58
Measurement of electron efficiency using W → eν decays. Study of the Higgs production in association with tt quarks PhD student: Ana Elena Dumitriu Supervisors: Cristinel Diaconu (CPPM), Emmanuel Monnier (CPPM), Alexa Calin (IFIN-HH) 10/7/16 1 CPPM PhD days

CPPM PhD days Measurement of electron efficiency using W → … · 2 The Tag & Probe Method - The tag object: strict requirements to enhance the purity of the sample - The other

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Measurement of electron efficiency using W → eν decays.Study of the Higgs production in association with tt quarks

    PhD student: Ana Elena DumitriuSupervisors: Cristinel Diaconu (CPPM), Emmanuel Monnier (CPPM),

    Alexa Calin (IFIN-HH)

    10/7/16 1

    CPPM PhD days

  • 2

    The Tag & Probe Method- The tag object: strict requirements to enhance the purity of the sample - The other particle serves as a probe for the measurement.

    - The efficiency: N selectedN probe

    Numerous advantages in using W events:➢ The measurements with W and Z bosons cover both a large kinematic range; ➢ The J/ψ channel completes the measurement at low pT.➢ W provides additional statistics for the low Et range (15-25 GeV) and offers interesting

    experimental signatures due to its large statistics ➢ Different systematics from Z

  • 3

    W → eν analysisW events topology

    ● In oder to reduce the background, we test the angular distribution in the transverse plane

    ● Jets with pT>15,10,5 GeV tested

    ● Only first 2 leading jets are used && ΔR (e-jet)>0.2

    The large suppression by the tight ID algorithm indicate large backgrounds at low PT

    ET vs e- menu

    Selection• Triggers WTP (prescaled)• MET > 25 (TST)

    • |η| < 2.47• mT > 40 GeV

    + wstos < 4, Rη >0.7, RΦ >0.7Probe • rHad and TQ • pT > 15 GeV

    ET Probe

    All details in backup about the cleaning procedure by using the W topology

  • 4

    Trigger tunning in Run II● -ATLAS trigger organised in Level1 +

    HighLevelTrigger (HLT)– Use topological variables to reduce the background, use track requirements (trkcut) , use MET (xe) and MET significance (xs)

    ● Topological variables tuned to reduce trigger rates: tuning at HLT and L1. Recently, algorithms implemented in a new system L1TOPO.

    lower rate

  • 10/07/16 5

    Trigger menu tuning in offline and online emulation

    • Similar efficiency in HLT compared to Emulation with L1 topo.• New trigger proposal includes xs,xe,mT cuts + topological cuts for different ET threshold

    - L1_EM12_XS20 for e13_etcut_trkcut_X chains L1 default

    - L1_EM15_XS30 for e18_etcut_trkcut_X chains

    ● Trigger rates reproduced in emulation: rates can be reduced with modest cost in efficiency

  • 6

    Efficiency measurement method

    Efficiency for each identification algorithm extracted from the ratio of signal electrons εLevel=NLevel/Nprobe (Level=VL,L,M,T) as f(ET)

    Example for HLT_xe70Cone30,20

  • 7

    Efficiency results example

    Systematics of the efficiency measurements to be studied (various bckg template, triggers, subtraction methods, cone size, trigger matching effect, topology dependency etc.)

    New trigger proposed for 2016 will collect much more statistics with better background conditions

    VLLMT

  • 8

    Introduction to 4l channel● My analysis is based on a 4l final state → ttH to 4L affected by a

    small branching ratio, but benefit from low background

    ATLAS-CONF-2016-058Background composition

    https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/

  • 9

    Optimization studies (L = 10 fb-1)● Study options to reduce the

    background (in particular ttbar) contribution:– Different Isolation WP

    ● Fixed Signal Region and Kinematics cuts optimization

    – Different Event Topologies ● As a function of bjet multiplicity (and

    algorithm)● As a function of lepton charge/flavor (SFOS)

    The main reduction of the background with a small signal loss is provided by IsolationGradient (decided to be further used as the final isolation WP)

    ● In order to test the nominal cuts, we varied 5 variables:

    ● MET > {10,20,25,30,35,45,50,55}● |Mll – 91| > Zveto {-1, 10, 13, 15}● M4l> {100, 120, 150};● M4l< {300,350,400,450,500, 600, 10000}● Pt_lep_0 > {25, 30, 35}● Pt_lep_1 > {13, 15, 18, 20}

    Kinematic cuts variations

    Roofit significance ttH vs all BG

  • 10/07/16 10

    3l analysis approach to 4l: The Scaling Factor● Principles:

    ● 2 categories of fake source:

    – Z-like: fake leptons (mostly) coming from light-jets– top-like: fake leptons (mostly) coming from b-jets

    ● The fundamental idea: select a control sample (CR) of events enriched in the background being estimated, and then use an extrapolation factor to relate these events to the background in the signal region (SR).

    ● In this talk explore the influence of a b-jet requirement on the Scaling factors determination

    b l

    V21 (L=22.1 fb-1) V20/04 (L=13.2 fb-1) V20/02 (L=13.2 fb-1) V19 (L=13.2 fb-1)

    λbe 0.92 ± 0.08 ± 0.46 ± 0.47 1.00 ± 0.10 ± 0.50 ± 0.51 0.76 ± 0.08 ± 0.38 ± 0.39 0.99 ± 0.11 ± 0.50 ± 0.51

    λle 1.18 ± 0.12 ± 0.59 ± 0.60 1.24 ± 0.14 ± 0.62 ± 0.63 1.11 ± 0.13 ± 0.56 ± 0.57 1.35 ± 0.17 ± 0.68 ± 0.70

    λbμ 0.86 ± 0.12 ± 0.43 ± 0.45 1.10 ± 0.13 ± 0.55 ± 0.56 0.50 ± 0.10 ± 0.25 ± 0.27 1.01 ± 0.16 ± 0.50 ± 0.53

    λlμ 0.71 ± 0.10 ± 0.36 ± 0.37 0.85 ± 0.11 ± 0.42 ± 0.44 0.56 ± 0.07 ± 0.28 ± 0.29 0.77 ± 0.12 ± 0.39 ± 0.40

    Scaling Factor method is robust between different MC and data versions

  • 10/07/16 11

    4l Fake factor following the Run 1 experience

    ● Study the fake contributions in SR' and 3 CR enriched in tt and Z+jets:

    – CR1: 2 tight leptons + 2 anti-tight electrons

    – CR2: 2 tight leptons + 2 anti-tight muons

    – CR3: 2 tight leptons + 1 anti-tight electron + 1 anti-tight muon

    V20/04 (13.2 fb−1): 4T CR1 CR2 CR3

    Data 12 9 5 11

    prompt 17.60+-1.53 3.50+-0.62 0.81+-0.31 1.87+-0.47

    ttbar-dilep 0.02+-0.02 3.95+-0.64 3.68+-0.68 8.66+-1.01

    ttH_Herwig 0.69+-0.04 0.08+-0.01 0.10+-0.03 0.12+-0.03

    Robust data-driven method, but statistics is poor so far; it will become feasible with more data

  • 10/07/16 12

    Conclusions● Electron identification efficiency measured using W

    T&P● Tuning the analysis in 2015/2016, new triggers

    implemented in 2016● In work: Performance publication including W T&P

    analysis → for Moriond 2017

    ● Main analyst of ttH->4L for ICHEP2016● Signal selection optimization, fake leptons studies● In work: refined analysis using MVA, publication

    with full stat by summer 2017

  • 13

    Backup Slides

  • 14

    Introduction to electron efficiency studies

    The production cross-section times branching-ratio

    correction factors to account for the geometrical and kinematicacceptance of the detector

    the correction factors to account for the efficiency of the event beingreconstructed in the detector

    • ε event

    : efficiency of the signal events passing the event preselection cuts• α

    reco accounts for the differences between applying the geometrical and kinematic

    selection at generator or reconstruction level, i.e. the reconstruction efficiency;• ε

    ID : efficiency of an electron passing the identification criteria

    • ε trig is the efficiency of an event being triggered;• ε iso is the efficiency of possible isolation cuts.

    Precise knowledge of the electron identification efficiency is an essential ingredient for many physics analyses

  • 15

    ATLAS experiment and detectorThe LHC is the world's largest and highestenergy particle accelerator. The collider is contained in a circular tunnel, with a circumference of 27 kilometers underground.

    ATLAS: One of two general purpose detectors (CMS), used to look for signs of new physics, including the origins of mass and extra dimensions.

    Display of a proton-proton collision event recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV.

    ATLAS detector

    https://www.youtube.com/watch?v=bbuQ3drSg9I

    https://en.wikipedia.org/wiki/Particle_acceleratorhttps://www.youtube.com/watch?v=bbuQ3drSg9I

  • 16

    W T&P in 25ns data

    Electron identification

    menus

    ET vs e- menu

    ● All e ID menus tested (cut based and likelihood)● Very large background at the probe level observed

    ElectronID attempts to make optimal use of the tracking andcalorimetric detectors: shower widths, ratios of various energy deposits, tracking hits, track-cluster matching, etc.

    Shower Shape Variables

    Rhad    E→ T (hadronic cal)/ET (EM cal)Rη       Ratio In   of cell energies in → η3x7 vs 7x7 celsRΦ      Ratio In   of cell energies in → Φ3X3/7X7Wstos   Total shower width.→TQ (Track quality): Number of hits in the pixel detector   1 && ≥ Number of hits in the pixels and SCT   7≥

    backup

  • 17

    Δφ distributions for Jets pT>15

    ΔΦe-jet

    ΔΦjet-MET

    MC

    MC

    Final cuts applied on angular variables:• ΔΦejet0.7

    Data

    Data

    Data

    Data

    All other kinematic distributions in backup

  • 18

    Δφ (METJet eJet) correlation between for Jets with pT>10

    Δφ (eJet eMET) correlation between for Jets with pT>10

    e18a Most of the statistics at trigger level is in background region. Further cuts on angular variable to reduce the background won't affect the signal (as seen in Tight = Signal Like distribution)

    Δφ (METJet) Δφ (METJet)

    Δφ

    (eJ

    et)

    Δφ

    (eJ

    et)

    Δφ

    (e-M

    ET)

    Δφ

    (e-M

    ETt)

    Δφ (eJet) Δφ (eJet)

    PROBE

    PROBE

    TIGHT (SL)

    TIGHT (SL)

  • 19

    Trigger prescales per runs

    DAOD EGAM 5 tested: full luminosity used

  • 20

    PreScaled Et distributions: Event+Probe Level

    Et distribution per trigger bit:✔ 3 groups observed

    ✔ Different Et behavior

    Loose Medium

    Tight

    High MET

    High Et

  • 21

    Δφ (METJet eJet) correlation between for Jets with pT>10

    Δφ (eJet eMET) correlation between for Jets with pT>10

    e13

  • 22

    backup

  • 23

    backup

  • 10/07/16 24

    Trigger Matching Procedure● TM_dR=0.07 ● dR = sqrt(ΔΦ2 + Δη2);

    – (probe electron, electron from the HLT_xAOD__ElectronContainer_egamma_Electrons)

    ● Cuts: Ele.pT/1000. > 13 && |η| < 2.5 && el_nPixHits > 0 && el_nSCTHits > 7

    ● if(max(dR)

  • 10/07/16 25

    Triggers tested

    backup

  • 10/07/16 26

    W MET triggers Ratio efficiencies CB_M/failVL LH for without (fill) / with (dotted) Trigger Matching, e13 cut, dR=0.07

    0.0

  • 10/07/16 27

    W e13 triggers Ratio efficiencies CB_M/failVL LH for without (fill) / with (dotted) Trigger Matching , e13 cut, dR=0.07

    0.0

  • 28

    Top quark polarization and spin correlation

    The scope of my PhD thesis is to explore the potential of the spin-correlation properties in the associated Higgs top-pair production at the LHC as a possible tool to improve the separation of the signal from the ttH irreducible backgrounds.

    ➢ spin correlations could help in disentangling the SM scalar component from a pseudoscalar contribution in the top-Higgs coupling

    ➢ by reconstructing the individual top systems, the top-quark spin properties can be accessed by measuring angular distributions of the final decay products

    ➔ Observables in the laboratory frame and in different top quark spin quantization bases are explored, used to measure the coefficient fSM , which is related to the number of events where the t and t spins are correlated as predicted by the SM,

    ● The measured value of fSM is translated into the spin correlation strength A , which is a measure for the number of events where the top quark and top antiquark spins are parallel minus the number of events where they are antiparallel with respect to a spin quantization axis, divided by the total number of events:

    The strength of the spin correlation is:

    The factor αi is the spin-analyzing power, which must be between -1 and 1.

    As shown in JHEP07(2014)020, spin-correlation features in the ttH production are quite promising for enhancing the signal sensitivity over the irreducible background.

    Similar studies will be performed on 2015 data.

  • WHAT MAKES TOP QUARK INTERESTING?

    29

    11 Heaviest fundamental particle in the Standard ModelLarger mass ➙ Larger coupling to SM Higgs +

    mtop is a fundamental parameter in SM

    Allows for Self-Consistency Checks of SM Post Higgs Discovery

    44 Hints of new BSM/physics?

    Exotic Particles Could Decay Preferentially to Top Quarks

    33 Short Lifetime(~10-25 s) Possible reconstruct quarks before

    hadronization – Unique among the quarks!

    Access to Polarization and Spin Correlations

    22 Processes including top are backgrounds for new physics

    + Exotics and SUSY

    Good Understanding ➙ Improvements in Searches

  • PhD topic : ttH spin correlations at LHC

    The goal of my PhD thesis is to explore the potential of the spin-correlation properties in the associated Higgs top-pair production at the LHC as a possible tool to improve the separation of the signal from the ttH irreducible backgrounds.

    As shown in JHEP07(2014)020, spin-correlation features in the ttH production are quite promising for enhancing the signal sensitivity over the irreducible background. Similar studies will be performed on 2015 data.

    ➢ spin correlations could help in disentangling the SM scalar component from a pseudoscalar contribution in the top-Higgs coupling

    ➢ by reconstructing the individual top systems, the top-quark spin properties can be accessed by measuring angular distributions of the final decay products

    → in the chiral limit of vanishing top-quark mass (mtt ≫ mt) t and t spins are highly correlated and parallel to each other along the tt production axis. Top pairs are hence produced in the LR + RL helicity configurations.

    → when the tt is produced in association with a Higgs boson, the top quark and antiquark helicities are also correlated, but Higgs-boson emission from the top-quark final states via Yukawa interactions induces a chirality flip in the top-quark polarization →LL+RR helicity configuration, (LR+RL configuration suppressed by terms of order O(m2t /m2tt).

    JHEP07(2014)020

    tt tth

    t

    t

  • 31

    Top quark physics

     Decay products of the top quark: correlated with its spin    the direct coupling of top quark with → W+ opens the window for a direct measurement of the CKM element |Vtb| + one can also predict the Standard Model (SM) allowed helicity states of the produced W+  and check experimentally beyond the SM predictions (new top quark supersymmetric decay modes can be tested, as well as other aspects of the SM limits)

    Statistically limited

    tth Run I

    Run1 Run2

    Luminosity increase by a factor 4

    Cross section increase by a factor 4

    • ttH is a major goal at LHC in the next period, new properties can be studied with higher statistics

  • 32

    Introduction to 4l channel● My analysis is based on a 4l final state (small but clear signal) where

    the top quark pair decay leptonically or semi-leptonically, and that the Higgs decay either to WW, tt, and ZZ.

    ➢ SR (baseline) definition:

    ➢ 4 leptons, pT>10 GeV, total charge=0, at least one of 4 leptons to be trigger matched➢ Z veto : |Mll-91.2|>10 GeV + di-lepton resonances veto : Mll >12 GeV ➢ at least 2 jets , at least 1 b-jet➢ 100

  • 33

    Test a custom cut on isolation using cone 0.2

    SR Nominal entries + MET>10 GeV + topo20ET/pt 10 GeV + topo20ET/pt 10 GeV + topo20ET/pt 10 GeV + topo20ET/pt 35Zveto_13

    10020

    MET>35Zveto_13

    10020

    MET>10Zveto_13

    10013

    MET>10Zveto_13

    10013

  • 10/07/16 34

    SG optimization+IsolationBaseline Selection fixed Optimized SR +isoGrad

    ttHSG 0.954+-0.114 0.884+-0.110 0.713+-0.092

    ttZ 1.165+-0.031 0.821+-0.026 0.602+-0.022

    ZZ 0.070+-0.024 0.029+-0.013 0.028+-0.013

    ttbar 0.828+-0.436 0.828+-0.436 0+-0

    ttbardilep 0.6556+-0.182 0.444+-0.148 0+-0

    BG_MC 2.964+-0.47 2.312+-0.464 0.732+-0.045

    Signif 0.220 0.238 0.372

    Zveto_1310020

    Zveto_1310013

    Backup

  • 35

    Signal and Bakcground samples in optimized SR

  • 36

    Significance in optimized SR

  • 37

    IsolationGradient per flavor Baseline Selection isolationGradient

    ttHSG 0.0418893+-0.0161731

    ttbar 0+-0

    ttbardilep 0+-0

    BG_MC 0.10992+-0.0162984

    ttHSG 0.187774+-0.0390074 0.139367+-0.0327263

    ttbar 0.592545+-0.367539 0+-0

    ttbardilep 0.127163+-0.0816679 0+-0

    BG_MC 1.07942+-0.377138 0.286083+-0.0183444

    ttHSG 0.28092+-0.0471114 0.238117+-0.0412026

    ttbar 0+-0 0+-0

    ttbardilep 0.248111+-0.111898 0+-0

    BG_MC 0.71041+-0.121675 0.373851+-0.0445861

    ttHSG 0.328861+-0.0782478 0.304276+-0.0767198

    ttbar 0.235964+-0.235964 0+-0

    ttbardilep 0.280338+-0.11849 0+-0

    BG_MC 0.903777+-0.265337 0.321169+-0.0248878

    ttHSG 0.115098+-0.0539284

    ttbar 0+-0

    ttbardilep 0+-0

    BG_MC 0.160604+-0.0201292

    eeee

    eeem

    eemm

    emmm

    mmmm

    Most of the ttbar events → in eeem/eemm/emmm pairsOption → apply isolation gradient only in the case of Ne=1,2,3

    isolationGradient IsolationGradient for eeem/

    eemm/emmm

    ttHSG 0.781+-0.096 0.838+-0.108

    ttbar 0+-0 0+-0

    ttbardilep 0+-0 0+-0

    BG_MC 1.211+-0.059 1.251+-0.060

    Significance (RooFit)

    0.31438 0.350

  • 38

    4l type/SFOS pairs and jet multiplicity

    L = 3.2 fb-1

    Attempt to adjust isolation conditions as a function of the events topology/content

    4l type

    SFOS pairs

  • 10/07/16 39

    4l Mass

  • 10/07/16 40

    Optimization only using M4l min/max cutBaseline Selection

    fixedSR opt using min

    M4lSR opt using M4l SR opt using M4l + isoGrad

    ttHSG 0.954+-0.114 0.951+-0.114 0.939+-0.112 0.760+-0.094

    ttZ 1.165+-0.031 1.163+-0.031 1.019+-0.029 0.736+-0.024

    ZZ 0.070+-0.024 0.070+-0.024 0.070+-0.024 0.062+-0.022

    ttbar 0.828+-0.436 0.828+-0.436 0.828+-0.436 0+-0

    ttbardilep 0.655+-0.182 0.602+-0.174 0.602+-0.174 0+-0

    BG_MC 2.964+-0.47 2.908+-0.474 2.722+-0.473 0.907+-0.050

    Signif 0.220 0.223 0.232 0.364

    Zveto_1010015

    Zveto_1010015

    Zveto_1010015

    Zveto_1010015

  • 10/07/16 41

    SG optimization+Isolation, without MET cutBaseline Selection fixed No MET added +isoGrad

    ttHSG 0.954+-0.114 0.884+-0.110 0.713+-0.092

    ttZ 1.165+-0.031 0.821+-0.026 0.602+-0.022

    ZZ 0.070+-0.024 0.029+-0.013 0.028+-0.013

    ttbar 0.828+-0.436 0.828+-0.436 0+-0

    ttbardilep 0.6556+-0.182 0.444+-0.148 0+-0

    BG_MC 2.964+-0.47 2.312+-0.464 0.732+-0.045

    Signif 0.220 0.238 0.372

    Zveto_1310020

    Zveto_1310013

  • 42

    Results for nbjet=1 or SFOS option

    Small signal loss by applying isolation cuts on a ttbar enrich topology cuts, efficient further background rejection with MET>10 GeV (for non ttbar samples)

    Fixed SR SR + IsoGrad=4 for nbjet=1 MV2c20_70

    SR + IsoGrad=4 for nbjet=1 MV2c20_77

    SR + IsoGrad=4 for (SFOS=2 || SFOS=0)

    ttH 0.829+-0.099 0.852+-0.100 0.838+-0.108

    BG_ALL 1.348+-0.071 1.421+-0.088 1.251+-0.060

    ttbar 0+-0 0+-0 0+-0

    Significance 0.325 0.329 0.350

    Optimized SR SR Nominal reopt MET SR + IsoGrad=4 for nbjet=1 reopt using MET

    SR + IsoGrad=4 for (SFOS=2 || SFOS=0) reopt

    using MET

    ttH 0.943+-0.114 0.800+-0.097 0.792+-0.106

    BG_ALL 2.794+-0.469 1.112+-0.066 1.011+-0.055

    ttbar 0.828+-0.436 0+-0 0+-0

    Significance 0.228 0.349 0.365MET>10Zveto_1

    10020

    MET>10Zveto_13

    10013

    MET>35Zveto_13

    10013

    L = 10 fb-1

  • 10/07/16 43

    Impact of the mH veto on the scaled distributions (with no bjet requirement scale factors) FF no errorSample (with isoGradient)

    With no FF applied With FF applied FF-noFF yields Entries

    ttW 0.03+-0.01 0.03+-0.01 0.01+-0.00 22

    ttZ 0.95+-0.03 0.98+-0.03 0.04+-0.01 1652

    Zgam 0.03+-0.03 0.12+-0.12 0.09+-0.09 1

    ttH Signal 0.74+-0.10 0.75±0.10 0.01+-0.00 2002

    Sample (without isoGradient)

    With no FF applied With FF applied FF-noFF yields Entries

    ttW 0.07+-0.01 0.08+-0.01 0.01+-0.00 52

    ttZ 1.14+-0.03 1.19+-0.03 0.06+-0.01 2007

    Zgam 0.03+-0.03 0.12+-0.12 0.09+-0.09 1

    ttbar 0.83+-0.44 1.30+-0.73 0.48+-0.33 6

    ttbardilep 0.60+-0.18 0.69+-0.20 0.09+-0.03 17

    ttH Signal 0.92+-0.11 0.92+-0.11 0.01+-0.01 2634

    The table with no isolation gradient is given in order to observe the impact of the scaling factors λ on ttbar (in the nominal selection this contribution is zero)

  • 10/07/16 44

    PT dependence of the fakes in the yields, FF no error

    Sample (with isoGradient)

    With no FF applied With FF nominal applied

    With FF fakes pT>12 GeV

    With FF fakes pT>15 GeV

    With FF fakes pT>18 GeV

    ttW 0.03+-0.01 0.03+-0.01 0.04+-0.01 0.04+-0.01 0.04+-0.01

    ttZ 0.95+-0.03 0.98+-0.03 0.99+-0.03 1.00+-0.03 1.02+-0.04

    Zgam 0.03+-0.03 0.12+-0.12 0.11+-0.11 0.16+-0.16 0.16+-0.16

    ttH Signal 0.74+-0.10 0.75±0.10 0.75+-0.10 0.75+-0.10 0.76+-0.10

    Sample (without isoGradient)

    With no FF applied

    With FF nominal applied

    With FF fakes pT>12 GeV

    With FF fakes pT>15 GeV

    With FF fakes pT>18 GeV

    ttW 0.07+-0.01 0.08+-0.01 0.08+-0.02 0.08+-0.02 0.09+-0.02

    ttZ 1.14+-0.03 1.19+-0.03 1.19+-0.03 1.21+-0.04 1.23+-0.04

    Zgam 0.03+-0.03 0.12+-0.12 0.11+-0.11 0.16+-0.16 0.16+-0.16

    ttbar 0.83+-0.44 1.30+-0.73 2.00+-1.22 2.39+-1.52 3.86+-2.74

    ttbardilep 0.60+-0.18 0.69+-0.20 0.75+-0.22 0.77+-0.22 0.76+-0.23

    ttH Signal 0.92+-0.11 0.92+-0.11 0.93+-0.11 0.93+-0.11 0.95+-0.12

    Impact on the yields by applying different requirement on the fake pT (when calculation the scale factors) is negligible

  • 10/07/16 45

    noFF NOMINAL A B C D0.07+-0.01 0.08+-0.01 0.10+-0.03 0.11+-0.03 0.07+-0.01 0.07+-0.011.14+-0.03 1.19+-0.03 1.22+-0.04 1.21+-0.04 1.19+-0.03 1.17+-0.030.03+-0.03 0.12+-0.12 0.14+-0.14 0.04+-0.04 0.14+-0.14 0.05+-0.050.83+-0.44 1.30+-0.73 2.28+-1.44 2.28+-1.44 1.00+-0.54 1.00+-0.540.60+-0.18 0.69+-0.20 0.91+-0.27 0.95+-0.29 0.56+-0.16 0.57+-0.170.92+-0.11 0.93+-0.11 0.92+-0.12 0.92+-0.12 0.92+-0.11 0.93+-0.11

    Central values + statistical error

    NOM+ A+ B+ C+ D+ NOM- A- B- C- D-

    0 0.032 0.032 0 0 0.014 0.02 0.022 0 0

    0.022 0.048 0.062 0.03 0.064 0.024 0.024 0.042 0.035 0.033

    0.05 0.07 0.05 0.07 0.05 0.04 0.05 0.02 0.05 0.03

    0.55 2.1 2.1 0.51 0.51 0.41 1.2 1.2 0.36 0.36

    0.063 0.16 0.15 0.054 0.045 0.054 0.16 0.15 0.054 0.054

    0.014 0.033 0.024 0.014 0.014 0.01 0.022 0.014 0.01 0.014

    Systematics UP Systematics DOWN

    Nominal = No bjet req A = # bjet=0 for Zjets&tt B = # bjet>0 for Zjets && # bjet=0 for tt C = # bjet=0 for Zjets && # bjet>0 for tt D = # bjet>0 for Zjets && # bjet>0 for tt

    Statistical and systematic errors

  • 10/07/16 46

    noFF NOMINAL A B C D0.07+-0.01 0.08+-0.01 0.10+-0.03 0.11+-0.03 0.07+-0.01 0.07+-0.011.14+-0.03 1.19+-0.03 1.22+-0.04 1.21+-0.04 1.19+-0.03 1.17+-0.030.03+-0.03 0.12+-0.12 0.14+-0.14 0.04+-0.04 0.14+-0.14 0.05+-0.050.83+-0.44 1.30+-0.73 2.28+-1.44 2.28+-1.44 1.00+-0.54 1.00+-0.540.60+-0.18 0.69+-0.20 0.91+-0.27 0.95+-0.29 0.56+-0.16 0.57+-0.170.92+-0.11 0.93+-0.11 0.92+-0.12 0.92+-0.12 0.92+-0.11 0.93+-0.11

    Central values + statistical error

    NOM A B C D

    0.007 0.027 0.027 0 0

    0.023 0.045 0.052 0.0325 0.0485

    0.045 0.045 0.035 0.06 0.04

    0.48 1.65 1.65 0.435 0.435

    0.0585 0.155 0.15 0.054 0.0495

    0.012 0.0235 0.019 0.012 0.014

    0.5*(Systematics UP + Systematics DOWN)

    Nominal = No bjet req A = # bjet=0 for Zjets&tt B = # bjet>0 for Zjets && # bjet=0 for tt C = # bjet=0 for Zjets && # bjet>0 for tt D = # bjet>0 for Zjets && # bjet>0 for tt

    Statistical and systematic errors

  • 10/07/16 47

    Cut Flow in 3L CR 22.1 fb-1 ● CR Z+jets

    v19 Data ttbar-dilep Z+jets others

    Fakes_e 1381 11.999±1.050 829.724±101.738 253.114±9.888

    Fakes_mu 682 8.076±0.875 594.908±86.190 215.397±10.457

    v21 Data ttbar-dilep Z+jets others

    Fakes_e 1956 19.7±1.5 1294.3±131.0 411.1±13.6

    Fakes_mu 976 13.1±1.2 866.5±113.7 348.7±14.2

    Others = SingleTop & Dibosons & NLO+ttV & tribosons & tZ_bis & tWZ & ttH_Herwig & VH & tttt_ttWW & W+jetsSherpaNNPDF30NNLO & tHbjMadGraph+Herwig

    V20/02 Data ttbar-dilep Z+jets others

    Fakes_e 1389 17.187±1.299 1009.536±110.696 255.268±9.903

    Fakes_mu 686 13.010±1.167 826.339±95.970 215.863±10.376

    V20/04 Data ttbar-dilep Z+jets others

    Fakes_e 1525 17.187±1.299 1009.536±110.696 259.657±10.338

    Fakes_mu 952 13.010±1.167 826.339±95.970 236.567±11.383

    Backup

  • 10/07/16 48

    Cut Flow in 3L CR 22.1 fb-1

    v19 Data ttbar-dilep Z+jets others

    Fakes_e 136 116.131±3.415 2.733±1.646 17.307±1.332

    Fakes_mu 69 55.518±2.322 0.167±0.177 13.038±2.878

    Others = SingleTop & Dibosons & NLO+ttV & tribosons & tZ_bis & tWZ & ttH_Herwig & VH & tttt_ttWW & W+jetsSherpaNNPDF30NNLO & tHbjMadGraph+Herwig

    V20/02 Data ttbar-dilep Z+jets others

    Fakes_e 137 149.319±3.881 3.078±1.685 19.731±1.445

    Fakes_mu 70 97.739±3.126 0.430±0.366 20.828±3.877

    v21 Data ttbar-dilep Z+jets others

    Fakes_e 202 184.2±4.6 3.24±2.16 29.1±2.0

    Fakes_mu 96 89.4±3.2 -0.273±0.289 19.3±4.4

    V20/04 Data ttbar-dilep Z+jets others

    Fakes_e 180 149.319±3.881 3.078±1.685 26.850±5.611

    Fakes_mu 130 97.739±3.126 0.430±0.366 22.378±3.899

    ● CR ttBar

    Backup

  • 10/07/16 49

    FF using 3L information: Scale Factors in v19/20/21 dependency on b-jets multiplicity nJets_OR_MV2c10_70

  • 10/07/16 50

    FF using 3L information: Scale Factors in v19/20/21 dependency on PT fake

  • 10/07/16 51

    Lambda propagation models• M1

    – An event with at least a fake lepton is a fake event– FSFs are applied according to the nature of the fake event

    (“light” or “heavy” environment) and the flavour of the leptons

    – Events with N expected fakes will be reweighted by• M2:

    – Method 1 applied only if is NotIsolated type lepton– Factorize if more than 1 fake lepton

    • M3: use lep_isFake to separate fakes FSF applied the same as in Method 1

    • Option: apply lambda deduced at high b-jet multiplicity

    Backup

  • 10/07/16 52

    Summary on the 4l fake estimation v19ttH(herwg) M1 M2 M3Total_Brut 0.654 0.654 0.654

    Prompt 0.568 0.568 0.579Fakes 0.09 0.09 0.07

    Fakes_Scaled 0.09 0.08 0.07Total_Corrected 0.654 0.649 0.649

    Fakes_Scaled bjet>0 0.1 0.15 0.13Total_Corrected bjet>0 0.670 0.719 0.710

    TOTAL_BG M1 M2 M3Total_Brut 1.932 1.932 1.932

    Prompt 1.654 1.654 1.689Fakes 0.28 0.28 0.24

    Fakes_Scaled 0.28 0.28 0.25Total_Corrected 1.931 1.936 1.934

    Fakes_Scaled bjet>0 0.32 0.48 0.38Total_Corrected bjet>0 1.972 2.133 2.071

    The fake rates with various methods vary within 13-14%

    Backup

  • 10/07/16 53

    Summary on the 4l fake estimation v20/02ttH(herwg) M1 M2 M3

    Total_Brut 0.689 0.689 0.689

    Prompt 0.602 0.602 0.613

    Fakes 0.09 0.09 0.08

    Fakes_Scaled 0.05 0.05 0.05

    Total_Corrected 0.654 0.655 0.663

    Fakes_Scaled bjet>0 0.06 0.08 0.07

    Total_Corrected bjet>0 0.664 0.680 0.682

    TOTAL_BG

    Total_Brut 1.633 1.633 1.633

    Prompt 1.338 1.338 1.384

    Fakes 0.3 0.3 0.25

    Fakes_Scaled 0.33 0.31 0.27

    Total_Corrected 1.673 1.645 1.650

    Fakes_Scaled bjet>0 0.34 0.24 0.2

    Total_Corrected bjet>0 1.591 1.497 1.487

    The fake rates with various methods vary within 15%

    Backup

  • 10/07/16 54

    Summary on the 4l fake estimation v20/04ttH(herwg) M1 M2 M3Total_Brut 0.764 0.764 0.764

    Prompt 0.660 0.660 0.686Fakes 0.1 0.1 0.08

    Fakes_Scaled 0.11 0.11 0.08Total_Corrected 0.771 0.766 0.764

    Fakes_Scaled bjet>0 0.13 0.15 0.11Total_Corrected bjet>0 0.788 0.807 0.795

    TOTAL_BGTotal_Brut 1.504 1.504 1.504

    Prompt 1.255 1.255 1.284Fakes 0.25 0.25 0.22

    Fakes_Scaled 0.23 0.19 0.16Total_Corrected 1.488 1.440 1.448

    Fakes_Scaled bjet>0 0.62 0.45 0.35Total_Corrected bjet>0 1.961 1.790 1.734

    The fake rates with various methods vary within 15%

    Backup

  • 10/07/16 55

    Summary on the 4l fake estimation v21ttH(herwg) M1 M2 M3Total_Brut 1.031 1.031 1.031

    Prompt 0.908 0.908 0.927Fakes 0.12 0.12 0.1

    Fakes_Scaled 0.11 0.11 0.09Total_Corrected 1.016 1.013 1.016

    Fakes_Scaled bjet>0 0.12 0.18 0.16Total_Corrected bjet>0 1.031 1.092 1.083

    TOTAL_BG M1 M2 M3Total_Brut 2.197 2.197 2.197

    Prompt 1.834 1.834 1.870Fakes 0.36 0.36 0.33

    Fakes_Scaled 0.4 0.36 0.32Total_Corrected 2.236 2.192 2.187

    Fakes_Scaled bjet>0 0.8 0.49 0.39Total_Corrected bjet>0 2.630 2.329 2.255

    The fake rates with various methods vary within 13-14%

    Backup

  • 10/07/16 56

    4l Yields in the 4T and CR v214T CR1 CR2 CR3

    Data 19 7 5 7prompt 27.15+-2.05 4.80+-0.82 0.80+-0.33 2.04+-0.59

    ttbar-dilep 0.05+-0.05 3.28+-0.61 1.50+-0.40 5.75+-0.87ttH_Herwig 1.09+-0.06 0.10+-0.02 0.05+-0.02 0.08+-0.03

    4T CR1 CR2 CR3Data 12 9 5 11

    prompt 17.60+-1.53 3.50+-0.62 0.81+-0.31 1.87+-0.47ttbar-dilep 0.02+-0.02 3.95+-0.64 3.68+-0.68 8.66+-1.01ttH_Herwig 0.69+-0.04 0.08+-0.01 0.10+-0.03 0.12+-0.03

    4l Yields in the 4T and CR v20/04 Compatible with Run1

    Run1 results (20.3 fb−1):

    prompt = tZ_bis + tttt_ttWW + W+gamma + tribosons + tWZ + VH + tHbjMadGraph+Herwig + W+jetsSherpaNNPDF30NNLO + NLO+ttV + Dibosons

  • 10/07/16 57

    Conclusions I● Electron identification efficiency has been tested using W T&P● Angular distributions illustrate background features → used to reject

    bkgrd events

    ● Isolation studies in ET and η binning for different background templates (LH+CutBased) have been performed → systematics

    ● Trigger configuration has been proposed for 2016 data taking● Increased statistics in 2016-2017 will allow for a precise differential

    measurement, competitive with Z

    ● Future prospects for W T&P analysis:

    – Test the new trigger configuration– Efficiency studies including systematics to be concluded– Internal note illustrating the W T&P analysis → for Moriond 2017– Dedicated talk in the ATLAS EGAM workshop (7-10 November 2016)

  • 10/07/16 58

    Conclusions II● Isolation requirement reduced the ttbar and other MC Background sample contributions:

    – Isolation variables have been tested for all leptons and in different topologies (SFOS=0/2 and region where nbjet=1)

    – Cut variation studied + b-tagging tested

    – The isolation conditions are relatively similar; Proposal: IsolationGradient WP

    ● Systematics of the scaling factors → dependence on the b-jet requirement and fake lepton pT

    ● Estimation of the fakes provided by using the scaling factor method and Run 1

    ● Future plans:

    – MVA techniques to be tested in order to increase the significance– Improve the fake estimation in the new data sets : scaling factor method + fake factor

    by using the Run 1 definitions

    ● ICHEP 2016 CONF note

    – Plans: paper for EPS 2017

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29ttH measurements at LHCSlide 31Slide 32Slide 33Slide 34Slide 35Slide 36Slide 37Slide 38Slide 39Slide 40Slide 41Slide 42Slide 43Slide 44Slide 45Slide 46Slide 47Slide 48Slide 49Slide 50Slide 51Slide 52Slide 53Slide 54Slide 55Slide 56Slide 57Slide 58