12Trichogramma, 134Trigona, 241, 252, 320, 335, 423Trissolcus, 242, 433Tritocerebrum, 48, 49Triungulin, 150, 151, 152Trophallaxis, 181–184, 237, 256, 416,

422, 426Trophic eggs, 183–184, 402, 426Tropisternus, 320Trypanosoma, 12Trypodendron, 156

UUltrasound, 63–68Ultraviolet, perception, 277

See also Vision, ultravioletUmbonia, 300–303, 487Umwelt, 279, 286

VVenom, 145–146, 205, 435Venturia, 75Vermileo, 147

Vespa, 242, 479Vespula, 114, 183, 419, 440Vibrations, communication by, 295–303, 313,

321See also Communication, tactile

Vibrotaxis, 299Vision

acuity, 67, 272–275receptors, 279ultraviolet, 277, 278, 289, 474, 485See also Polarization

WWasps, 32, 82, 134, 145, 358, 361, 371, 407,

416–420, 438coevolution with orchids, 358–359cuckoo, 153, 154, 469fig, 174–177, 354gall-making, 348–349hornet, 242, 328, 416, 418ichneumonid, 140, 243–244, 360paper, 7, 150, 249, 280, 283, 407, 416, 417,

467, 468parasitoid, see Parasites and parasitoidssand, 32, 45, 56, 58, 215, 405, 406scelionid, 124, 433social, 416–420solitary, 31, 149, 152–154, 204, 231, 306,

405spider, 153, 154thynnid, 229, 359yellowjacket, 407, 419

Webspinners, 389, 392Weevils, 122, 170, 242, 259, 384, 387, 496Wings, see Flight

XXenos, 150–152Xestobium, 294–295

YYellow fever, 11, 12, 324, 346Yellowjacket, see Wasps, yellowjacket

ZZacryptocerus, 412Zeitgeber, 88Zombification, 145, 146, 149Zonosemata, 201Zooptermopsis, 183, 316Zorapterans, 146Zygaena, 370Zyras, 248