37
1 SRC 4 Materials and Analysis Working Group Leaders Prof. Peter Gosling & Prof. Natalie Stranghöner 24 25 March 2015 Denkendorf

COST TU1303 SRC4 WG Meeting 2015.03.24-25 · 3. Discussion"and"agreementof"nextacJons"–[MAIN"TOPIC]"to"achieve" TU1303"deliverables" ... Z.A. les Anés, 2 Rue du Chapitre 69126

Embed Size (px)

Citation preview

1  

SRC  -­‐  4    

Materials  and  Analysis    

Working  Group  Leaders  Prof.  Peter  Gosling  &  Prof.  Natalie  Stranghöner  

24-­‐  25  March  2015  ⏐Denkendorf  

2  

Agenda  

1.  Brief  review  of  the  minutes  of  the  last  meeJng  in  Brussels  29th  September  2014  

2.  PresentaJons  (max  20  mins  each)  a.  Raul  Fanguiero  [Peter  Gosling]:  presentaJon  of  the  Horizon2020-­‐

proposal  “MulJfuncJonal  TexJle  Membranes  for  Eco-­‐efficient  Lightweight  Buildings”  

b.  Giorgio  NovaJ:  presentaJon  on  hyperelasJcity  c.  Jean-­‐Christophe  Thomas:  presentaJon  on  design  and  analysis  of  

inflatable  beams  d.  Peter  Gosling:  presentaJon  on  Round  Robin  II  e.  Maarten  Van  Craenenbroeck:  A  comparaJve  study  for  biaxial  tesJng  of  

technical  texJles  and  computaJonal  modelling  of  biaxial  stress  states  in  fabrics  

3.  Discussion  and  agreement  of  next  acJons  –  [MAIN  TOPIC]  to  achieve  TU1303  deliverables  

Project  Proposal  on        

Smart  and  Multifunctional  Textile  Membranes  for  Architectural  

Applications      

Flexible design

aesthetics  

Outstanding translucency Durability Lightweight Low

maintenance Code

compliance Cost

benefits

Objetivos  

Why  Membranes?  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Existing  Architectural  Membranes  

Woven  Textiles  • Glass,  aramids,  Acrylic,  Nylon,  Polyester,  etc.  

• Coated  with  PVC,  Urethane,  PTFE,  Silicone,  etc.  • High  strength  • UV  resistance  •  Fire  resistance  • Thermal  resistance  

ETFE  foils  • UV  resistance  •  Flame  resistance  • High  transparency  

Recent  developments:  • Self-­‐cleaning  (using  TiO2)  • Dubai  cricket  stadium  • Thermoregulation  (using  PCM)  • Energy  Harvesting    • Using  solar  cells.    

• PowerFilm  Inc.,  Konarka  Technologies  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Market  Trend  and  Need  for  New  Material  and  

Functionality  

Lightweight  structures,  

particularly  fabric  architecture,  have  

been  gaining  popularity  over  the  last  30–40  

years  

Steady  technological  progress  has  increased  the  popularity  of  fabric-­‐roofed  structures  in  recent  years  

Fabric  structures  are  no  longer  being  used  just  for  large  airports  

and  sports  stadiums  

The  lightweight  structures  fabric  

market  has  experienced  slow  

but  steady  growth  of  2-­‐3  percent  per  

annum  over  the  last  five  years  

The  global  market  is  

estimated  to  grow  at  a  

compound  annual  growth  rate  of  

9,43%  from  2014  to  2019,  reaching  a  value  of  $29.3  

billion.  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Objectives  

Development  of  innovative  architectural  membranes  with  self-­‐sensing,  energy  generation  and  storage  capabilities  through  integration  of  a  multi-­‐functional  coating  (for  self-­‐sensing  and  healing)    and  advanced  multi-­‐functional  textiles  

(energy  harvesting  and  storage  devices).    

Development  of  multi-­‐functional  polymeric  coating  for  self-­‐sensing  activities,    

Development  of  textile  based  energy  

harvesting  devices  and  rechargeable  batteries  

Investigation  on  the  

different  textile  

structures  for  

architectural  membranes  

and  functional  elements  

Detailed  material  

characterization  for  

architectural  membrane  

and  functional  elements    

Detailed  structural  

analysis  and  design  of  

architectural  membrane    

Fabrication  of  multi-­‐functional  

architectural  membranes  

and  performance  assessment    

Development  of  fully  functional  

architectural  membrane  prototypes  (for  roofs,  facades  and  interiors)  

with  targeted  

functionalities  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

For  What?  

Building  

Stadiums   Theatres   Railway  Stations  

Interiors  

Curtains   Wall  covering  

Skins  

Buildings   Facades  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

For  What?  

Material  

Sensing  

3D/2D  Fabrics  

Energy  

Architects  

Marke

t  

Science  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Proposed  Multi-­‐functional    Architectural  

Membrane    

Architectural  m

embran

e  (In

tegrated

 with)   Multi-­‐functional  Coating    

(Self-­‐sensing)  

Piezoelectric  Textiles  (Energy  from  wind)  

Textile  Batteries  (Energy  storage)  

All  polymeric  materials    

Light  weight  and  flexible  

Huge  design  possibilities  

Cost-­‐effectiveness  Sustainability  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Piezoelectric  Textile  Based  Energy  Harvesting  

Device  

Based on piezoelectric

Polyvinylidene difluoride (PVDF)

PVDF films can produce

100 µW power at moderate wind speeds

(current status)

Can produce more voltage and power

from wind and rain as

compared to ceramic based

PZT

PVDF textiles are superior to PVDF films in

terms of mechanical

stability, flexibility and large scale production possibilities

Can produce energy

generation from body

movements

Never explored for architectural membranes

Objetivos  

Textile  Based  Thin  Film  Batteries  

Thin,  compact  and  

flexible  

Good  battery  performance  

No  leakage,  safe  

Developed  by  building  various  battery  

components  on  to  a  

textile  fabric  

Based  on  Li-­‐ion  

chemistry  

Can  be  fabricated  

using  conventional  

coating  technique  

Can  be  easily  integrated  

with  architectural  membrane  

Objetivos  

Overall  Technical  Concept  

Objetivos  

Work  Package  1  

WP1:  Development  of  multi-­‐functional  polymeric  coating  for  self-­‐sensing  activities,  its  analysis  and  performance  assessment  

Development  of  piezoresistive  coating  formulation  containing  

healing  agents  

Application  of  coating  on  to  different  textile  

structures  

Assessment  and  analysis  of  self-­‐sensing  

property  

Optimization  of  coating  formulation  and  

application  process  parameters            

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  2  

WP2:  Development  of  textile  based  energy  producing  devices,  their  analysis  and  performance  assessment  

Production  of  piezoelectric  fabrics  using  

knitting  technology  

Characterization  of  piezoelectric  performance  

Investigation  of  the  effect  of  textile  structure  (2D/3D)  and  structural  

parameters  on  the  piezoeletric  performance  

Analysis  of  piezoelectric  performance  

Optimization  of  various  parameters  to  maximize  the  piezoelectric  

performance,  ease  of  fabrication  and  cost-­‐effectiveness  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  3  

WP3:  Development  of  textile  based  rechargeable  batteries,  their  analysis  and  performance  assessment  

Selection  of  suitable  battery  components  (electrolyte,  

anode,  cathode,  current  collector)  

Application  of  battery  

components  through  different  coating  techniques  

Characterization  and  analysis  of  

battery  performance  

Studies  on  the  effect  of  textile  structures  on  the  

battery  performance  

Optimization  of  textile  structure  and  coating  technique  to  

maximize  battery  performance,  ease  of  fabrication  and  cost-­‐effectiveness  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  4  

WP4:  Investigation  on  different  textile  structures  for  architectural  membrane  and  characterization  of  their  material  behaviours    

Characterization  of  biaxial  behaviour  for  different  

membrane  materials  (material  stiffness,  strength,  seam  

strength,  behaviour  at  different  climates  (hot  or  cold),  long  time  

behaviour,  etc.)  

Modification  of  testing  procedures  for  the  new  materials  

to  be  used  

Development  of  accurate  material  models  for  the  new  

materials  to  be  used  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  5  

WP5:  Structural  analysis  and  design  of  architectural  membranes  with  integrated  functional  elements  and  coating  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  6  

WP  6:  Fabrication  of  multi-­‐functional  architectural  membrane  and  performance  assessment  

Integration  of  functional  elements  within  

architectural  membrane  using  optimum  conditions  and  parameters  

Establishment  of  contactless  electrical  

connections  between  all  functional  elements  

Assessment  of  performance  of  multi-­‐functional  membrane  

(self-­‐sensing,  automatic  adjustment  of  tension,  self-­‐healing,  energy  

generation  and  storage)  

Adjustments  of  required  parameters    

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  7  

WP7:  Developing  fully  functional  architectural  membrane  prototypes  (for  roofs,  facades  and  interiors)  with  all  targeted  functionalities    

Development  of  textile  based  membrane  prototype  for  roofs  with  integrated  functionalities  and  performance  assessment  

 Development  of  ETFE  membrane  prototype  for  facades  with  all  integrated  functionalities  and  performance  assessment  

Development  of  textile  based  membrane  prototype  for  interior  application  (e.g.  curtain)  with  all  integrated  functionalities  and  performance  assessment  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Work  Package  8,  9,  10  

WP  8:  Environmental  assessment  and  cost  analysis    

WP  9:  Standardisation:  guidelines  

WP  10:  Dissemination  

and  exploitation  

WP11:  Management  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Objetivos  

Partners  

Par9cipant  organisa9on  name   Country  

University  of  Minho  (UMINHO)-­‐  Coordinator   Portugal  University  of  Newcastle  (UNCASTLE  )   United  Kingdom  

University  of  Duisburg-­‐Essen  (UDE)   Germany  Universidade  Nova  da  Lisboa  (UNL)  –  NOVA.ID.FCT   Portugal  University  of  Bolton  (UBOLTON)   United  Kingdom  

The   Royal   Danish   Academy   of   Fine   Arts,   Schools   of   Architecture,   Design   and  ConservaJon  (RDAFA)  

Denmark  

Verseidag  Indutex  GmbH,  Krefeld  (VERSEIDAG)   Germany  AFORSEC   Spain  ARCHITEN  LANDRELL   United  Kingdom  

"Gheorghe  Asachi"  Technical  University  of  Iasi  (ASACHI)   Romania  

Ghent  University  (UGHENT)   Belgium  VrijeUniversiteitBrussel  (UVBRUSSEL)   Belgium  FormTL   Germany  LMA   Portugal  

www.fibrenamics.com  |  [email protected]  |  ©  2015  

Agenda  

1.  Brief  review  of  the  minutes  of  the  last  meeting  in  Brussels  29th  September  2014  

2.  Presentations  (max  20  mins  each)  a.  Raul  Fanguiero  [Peter  Gosling]:  presentation  of  the  Horizon2020-­‐

proposal  “Multifunctional  Textile  Membranes  for  Eco-­‐efficient  Lightweight  Buildings”  

b.  Giorgio  Novati:  presentation  on  hyperelasticity  c.  Jean-­‐Christophe  Thomas:  presentation  on  design  and  analysis  of  

inflatable  beams  d.  Peter  Gosling:  presentation  on  Round  Robin  II  e.  Maarten  Van  Craenenbroeck:  A  comparative  study  for  biaxial  testing  of  

technical  textiles  and  computational  modelling  of  biaxial  stress  states  in  fabrics  

3.  Discussion  and  agreement  of  next  actions  –  [MAIN  TOPIC]  to  achieve  TU1303  deliverables  

Round  robin  exercise  2:  interpretaJon  of  biaxial  and  shear  test  data  

The  first  round  robin  exercise  was  a  comparaJve  study  of  analysis  methods  and  results  for  a  set  of  well  defined  membrane  structures.    There  were  22  parJcipants  worldwide,  and  the  results  were  published  in  ‘Engineering  Structures’  and  presented  at  internaJonal  conferences.  

Author's personal copy

Analysis and design of membrane structures: Results of a roundrobin exercise

P.D. Gosling a, B.N. Bridgens a,⇑, A. Albrecht b, H. Alpermann c, A. Angeleri d, M. Barnes e, N. Bartle a,R. Canobbio d, F. Dieringer f, S. Gellin g, W.J. Lewis h, N. Mageau i, R. Mahadevan j, J.-M. Marion k,P. Marsden l, E. Milligan m, Y.P. Phang n, K. Sahlin o, B. Stimpfle p, O. Suire q, J. Uhlemann r

a School of Civil Engineering & Geosciences, University of Newcastle, Newcastle-upon-Tyne NE1 7RU, UKb Elioth, EGIS Concept, 4 Rue Dolorès Ibarruri, TSA 80006, 93188 Montreuil Cedex, Francec University of the Arts Berlin, Faculty of Architecture, Structural Design and Technology, Hardenbergstrasse 33, 10623 Berlin, Germanyd CANOBBIO SpA, Via Roma 3, 15053 Castelnuovo Scrivia (AL), Italye Department of Architecture & Civil Engineering, University of Bath, Bath BA2 7AY, UKf TU München, Structural Analysis, Arcisstr. 21, 80333 Munich, Germanyg Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USAh School of Engineering, University of Warwick, Library Road, Coventry CV4 7AL, UKi Schlaich Bergermann und Partner, Schwabstrasse 43, 70197 Stuttgart, Germanyj Techno Specialist (FZE), P.O. Box 121908, SAIF Zone, Sharjah, United Arab Emiratesk AIA Ingénierie, 20 Rue Lortet, 69341 Lyon Cedex 07, Francel Buro Happold, Camden Mill, 230 Lower Bristol Road, Bath BA2 3DQ, UKm Tensys Limited, 1 St. Swithins Yard, Walcot St., Bath BA1 5BG, UKn Multimedia Engineering Pte. Ltd., 50 Bukit Batok St. 23 #05-15, Singapore, Singaporeo Radome Modeling Team, Saint-Gobain Performance Plastics, 701 Daniel Webster Hwy., Merrimack, NH 03054, USAp TL Ingenieure für Tragwerk und Leichtbau gmbh, Kapellenweg 2b, 78315 Radolfzell, Germanyq SMC2 – Construction Sports et Loisirs, Z.A. les Anés, 2 Rue du Chapitre 69126 Brindas, Francer University of Duisburg – Essen, Institute for Metal and Lightweight Structures, 45117 Essen, Germany

a r t i c l e i n f o

Article history:Received 11 January 2012Revised 20 July 2012Accepted 12 October 2012

Keywords:Membrane structureTensile fabricArchitectural fabricRound robinComparative analysisForm findingConicHyparEurocode 10

a b s t r a c t

Tensile fabric structures are used for large-scale iconic structures worldwide, yet analysis and designmethodologies are not codified in most countries and there is limited design guidance available. Non-lin-ear material behaviour, large strains and displacements and the use of membrane action to resist loadsrequire a fundamentally different approach to structural analysis and design compared to conventionalroof structures.

The aim of the round robin analysis exercise presented here is to understand the current state of anal-ysis practice for tensile fabric structures, and to assess the level of consistency and harmony in currentpractice. The exercise consists of four precisely defined tensile fabric structures, with participantsrequired to carry out the form finding and load analysis of each structure and report key values of stress,deflection and reactions.

The results show very high levels of variability in terms of stresses, displacements, reactions and mate-rial design strengths, and highlight the need for future work to harmonise analysis methods and providevalidation and benchmarking for membrane analysis software. Greater consistency is required to giveconfidence in the analysis and design process, to enable third party checking to be carried out in a mean-ingful and efficient manner, to provide a harmonious approach for Eurocode development, and to enablethe full potential of tensile structures to be realised.

! 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

For over 50 years tensile fabric has been used for a wide varietyof large scale, architecturally striking structures, including sportsstadia, airports and shopping malls [1]. A fabric membrane actsas both structure and cladding, thereby reducing the weight, cost

0141-0296/$ - see front matter ! 2012 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.engstruct.2012.10.008

⇑ Corresponding author. Address: Newcastle University, School of Civil Engineer-ing & Geosciences, Drummond Building, Newcastle-upon-Tyne NE1 7RU, UK. Tel.:+44 (0)191 222 6409.

E-mail address: [email protected] (B.N. Bridgens).

Engineering Structures 48 (2013) 313–328

Contents lists available at SciVerse ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/ locate /engstruct

hlp://eprint.ncl.ac.uk/pub_details2.aspx?pub_id=184881  (full  text  –  no  journal  subscripJon  required)  

Round  robin  exercise  2:  interpretaJon  of  biaxial  and  shear  test  data  

RR2  will  focus  on  the  interpreta9on  of  biaxial  and  shear  test  data,  i.e.  the  assessment  of  the  s9ffness  of  architectural  fabrics  and  how  these  proper9es  are  represented  in  the  analysis  of  a  structure.  

0"

5"

10"

15"

20"

25"

30"

35"

40"

(6.0" (4.0" (2.0" 0.0" 2.0" 4.0" 6.0" 8.0" 10.0"

Stress&(k

N/m

)&

Strain&(%)&

PTFE&coated&glass&fibre:&stress=strain&

Warp"

Fill"

0"

5"

10"

15"

20"

25"

30"

35"

40"

(6.0" (4.0" (2.0" 0.0" 2.0" 4.0" 6.0" 8.0" 10.0"

Stress&(k

N/m

)&

Strain&(%)&

PTFE&coated&glass&fibre:&stress=strain&

Warp"

Fill"

Round  robin  exercise  2:  interpretaJon  of  biaxial  and  shear  test  data  

Principles  of  the  exercise:    •  Aims  to  advance  scienJfic  and  engineering  pracJce  in  the  analysis  and  

design  of  membrane  structures,  

•  It  is  not  a  compeJJon,  

•  Voluntary  &  undertaken  without  fee  or  liability,  

•  Anonymous  –  for  the  parJcipants,  and  for  the  fabric  materials  that  are  used,  

•  Results  will  not  be  made  available  in  a  form  that  could  be  used  for  analysis  or  design  by  a  3rd  party.  

 

Round  robin  2  will  operate  in  two  disJnct  ways  depending  on  the  type  of  parJcipant:    Route  A:  interpreta9on  of  ‘typical’  biaxial  and  shear  test  data  provided  by  Newcastle  University.  Route  A  is  for  consultants,  analysts,  designers  and  fabricators  who  interpret  biaxial  test  results  provided  by  others.  Newcastle  University  will  provide  data  from  ‘typical’  biaxial  and  shear  tests.  ParJcipants  will  be  provided  with  biaxial  and  shear  test  data  for  a  selecJon  of  fabrics,  in  both  graphical  form  and  tables  of  stress  and  strain  values  (.csv  and  .xls  formats).  Full  details  of  the  Newcastle  University  biaxial  and  shear  test  equipment  will  be  provided.  In  addiJon,  parJcipants  will  be  provided  with  a  descripJon  of  the  structure  that  the  fabric  is  being  used  for,  including  stress  plots,  in  case  this  informaJon  is  required  to  inform  their  interpretaJon  of  the  test  data.  ParJcipants  will  report  how  the  test  data  is  analysed  and  incorporated  in  their  analysis.    Route  B:  carry  out  biaxial  and/or  shear  test  and  interpret  results.  Route  B  is  primarily  for  test  houses,  but  may  also  apply  to  consultants  and  analysts,  whose  method  of  interpretaJon  relies  on  results  from  a  parJcular  test  protocol.  ParJcipants  will  be  provided  with  fabric  samples,  and  a  descripJon  of  the  structure  that  the  fabric  is  being  used  in,  including  stress  plots,  in  case  this  informaJon  is  required  to  inform  their  tesJng  and  interpretaJon  of  the  test  data.  ParJcipants  will  carry  out  fabric  tesJng  and  then  provide  details  of  how  the  test  results  are  interpreted.  

Repor9ng  of  results    Route  A:  interpretaJon  of  ‘typical’  biaxial  and  shear  test  data  provided  by  Newcastle  University    

A1.  Describe  how  the  biaxial  sJffness  of  the  fabric  is  incorporated  in  your  analysis.  A2.  Describe  how  you  determined  the  biaxial  sJffness  parameters  described  in  A1.    A3.  Describe  how  the  shear  sJffness  of  the  fabric  is  incorporated  in  your  analysis.  A4.  Describe  how  you  determine  the  shear  sJffness  parameters  described  in  A3  A5.  For  each  set  of  test  results  (PVC-­‐polyester,  PTFE-­‐glass,  and  so  on)  provide  the  values  that                  would  be  used  to  represent  the  biaxial    and  shear  behaviour  in  the  analysis    Route  B:  carry  out  biaxial  and/or  shear  test  and  interpret  results    

B1.  Describe  the  principles  of  operaJon  of  the  biaxial  test  equipment  that  you  have  been  used                  for  this  exercise.  B2.  Provide  details  of  the  biaxial  test  protocol  that  has  been  used.  B3.  Describe  the  principles  of  operaJon  of  the  shear  test  equipment  that  you  have  used  for  this                  exercise.  B4.  Provide  details  of  the  shear  test  protocol  that  you  have  used.    B5.  Provide  your  biaxial  and  shear  test  results,  in  both  graphical  form  and  tables  of  stress  and                  strain  values  (.csv  and  .xls  formats).  B6.  Complete  A1  –  A6  (above)  to  describe  how  the  test  results  are  interpreted.      

Proposed  biaxial  test  protocol  –  for  comment          

Warp load Fill load

3 x 1:1 3 x 1:2 3 x 2:1 3 x 1:0 3 x 0:1

Prestress

Appl

ied

load

(% u

ltim

ate

tens

ile s

treng

th)

0

5

10

15

20

25

Time (minutes)0 50 100 150 200 250 300

Proposed  shear  test  protocol  –  for  comment          

!20$

!15$

!10$

!5$

0$

5$

10$

15$

20$

0$ 100$ 200$ 300$ 400$ 500$ 600$ 700$

Shear&a

ngle&(d

egrees)&

Time&(minutes)&

±1°  ±3°          ±1°                ±6°                          ±1°                                                ±15°                                                                            ±1°  

Round  robin  exercise  2:  Jmeline  &  acJons  

!

Version 1. 20 March 2015. BB 6

!

7 Timeline

March&'&April&2015&

Round&robin&2&is&launched.&

Proposed&test&protocols&are&provided&for&comment.&

Manufacturers&are&invited&to&volunteer&to&provide&fabric&samples&for&testing.&We&are&looking&for&one&medium&weight&example&of&each&material&–&e.g.&1&x&Type&III&PVC'polyester,&1&x&PTFE'glass,&1&x&silicone'glass,&1&x&Tenara?,&1&x&other&interesting&materials…?&It&is&anticipated&that&no&more&than&10&linear&metres&of&each&fabric&will&be&required,&and&the&amount&will&be&minimised&once&we&know&how&many&participants&are&taking&Route&B.&

Participants&are&asked&to&register&their&interest&in&the&exercise&by&emailing&Dr&Ben&Bridgens&at&[email protected]&&and&to&specify&whether&they&want&to&take&Route&A&or&Route&B&(in&which&case&they&will&require&fabric&samples).&

June&2015&Test&protocols&for&Route&A&are&finalised.&

Fabric&samples&are&delivered&to&Newcastle&University&for&testing&and&distribution&to&participants&taking&Route&B&

August&2015& Full&details&of&round&robin&2&are&circulated&to&participants&including&all&test&data&and&reporting&forms.&

October&2015& Deadline&for&return&of&results&to&[email protected]&&

Nov&2015&–&March&2016&

Analysis&and&dissemination&of&results&

&

&

Agenda  

1.  Brief  review  of  the  minutes  of  the  last  meeting  in  Brussels  29th  September  2014  

2.  Presentations  (max  20  mins  each)  a.  Raul  Fanguiero  [Peter  Gosling]:  presentation  of  the  Horizon2020-­‐

proposal  “Multifunctional  Textile  Membranes  for  Eco-­‐efficient  Lightweight  Buildings”  

b.  Giorgio  Novati:  presentation  on  hyperelasticity  c.  Jean-­‐Christophe  Thomas:  presentation  on  design  and  analysis  of  

inflatable  beams  d.  Peter  Gosling:  presentation  on  Round  Robin  II  e.  Maarten  Van  Craenenbroeck:  A  comparative  study  for  biaxial  testing  of  

technical  textiles  and  computational  modelling  of  biaxial  stress  states  in  fabrics  

3.  Discussion  and  agreement  of  next  actions  –  [MAIN  TOPIC]  to  achieve  TU1303  deliverables  

34  

TU1303  -­‐  Novel  structural  skins:  Improving  sustainability  and  efficiency  through  new  structural  tex9le  materials  and  designs    The  aim  of  the  AcJon  is  to:    (1)  standardise  the  material  and  structural  tesJng  and  analysis  approaches  

within  Europe,  to  inform  the  design  of  safer  and  more  efficient  structures,    (2)  harmonise  the  research  on  membrane  and  foil  structural  skins,    (3)  collate  harmonised  data  and  tools  on  energy  performance  and  Life  Cycle  

Analysis  and    (4)  sJmulate  and  deliver  innovaJon  and  development  of  new  structural  skin  

products,  adaptable  systems  and  durable  applicaJons  in  the  urban  environment.    

35  

Strategic  Research  Cluster  4:  materials  and  analysis    SRC  –  4  will  focus  on  the  characterisaJon  and  advanced  simulaJon  of  membrane  and  foil  materials  and  advanced  simulaJon  of  their  structural  applicaJon.      Different  experimental  methodologies  and  results  from  round  robin  exercises  will  be  discussed  and  compared  with  the  outcomes  from  numerical  simulaJons  that  partners  are  currently  conducJng.      A  key  objecJve  is  to  establish  the  coupling  between  simulaJon  and  material  characterisaJon  so  as  to  enhance  the  opJmal  applicaJon  of  membrane  and  foil  materials  for  buildings.  

36  Typical  research  topics  are:  •  Advanced  analysis  methodologies  •  VerificaJon  of  analysis  methodologies/tools;  validaJon  of  simulaJons  iniJated  by  using  data  from  

currently  monitored  structures  and  from  structures  installed  during  the  COST  AcJon  •  Measurement  of  the  biaxial  tensile  sJffness,  shear  sJffness,  uniaxial  and  biaxial  tear  properJes  of  a  

range  of  texJle  and  foil  materials;  simulaJon  of  these  tests  with  the  tools  used  for  the  analysis  of  building  skins  

•  Test  method  design  and  specificaJon,  the  interpretaJon  and  use  of  test  data  and  the  collecJon  of  typical  material  data  (in  a  data  base)  

•  IdenJficaJon  and  quanJficaJon  of  epistemic  and  aleatoric  uncertainJes  (in  the  analysis  and  in  the  material  characterisaJon)  

•  Probability  distribuJon  funcJons  and  parameters  to  characterize  mechanical  properJes  (linked  to  the  fixh  SRC)  

•  The  link  between  computaJonal  mechanics  and  material  characterisaJon;  novel  approaches  including  response  surface  technologies  and  neural  network  techniques  taking  into  account  load  cycling  effects,  hystereJc  behaviour  and  Jme  dependency  

•  The  use  of  predicJve  material  models  directly  in  the  simulaJon  tool  and  in  the  accurate  and  opJmal  descripJon  of  cuyng  palerns  

•  The  use  of  a  coupled  analysis  and  consJtuJve  material  model  framework  to  simulate  the  installaJon  and  whole-­‐life  behaviour  of  texJle  and  foil  building  skins  (contribuJng  to  the  second  SRC)  

•  The  applicaJon  of  StochasJc  Finite  Element  Analysis;  the  implicaJon  of  adopJng  probabilisJc  approaches  to  the  analysis  of  building  skins,  with  parJcular  reference  to  soxware  requirements  

•  DefiniJon  of  a  series  of  analyJcal  and  physical  benchmarks  for  the  verificaJon  and  validaJon  of  emerging  simulaJon  and  tesJng  technologies.  

37  

Planned  Ac9vi9es  –  [historic,  to  review]    1.  Undertake  round  robin  I  (analysis)  follow-­‐up    2015  2.  Submit  a  follow-­‐up  journal  paper  on  round  robin  I  2015  3.  Produce  a  state-­‐of-­‐the-­‐art  report  on  analysis  methods  2015  4.  Launch  round  robin  II  (materials)      2015  5.  H2020  EE1  –  2014.  Manufacturing  of  prefabricated    

modules  for  renovaJon  of  buildings  –  applicaJon?  2015  6.  H2020  EE5  –  2014/15.  Increasing  energy  

performance  of  exisJng  buildings  through  process    and  organisaJon  innovaJons  and  creaJng  a  market    for  deep  renovaJon  –  applicaJon?      2015  

7.  DeterminaJon  of  Tear  Strength    8.  Reliability  Analysis  9.  Applying  for  Research  Projects  10. …