105
Controlled Interacting Particle Systems for Estimation and Sampling Amirhossein Taghvaei Postdoctoral Scholar Department of Mechanical and Aerospace Engineering University of California, Irvine Presented at the Department of Aeronautics & Astronautics University of Washington, Seattle Feb 25, 2021

Controlled Interacting Particle Systems for Estimation and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Controlled Interacting Particle Systems for Estimation and

Controlled Interacting Particle Systemsfor Estimation and Sampling

Amirhossein Taghvaei

Postdoctoral ScholarDepartment of Mechanical and Aerospace Engineering

University of California, Irvine

Presented at the Department of Aeronautics & AstronauticsUniversity of Washington, Seattle

Feb 25, 2021

Page 2: Controlled Interacting Particle Systems for Estimation and

Uncertainty is everywhere

GPS location

weather forecast COVID-19

We have to deal withuncertainty

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Amirhossein Taghvaei 1 / 31 Amirhossein Taghvaei

Page 3: Controlled Interacting Particle Systems for Estimation and

Uncertainty is everywhere

GPS locationweather forecast

COVID-19

We have to deal withuncertainty

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Amirhossein Taghvaei 1 / 31 Amirhossein Taghvaei

Page 4: Controlled Interacting Particle Systems for Estimation and

Uncertainty is everywhere

GPS locationweather forecast

COVID-19

We have to deal withuncertainty

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Amirhossein Taghvaei 1 / 31 Amirhossein Taghvaei

Page 5: Controlled Interacting Particle Systems for Estimation and

Uncertainty is everywhere

GPS locationweather forecast

COVID-19

uncertainty

imperfect models noise in measurements

stochastic algorithms

We have to deal withuncertainty

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Amirhossein Taghvaei 1 / 31 Amirhossein Taghvaei

Page 6: Controlled Interacting Particle Systems for Estimation and

Uncertainty is everywhere

GPS locationweather forecast

COVID-19

uncertainty

imperfect models noise in measurements

stochastic algorithms

We have to deal withuncertainty

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Amirhossein Taghvaei 1 / 31 Amirhossein Taghvaei

Page 7: Controlled Interacting Particle Systems for Estimation and

To be certain about uncertainty

Probability theory: (quantify uncertainty)

Optimal transport theory: (geometry for distributions)

Nobel prize (1975) Fields medal (2010)

Allows application of control and optimization techniques to distributions

Amirhossein Taghvaei 2 / 31 Amirhossein Taghvaei

Page 8: Controlled Interacting Particle Systems for Estimation and

To be certain about uncertainty

Probability theory: (quantify uncertainty)

Optimal transport theory: (geometry for distributions)

Nobel prize (1975) Fields medal (2010)

Allows application of control and optimization techniques to distributions

Amirhossein Taghvaei 2 / 31 Amirhossein Taghvaei

Page 9: Controlled Interacting Particle Systems for Estimation and

To be certain about uncertainty

Probability theory: (quantify uncertainty)

Optimal transport theory: (geometry for distributions)

Nobel prize (1975)Fields medal (2010)

Allows application of control and optimization techniques to distributions

Amirhossein Taghvaei 2 / 31 Amirhossein Taghvaei

Page 10: Controlled Interacting Particle Systems for Estimation and

To be certain about uncertainty

Probability theory: (quantify uncertainty)

Optimal transport theory: (geometry for distributions)

Nobel prize (1975)Fields medal (2010)

Allows application of control and optimization techniques to distributions

Amirhossein Taghvaei 2 / 31 Amirhossein Taghvaei

Page 11: Controlled Interacting Particle Systems for Estimation and

Research overview

Main theme: Control/Optimization for probability distributions

Optimal transporttheory

Nonlinear Estimation/filtering → this talk!

publications in IEEE TAC, SIAM UQ, ASME, IEEE CSM

Machine learning

publications in NeurIPS 17, ICML 19, ICML 20

Stochastic thermodynamics

publications in Automatica, Scientific reports

Amirhossein Taghvaei 3 / 31 Amirhossein Taghvaei

Page 12: Controlled Interacting Particle Systems for Estimation and

Research overview

Main theme: Control/Optimization for probability distributions

Optimal transporttheory

Nonlinear Estimation/filtering → this talk!

publications in IEEE TAC, SIAM UQ, ASME, IEEE CSM

Machine learning

publications in NeurIPS 17, ICML 19, ICML 20

Stochastic thermodynamics

publications in Automatica, Scientific reports

Amirhossein Taghvaei 3 / 31 Amirhossein Taghvaei

Page 13: Controlled Interacting Particle Systems for Estimation and

Research overview

Main theme: Control/Optimization for probability distributions

Optimal transporttheory

Nonlinear Estimation/filtering → this talk!

publications in IEEE TAC, SIAM UQ, ASME, IEEE CSM

Machine learning

publications in NeurIPS 17, ICML 19, ICML 20

Stochastic thermodynamics

publications in Automatica, Scientific reports

Amirhossein Taghvaei 3 / 31 Amirhossein Taghvaei

Page 14: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part IV: applications

Amirhossein Taghvaei 3 / 31 Amirhossein Taghvaei

Page 15: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part IV: applications

Amirhossein Taghvaei 3 / 31 Amirhossein Taghvaei

Page 16: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problem

state observationposterior distribution

Hidden state: physical activity

Observation: inertial motion sensors

Problem: estimate the state based on observation

Probabilistic approach: compute the conditional probability distribution (posterior)

Internship at university start-up company, Rithmio, 2014-2015

Amirhossein Taghvaei 4 / 31 Amirhossein Taghvaei

Page 17: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problem

state observationposterior distribution

Hidden state: physical activity

Observation: inertial motion sensors

Problem: estimate the state based on observation

Probabilistic approach: compute the conditional probability distribution (posterior)

Internship at university start-up company, Rithmio, 2014-2015

Amirhossein Taghvaei 4 / 31 Amirhossein Taghvaei

Page 18: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemMathematical model

State process: Xk ∼ a(·|Xk−1), X0 ∼ π0(·)

Observation process: Zk ∼ l(·|Xk)

Objective: compute πk(·) := P(Xk ∈ ·|Z1:k)

In principle: recursive update for posterior

πkdynamics

−−−−→ πkcorrection

−−−−→Bayes rule

πk+1

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 5 / 31 Amirhossein Taghvaei

Page 19: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemMathematical model

State process: Xk ∼ a(·|Xk−1), X0 ∼ π0(·)

Observation process: Zk ∼ l(·|Xk)

Objective: compute πk(·) := P(Xk ∈ ·|Z1:k)

In principle: recursive update for posterior

πkdynamics

−−−−→ πkcorrection

−−−−→Bayes rule

πk+1

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 5 / 31 Amirhossein Taghvaei

Page 20: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemMathematical model

State process: Xk ∼ a(·|Xk−1), X0 ∼ π0(·)

Observation process: Zk ∼ l(·|Xk)

Objective: compute πk(·) := P(Xk ∈ ·|Z1:k)

In principle: recursive update for posterior

πkdynamics

−−−−→ πkcorrection

−−−−→Bayes rule

πk+1

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 5 / 31 Amirhossein Taghvaei

Page 21: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemContinuous-time formulation

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

In principle: continuous update law for posterior

dπt = (dynamics) + (correction)

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 6 / 31 Amirhossein Taghvaei

Page 22: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemContinuous-time formulation

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Yt :=d

dtZt = h(Xt) + white noise

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

In principle: continuous update law for posterior

dπt = (dynamics) + (correction)

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 6 / 31 Amirhossein Taghvaei

Page 23: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemContinuous-time formulation

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

In principle: continuous update law for posterior

dπt = (dynamics) + (correction)

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 6 / 31 Amirhossein Taghvaei

Page 24: Controlled Interacting Particle Systems for Estimation and

Nonlinear filtering problemContinuous-time formulation

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

In principle: continuous update law for posterior

dπt = (dynamics) + (correction)

In practice: no finite-dimensional solution

notable exception: linear Gaussian case

J. Xiong, An introduction to stochastic filtering theory, 2008

Amirhossein Taghvaei 6 / 31 Amirhossein Taghvaei

Page 25: Controlled Interacting Particle Systems for Estimation and

Kalman-Bucy filterLinear Gaussian setting

linear dynamics: AXtdt+ dBt

linear observation: h(x) = Hx

Kalman filter: posterior πt is Gaussian N(mt,Σt)

Update for mean: dmt = Amtdt︸ ︷︷ ︸dynamics

+ Kt(dZt −Hmtdt)︸ ︷︷ ︸correction

Update for variance: Σt = (Ricatti equation)

Kalman gain: Kt = ΣtHT

Properties:

strong theoretical properties

if state dimension is d, computational cost O(d2) → Ensemble Kalman filter

exact only in linear Gaussian setting → Particle filter

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory, 1961

Amirhossein Taghvaei 7 / 31 Amirhossein Taghvaei

Page 26: Controlled Interacting Particle Systems for Estimation and

Kalman-Bucy filterLinear Gaussian setting

linear dynamics: AXtdt+ dBt

linear observation: h(x) = Hx

Kalman filter: posterior πt is Gaussian N(mt,Σt)

Update for mean: dmt = Amtdt︸ ︷︷ ︸dynamics

+ Kt(dZt −Hmtdt)︸ ︷︷ ︸correction

Update for variance: Σt = (Ricatti equation)

Kalman gain: Kt = ΣtHT

Properties:

strong theoretical properties

if state dimension is d, computational cost O(d2) → Ensemble Kalman filter

exact only in linear Gaussian setting → Particle filter

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory, 1961

Amirhossein Taghvaei 7 / 31 Amirhossein Taghvaei

Page 27: Controlled Interacting Particle Systems for Estimation and

Kalman-Bucy filterLinear Gaussian setting

linear dynamics: AXtdt+ dBt

linear observation: h(x) = Hx

Kalman filter: posterior πt is Gaussian N(mt,Σt)

Update for mean: dmt = Amtdt︸ ︷︷ ︸dynamics

+ Kt(dZt −Hmtdt)︸ ︷︷ ︸correction

Update for variance: Σt = (Ricatti equation)

Kalman gain: Kt = ΣtHT

Properties:

strong theoretical properties

if state dimension is d, computational cost O(d2) → Ensemble Kalman filter

exact only in linear Gaussian setting → Particle filter

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory, 1961

Amirhossein Taghvaei 7 / 31 Amirhossein Taghvaei

Page 28: Controlled Interacting Particle Systems for Estimation and

Ensemble Kalman filterMonte-Carlo approximation of Kalman filter

Posterior distribution: πt ≈1

N

N∑i=1

δXit

Update for particles: dXit = (dynamics) + K

(N)t (dZt −

HXit +Hm

(N)t

2dt)︸ ︷︷ ︸

correction

Kalman gain: K(N)t = Σ

(N)t HT

exact mean and variance in mean-field limit (N →∞)

computational cost O(Nd), efficient when d� N

not exact in nonlinear setting

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model . . . 1994.K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation, 2012

Amirhossein Taghvaei 8 / 31 Amirhossein Taghvaei

Page 29: Controlled Interacting Particle Systems for Estimation and

Ensemble Kalman filterMonte-Carlo approximation of Kalman filter

Posterior distribution: πt ≈1

N

N∑i=1

δXit

Update for particles: dXit = (dynamics) + K

(N)t (dZt −

HXit +Hm

(N)t

2dt)︸ ︷︷ ︸

correction

Kalman gain: K(N)t = Σ

(N)t HT

exact mean and variance in mean-field limit (N →∞)

computational cost O(Nd), efficient when d� N

not exact in nonlinear setting

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model . . . 1994.K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation, 2012

Amirhossein Taghvaei 8 / 31 Amirhossein Taghvaei

Page 30: Controlled Interacting Particle Systems for Estimation and

Particle filtersSequential importance sampling

Algorithm:

approximate πt with weighted empirical distributionN∑i=1

wiδXit

update the weights using observation and Bayes rule (importance sampling)

Properties:

exact in the limit as N →∞weight degeneracy → curse of dimensionality

no feedback control structure

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

Amirhossein Taghvaei 9 / 31 Amirhossein Taghvaei

Page 31: Controlled Interacting Particle Systems for Estimation and

Particle filtersSequential importance sampling

Algorithm:

approximate πt with weighted empirical distributionN∑i=1

wiδXit

update the weights using observation and Bayes rule (importance sampling)

Properties:

exact in the limit as N →∞weight degeneracy → curse of dimensionality

no feedback control structure

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

Amirhossein Taghvaei 9 / 31 Amirhossein Taghvaei

Page 32: Controlled Interacting Particle Systems for Estimation and

Curse of dimensionalityLinear Gaussian setting

number of particles to achieve error ε:

1 2 3 4 5 6 7 8 9 10

5

6

7

8

9

log(

N)

d

N2d

0.010.02

0.05

0.10

m.s.e (PF) EnKF

PF: N ≈ O(ed

ε) EnKF: N ≈ O(

d2

ε)

Question: Can we generalize EnKF to nonlinear setting?

S. C. Surace, A. Kutschireiter, J. Pfister, How to avoid the curse of dimensionality: scalability of particle filters . . . , SIAM review, 2019A. Taghvaei, P. G. Mehta, An optimal transport formulation of ensemble Kalman filter, (TAC) 2020

Amirhossein Taghvaei 10 / 31 Amirhossein Taghvaei

Page 33: Controlled Interacting Particle Systems for Estimation and

Part I: summary

Kalman filter Ensemble Kalman filter Particle filter

KF: dmt = (dynamics) + Kt(dZt −Hmtdt)

EnKF: dXit = (dynamics) + K

(N)t (dZt −

HXik +Hm

(N)t

2dt)

PF: no feedback control structure

Question: Can we generalize EnKF to nonlinear and non-Gaussian setting?

Amirhossein Taghvaei 11 / 31 Amirhossein Taghvaei

Page 34: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part III: applications

References:

A. Taghvaei, P. G. Mehta, Optimal Transportation Methods in Nonlinear Filtering: Thefeedback particle filter, IEEE Control Systems Magazine (CSM), Accepted

A. Taghvaei, P. G. Mehta, An optimal transport formulation of the Ensemble Kalman filter,Transactions of Automatic Control (TAC), Accepted

Amirhossein Taghvaei 11 / 31 Amirhossein Taghvaei

Page 35: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part III: applications

References:

A. Taghvaei, P. G. Mehta, Optimal Transportation Methods in Nonlinear Filtering: Thefeedback particle filter, IEEE Control Systems Magazine (CSM), Accepted

A. Taghvaei, P. G. Mehta, An optimal transport formulation of the Ensemble Kalman filter,Transactions of Automatic Control (TAC), Accepted

Amirhossein Taghvaei 11 / 31 Amirhossein Taghvaei

Page 36: Controlled Interacting Particle Systems for Estimation and

Mean-field design

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

Idea:

construct a controlled stochastic process

dXt = (dynamics) + ut(Xt)dt+ Kt(Xt)dZt︸ ︷︷ ︸control

design the control law such that

Xt ∼ πt, ∀t ≥ 0 (exactness)

realize Xt with N particles {X1t , . . . , X

Nt }

Amirhossein Taghvaei 12 / 31 Amirhossein Taghvaei

Page 37: Controlled Interacting Particle Systems for Estimation and

Mean-field design

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

Idea:

construct a controlled stochastic process

dXt = (dynamics) + ut(Xt)dt+ Kt(Xt)dZt︸ ︷︷ ︸control

design the control law such that

Xt ∼ πt, ∀t ≥ 0 (exactness)

realize Xt with N particles {X1t , . . . , X

Nt }

Amirhossein Taghvaei 12 / 31 Amirhossein Taghvaei

Page 38: Controlled Interacting Particle Systems for Estimation and

Mean-field design

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

Idea:

construct a controlled stochastic process

dXt = (dynamics) + ut(Xt)dt+ Kt(Xt)dZt︸ ︷︷ ︸control

design the control law such that

Xt ∼ πt, ∀t ≥ 0 (exactness)

realize Xt with N particles {X1t , . . . , X

Nt }

Amirhossein Taghvaei 12 / 31 Amirhossein Taghvaei

Page 39: Controlled Interacting Particle Systems for Estimation and

Mean-field design

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

Idea:

construct a controlled stochastic process

dXt = (dynamics) + ut(Xt)dt+ Kt(Xt)dZt︸ ︷︷ ︸control

design the control law such that

Xt ∼ πt, ∀t ≥ 0 (exactness)

realize Xt with N particles {X1t , . . . , X

Nt }

Amirhossein Taghvaei 12 / 31 Amirhossein Taghvaei

Page 40: Controlled Interacting Particle Systems for Estimation and

Mean-field design

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: compute πt(·) := P(Xt ∈ ·|Z[0,t])

Idea:

construct a controlled stochastic process

dXt = (dynamics) + ut(Xt)dt+ Kt(Xt)dZt︸ ︷︷ ︸control

design the control law such that

Xt ∼ πt, ∀t ≥ 0 (exactness)

realize Xt with N particles {X1t , . . . , X

Nt }

Amirhossein Taghvaei 12 / 31 Amirhossein Taghvaei

Page 41: Controlled Interacting Particle Systems for Estimation and

Example

Objective: construct Xt ∼ πt = N(0, 1 + t)

Two solutions:

As N →∞, they have the same marginal distribution πt

However, different couplings between two time instants

Amirhossein Taghvaei 13 / 31 Amirhossein Taghvaei

Page 42: Controlled Interacting Particle Systems for Estimation and

Example

Objective: construct Xt ∼ πt = N(0, 1 + t)

Two solutions:

(I) dXt = dBt, X0 ∼ N(0, 1) (II)d

dtXt =

Xt

2Σt, X0 ∼ N(0, 1)

As N →∞, they have the same marginal distribution πt

However, different couplings between two time instants

Amirhossein Taghvaei 13 / 31 Amirhossein Taghvaei

Page 43: Controlled Interacting Particle Systems for Estimation and

Example

Objective: construct Xt ∼ πt = N(0, 1 + t)

Two solutions:

(I) dXit = dBit (II)

d

dtXit =

Xit

2N

∑Nj=1(Xj

t )2

As N →∞, they have the same marginal distribution πt

However, different couplings between two time instants

Amirhossein Taghvaei 13 / 31 Amirhossein Taghvaei

Page 44: Controlled Interacting Particle Systems for Estimation and

Optimal transport construction

optimal transport coupling

mincoupling

E[|X0 −X1|2

]s.t. X0 ∼ π0, X1 ∼ π1

Brenier’s theorem: optimal coupling is deterministic and of gradient form

X1 = ∇Φ(X0)

adapt the procedure to continuous-time filtering setup → feedback particle filter

C. Villani, Topics in optimal transportation, American Mathematical Soc., 2003

Amirhossein Taghvaei 14 / 31 Amirhossein Taghvaei

Page 45: Controlled Interacting Particle Systems for Estimation and

Optimal transport construction

optimal transport coupling

mincoupling

E[|X0 −X1|2

]s.t. X0 ∼ π0, X1 ∼ π1

Brenier’s theorem: optimal coupling is deterministic and of gradient form

X1 = ∇Φ(X0)

adapt the procedure to continuous-time filtering setup → feedback particle filter

C. Villani, Topics in optimal transportation, American Mathematical Soc., 2003

Amirhossein Taghvaei 14 / 31 Amirhossein Taghvaei

Page 46: Controlled Interacting Particle Systems for Estimation and

Optimal transport construction

optimal transport coupling

mincoupling

E[|X0 −X1|2

]s.t. X0 ∼ π0, X1 ∼ π1

Brenier’s theorem: optimal coupling is deterministic and of gradient form

X1 = ∇Φ(X0)

adapt the procedure to continuous-time filtering setup → feedback particle filter

C. Villani, Topics in optimal transportation, American Mathematical Soc., 2003

Amirhossein Taghvaei 14 / 31 Amirhossein Taghvaei

Page 47: Controlled Interacting Particle Systems for Estimation and

Feedback particle filter (FPF)

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: construct Xt ∼ πt(·) := P(Xt ∈ ·|Z[0,t])

Mean-field process:

dXt = (dynamic model) + Kt(Xt) ◦ (dZt −h(Xt) + ht

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function Kt(x) = ∇φt(x) where φt solves the Poisson eq.

1

ρt(x)∇ · (ρt(x)∇φt(x)) = h(x)− ht

ht = E[h(Xt)|Zt]

ρt is probability density for Xt

Amirhossein Taghvaei 15 / 31 Amirhossein Taghvaei

Page 48: Controlled Interacting Particle Systems for Estimation and

Feedback particle filter (FPF)

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: construct Xt ∼ πt(·) := P(Xt ∈ ·|Z[0,t])

Mean-field process:

dXt = (dynamic model) + Kt(Xt) ◦ (dZt −h(Xt) + ht

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function Kt(x) = ∇φt(x) where φt solves the Poisson eq.

1

ρt(x)∇ · (ρt(x)∇φt(x)) = h(x)− ht

ht = E[h(Xt)|Zt]

ρt is probability density for Xt

Amirhossein Taghvaei 15 / 31 Amirhossein Taghvaei

Page 49: Controlled Interacting Particle Systems for Estimation and

Feedback particle filter (FPF)

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: construct Xt ∼ πt(·) := P(Xt ∈ ·|Z[0,t])

Mean-field process:

dXt = (dynamic model) + Kt(Xt) ◦ (dZt −h(Xt) + ht

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function Kt(x) = ∇φt(x) where φt solves the Poisson eq.

1

ρt(x)∇ · (ρt(x)∇φt(x)) = h(x)− ht

ht = E[h(Xt)|Zt]

ρt is probability density for Xt

Amirhossein Taghvaei 15 / 31 Amirhossein Taghvaei

Page 50: Controlled Interacting Particle Systems for Estimation and

Feedback particle filter (FPF)

State process: dXt = (dynamic model) X0 ∼ π0(·)

Observation process: dZt = h(Xt)dt+ dWt

Objective: construct Xt ∼ πt(·) := P(Xt ∈ ·|Z[0,t])

Mean-field process:

dXt = (dynamic model) + Kt(Xt) ◦ (dZt −h(Xt) + ht

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function Kt(x) = ∇φt(x) where φt solves the Poisson eq.

1

ρt(x)∇ · (ρt(x)∇φt(x)) = h(x)− ht

ht = E[h(Xt)|Zt]

ρt is probability density for Xt

Amirhossein Taghvaei 15 / 31 Amirhossein Taghvaei

Page 51: Controlled Interacting Particle Systems for Estimation and

Finite-N approximation

Update formula:

dXit = (dynamic model) + K

(N)t (Xi

t) ◦ (dZt −h(Xi

t) + h(N)t

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function K(N)t (x) is approximated in terms of particles

K(N)t = Algorithm({X1

t , . . . , XNt }, h)

h(N)t =

1

N

N∑i=1

h(Xit)

Main challenge: Gain function approximation

Amirhossein Taghvaei 16 / 31 Amirhossein Taghvaei

Page 52: Controlled Interacting Particle Systems for Estimation and

Finite-N approximation

Update formula:

dXit = (dynamic model) + K

(N)t (Xi

t) ◦ (dZt −h(Xi

t) + h(N)t

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function K(N)t (x) is approximated in terms of particles

K(N)t = Algorithm({X1

t , . . . , XNt }, h)

h(N)t =

1

N

N∑i=1

h(Xit)

Main challenge: Gain function approximation

Amirhossein Taghvaei 16 / 31 Amirhossein Taghvaei

Page 53: Controlled Interacting Particle Systems for Estimation and

Finite-N approximation

Update formula:

dXit = (dynamic model) + K

(N)t (Xi

t) ◦ (dZt −h(Xi

t) + h(N)t

2dt)︸ ︷︷ ︸

correction

, X0i.i.d∼ π0

Gain function K(N)t (x) is approximated in terms of particles

K(N)t = Algorithm({X1

t , . . . , XNt }, h)

h(N)t =

1

N

N∑i=1

h(Xit)

Main challenge: Gain function approximation

Amirhossein Taghvaei 16 / 31 Amirhossein Taghvaei

Page 54: Controlled Interacting Particle Systems for Estimation and

Part II: summary

feedback particle filter

prior posterior

Poisson equation

KF: dmt = (dynamical model) + Kt(dZt −Hmtdt)

EnKF: dXit = (dynamical model) + K

(N)t (dZt −

HXit +Hm

(N)t

2dt)

FPF: dXit = (dynamical model) + K

(N)t (Xi

t) ◦ (dZt −h(Xi

t) + h(N)t

2dt)

Difficulty of filtering = gain function approximating

Amirhossein Taghvaei 17 / 31 Amirhossein Taghvaei

Page 55: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part III: applications

References:

A. Taghvaei, P. G. Mehta, S. P. Meyn, Diffusion map-based algorithm for gain functionapproximation in the feedback particle filter, SIAM Journal on Uncertainty Quantification,8(3):1090–1117, 2020

Amirhossein Taghvaei 17 / 31 Amirhossein Taghvaei

Page 56: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part III: applications

References:

A. Taghvaei, P. G. Mehta, S. P. Meyn, Diffusion map-based algorithm for gain functionapproximation in the feedback particle filter, SIAM Journal on Uncertainty Quantification,8(3):1090–1117, 2020

Amirhossein Taghvaei 17 / 31 Amirhossein Taghvaei

Page 57: Controlled Interacting Particle Systems for Estimation and

Gain function approximation (K(x) = ∇φ(x))Problem formulation

Poisson equation:−∆ρφ(x) = h(x)− h

where ∆ρφ :=1

ρ∇ · (ρ∇φ)

Computational problem:

Given: {X1, . . . , XN} i.i.d∼ ρ

Approximate: {∇φ(X1), . . . ,∇φ(XN )}

Amirhossein Taghvaei 18 / 31 Amirhossein Taghvaei

Page 58: Controlled Interacting Particle Systems for Estimation and

Gain function approximation (K(x) = ∇φ(x))Problem formulation

Poisson equation:−∆ρφ(x) = h(x)− h

where ∆ρφ := ∆φ+∇ log(ρ) · ∇φ

Computational problem:

Given: {X1, . . . , XN} i.i.d∼ ρ

Approximate: {∇φ(X1), . . . ,∇φ(XN )}

Amirhossein Taghvaei 18 / 31 Amirhossein Taghvaei

Page 59: Controlled Interacting Particle Systems for Estimation and

Gain function approximation (K(x) = ∇φ(x))Problem formulation

Poisson equation:−∆ρφ(x) = h(x)− h

where ∆ρφ :=1

ρ∇ · (ρ∇φ)

Computational problem:

Given: {X1, . . . , XN} i.i.d∼ ρ

Approximate: {∇φ(X1), . . . ,∇φ(XN )}

Amirhossein Taghvaei 18 / 31 Amirhossein Taghvaei

Page 60: Controlled Interacting Particle Systems for Estimation and

Gain function approximationConstant gain approximation

Kconst := arg minK∈Rd

∫|∇φ(x)− K|2ρ(x)dx

A closed-form formula:

Kconst =

∫(h(x)− h)xρ(x)dx ≈ 1

N

∑i=1

(h(Xi)− h(N))Xi

FPFconst. gain approx.−−−−−−−−−−−→ Ensemble Kalman filter (EnKF)

Can we improve this approximation?

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions... ASME, 2017

Amirhossein Taghvaei 19 / 31 Amirhossein Taghvaei

Page 61: Controlled Interacting Particle Systems for Estimation and

Gain function approximationConstant gain approximation

Kconst := arg minK∈Rd

∫|∇φ(x)− K|2ρ(x)dx

A closed-form formula:

Kconst =

∫(h(x)− h)xρ(x)dx ≈ 1

N

∑i=1

(h(Xi)− h(N))Xi

FPFconst. gain approx.−−−−−−−−−−−→ Ensemble Kalman filter (EnKF)

Can we improve this approximation?

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions... ASME, 2017

Amirhossein Taghvaei 19 / 31 Amirhossein Taghvaei

Page 62: Controlled Interacting Particle Systems for Estimation and

Gain function approximationConstant gain approximation

Kconst := arg minK∈Rd

∫|∇φ(x)− K|2ρ(x)dx

A closed-form formula:

Kconst =

∫(h(x)− h)xρ(x)dx ≈ 1

N

∑i=1

(h(Xi)− h(N))Xi

FPFconst. gain approx.−−−−−−−−−−−→ Ensemble Kalman filter (EnKF)

Can we improve this approximation?

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions... ASME, 2017

Amirhossein Taghvaei 19 / 31 Amirhossein Taghvaei

Page 63: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 64: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 65: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 66: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 67: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 68: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 69: Controlled Interacting Particle Systems for Estimation and

Gain function approximationThree formulations, Three algorithms

−∆ρφ = h− h

(I) Weak formulation: (Galerkin algorithm)⟨∇φ,∇ψ

⟩=⟨h− h, ψ

⟩, ∀ψ ∈ H1(ρ)

where⟨f, g⟩

:=

∫f(x)g(x)ρ(x)dx

(II) Semigroup formulation: (Diffusion-map algorithm)

φ = Ptφ+

∫ t

0

Ps(h− h)ds

where Pt := et∆ρ is the semigroup

(III) Variational formulation: (Neural net. approximation)

minφ∈H1

0 (ρ)

∫ [1

2|∇φ(x)|2 − φ(x)(h(x)− h)

]ρ(x)dx

Amirhossein Taghvaei 20 / 31 Amirhossein Taghvaei

Page 70: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmOverview

(I) Semigroup formulation:

φ = Pεφ+

∫ ε

0

Ps(h− h)ds

where Pε := eε∆ρ is the semigroup

(II) Diffusion map approximation: (Coifman, et. al. 2006)

Pεf(x)ε↓0≈ Tεf(x) :=

1

nε(x)

∫gε(x, y)

f(y)ρ(y)√(gε ∗ ρ)(y)

dy

(III) Empirical approximation :

Tεf(x)N↑∞≈ T (N)

ε f(x) :=1

n(N)ε (x)

N∑i=1

gε(x,Xi)

f(Xi)√∑Nj=1 gε(X

i, Xj)

A. Taghvaei, P. G. Mehta, S. P. Meyn Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM UQ 2020

Amirhossein Taghvaei 21 / 31 Amirhossein Taghvaei

Page 71: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmOverview

(I) Semigroup formulation:

φ = Pεφ+

∫ ε

0

Ps(h− h)ds

where Pε := eε∆ρ is the semigroup

(II) Diffusion map approximation: (Coifman, et. al. 2006)

Pεf(x)ε↓0≈ Tεf(x) :=

1

nε(x)

∫gε(x, y)

f(y)ρ(y)√(gε ∗ ρ)(y)

dy

(III) Empirical approximation :

Tεf(x)N↑∞≈ T (N)

ε f(x) :=1

n(N)ε (x)

N∑i=1

gε(x,Xi)

f(Xi)√∑Nj=1 gε(X

i, Xj)

A. Taghvaei, P. G. Mehta, S. P. Meyn Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM UQ 2020

Amirhossein Taghvaei 21 / 31 Amirhossein Taghvaei

Page 72: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmOverview

(I) Semigroup formulation:

φ = Pεφ+

∫ ε

0

Ps(h− h)ds

where Pε := eε∆ρ is the semigroup

(II) Diffusion map approximation: (Coifman, et. al. 2006)

Pεf(x)ε↓0≈ Tεf(x) :=

1

nε(x)

∫gε(x, y)

f(y)ρ(y)√(gε ∗ ρ)(y)

dy

(III) Empirical approximation :

Tεf(x)N↑∞≈ T (N)

ε f(x) :=1

n(N)ε (x)

N∑i=1

gε(x,Xi)

f(Xi)√∑Nj=1 gε(X

i, Xj)

A. Taghvaei, P. G. Mehta, S. P. Meyn Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM UQ 2020

Amirhossein Taghvaei 21 / 31 Amirhossein Taghvaei

Page 73: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact= 102

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 74: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact= 101

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 75: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact= 100

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 76: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact= 10 1

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 77: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

1

2

3

4

5

6

7

K

const. gain

exact= 10 2

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 78: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

2

4

6

8

10

K

const. gain

exact= 10 3

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 79: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

2

4

6

8

10

K

const. gain

exact= 10 3

variance dominates

bias dominates

diffusion mapconstant gain

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 80: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

2 1 0 1 2

x

0

2

4

6

8

10

K

const. gain

exact= 10 3

variance dominates

bias dominates

diffusion mapconstant gain

Objective: error analysis of bias and variance

Amirhossein Taghvaei 22 / 31 Amirhossein Taghvaei

Page 81: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmError analysis

Approximation steps:

φDM approx.

−−−−−→bias

φεempirical approx.

−−−−−→variance

φ(N)ε

Proposition

Under technical assumptions, with high probability

‖φ(N)ε − φ‖L2(ρ) ≤ O(ε)︸︷︷︸

bias

+O(1

ε1+ d2N

12

)︸ ︷︷ ︸variance

Tools for proof:

1 stochastic stability theory (Meyn & Tweedie, 2012)

2 numerical analysis of integral equations (Anselone, 1971, Atkinson, 1976)

A. Taghvaei, P. G. Mehta, S. P. Meyn Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM UQ 2020

Amirhossein Taghvaei 23 / 31 Amirhossein Taghvaei

Page 82: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmError analysis

Approximation steps:

φDM approx.

−−−−−→bias

φεempirical approx.

−−−−−→variance

φ(N)ε

Proposition

Under technical assumptions, with high probability

‖φ(N)ε − φ‖L2(ρ) ≤ O(ε)︸︷︷︸

bias

+O(1

ε1+ d2N

12

)︸ ︷︷ ︸variance

Tools for proof:

1 stochastic stability theory (Meyn & Tweedie, 2012)

2 numerical analysis of integral equations (Anselone, 1971, Atkinson, 1976)

A. Taghvaei, P. G. Mehta, S. P. Meyn Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM UQ 2020

Amirhossein Taghvaei 23 / 31 Amirhossein Taghvaei

Page 83: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmError analysis

Approximation steps:

φDM approx.

−−−−−→bias

φεempirical approx.

−−−−−→variance

φ(N)ε

Proposition

Under technical assumptions, with high probability

‖φ(N)ε − φ‖L2(ρ) ≤ O(ε)︸︷︷︸

bias

+O(1

ε1+ d2N

12

)︸ ︷︷ ︸variance

Tools for proof:

1 stochastic stability theory (Meyn & Tweedie, 2012)

2 numerical analysis of integral equations (Anselone, 1971, Atkinson, 1976)

A. Taghvaei, P. G. Mehta, S. P. Meyn Diffusion map-based algorithm for gain function approximation in the feedback particle filter, SIAM UQ 2020

Amirhossein Taghvaei 23 / 31 Amirhossein Taghvaei

Page 84: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

Setup: ρ(x) = ρbimodal(x1)

d∏n=2

ρGaussian(xn) and h(x) = x1.

Convergence to const. gain approx.:

limε→∞

K(N)ε = const. gain approximatoin

Amirhossein Taghvaei 24 / 31 Amirhossein Taghvaei

Page 85: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

Setup: ρ(x) = ρbimodal(x1)

d∏n=2

ρGaussian(xn) and h(x) = x1.

const. gain

m.s

.e

O( )

m.s

.eConvergence to const. gain approx.:

limε→∞

K(N)ε = const. gain approximatoin

Amirhossein Taghvaei 24 / 31 Amirhossein Taghvaei

Page 86: Controlled Interacting Particle Systems for Estimation and

Diffusion map-based algorithmNumerical analysis

Setup: ρ(x) = ρbimodal(x1)

d∏n=2

ρGaussian(xn) and h(x) = x1.

const. gain

m.s

.e

O( )

m.s

.eConvergence to const. gain approx.:

limε→∞

K(N)ε = const. gain approximatoin

Amirhossein Taghvaei 24 / 31 Amirhossein Taghvaei

Page 87: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part III: applications

References:

C. Zhang, A. Taghvaei, P. G. Mehta, Feedback Particle Filter on Riemannian Manifolds andMatrix Lie groups, IEEE Transactions on Automatic Control (TAC), 63(8):2465–2480, 2017.

C. Zhang, A. Taghvaei, P. G. Mehta, Attitude Estimation of a Wearable Motion SensorIEEE American Control Conference (ACC), 2017

A. Taghvaei, S. A. Hutchinson, P. G. Mehta, A Coupled Oscillator-based ControlArchitecture for Locomotory Gaits, IEEE Conference on Decision and Control (CDC), 2014

Amirhossein Taghvaei 24 / 31 Amirhossein Taghvaei

Page 88: Controlled Interacting Particle Systems for Estimation and

Outline

Part I: background and motivation

Part II: mean-field control design

Part III: gain function approximation

Part III: applications

References:

C. Zhang, A. Taghvaei, P. G. Mehta, Feedback Particle Filter on Riemannian Manifolds andMatrix Lie groups, IEEE Transactions on Automatic Control (TAC), 63(8):2465–2480, 2017.

C. Zhang, A. Taghvaei, P. G. Mehta, Attitude Estimation of a Wearable Motion SensorIEEE American Control Conference (ACC), 2017

A. Taghvaei, S. A. Hutchinson, P. G. Mehta, A Coupled Oscillator-based ControlArchitecture for Locomotory Gaits, IEEE Conference on Decision and Control (CDC), 2014

Amirhossein Taghvaei 24 / 31 Amirhossein Taghvaei

Page 89: Controlled Interacting Particle Systems for Estimation and

Attitude estimation problemProblem formulation

Model:

State dRt = Rt[ωt ]×dt+Rt ◦ [σBdBt ]× R0 ∼ π0

Observation dZt = h(Rt)dt+ σWdWt

FPF:

dRit = (dynamaics) +Rit [ Kt(Rit) ◦ (dZt −

1

2(h(Rit) + ht) dt) ]×︸ ︷︷ ︸

correction

gain function Kt(R) = grad(φ)(R)

φ satisfies the Poisson equation on SO(3)

diffusion map algorithm is extended to SO(3)

C. Zhang, A. Taghvaei, P. G. Mehta Feedback Particle Filter on Riemannian Manifolds and Matrix Lie groups, IEEE TAC, 2017

Amirhossein Taghvaei 25 / 31 Amirhossein Taghvaei

Page 90: Controlled Interacting Particle Systems for Estimation and

Attitude estimation problemProblem formulation

Model:

State dRt = Rt[ωt ]×dt+Rt ◦ [σBdBt ]× R0 ∼ π0

Observation dZt = h(Rt)dt+ σWdWt

Notation Rt ∈ SO(3), Zt ∈ Rm

FPF:

dRit = (dynamaics) +Rit [ Kt(Rit) ◦ (dZt −

1

2(h(Rit) + ht) dt) ]×︸ ︷︷ ︸

correction

gain function Kt(R) = grad(φ)(R)

φ satisfies the Poisson equation on SO(3)

diffusion map algorithm is extended to SO(3)

C. Zhang, A. Taghvaei, P. G. Mehta Feedback Particle Filter on Riemannian Manifolds and Matrix Lie groups, IEEE TAC, 2017

Amirhossein Taghvaei 25 / 31 Amirhossein Taghvaei

Page 91: Controlled Interacting Particle Systems for Estimation and

Attitude estimation problemProblem formulation

Model:

State dRt = Rt[ωt ]×dt+Rt ◦ [σBdBt ]× R0 ∼ π0

Observation dZt = h(Rt)dt+ σWdWt

Notation Rt ∈ SO(3), Zt ∈ Rm

ωt ∈ R3 : angular velocity in body frame

FPF:

dRit = (dynamaics) +Rit [ Kt(Rit) ◦ (dZt −

1

2(h(Rit) + ht) dt) ]×︸ ︷︷ ︸

correction

gain function Kt(R) = grad(φ)(R)

φ satisfies the Poisson equation on SO(3)

diffusion map algorithm is extended to SO(3)

C. Zhang, A. Taghvaei, P. G. Mehta Feedback Particle Filter on Riemannian Manifolds and Matrix Lie groups, IEEE TAC, 2017

Amirhossein Taghvaei 25 / 31 Amirhossein Taghvaei

Page 92: Controlled Interacting Particle Systems for Estimation and

Attitude estimation problemProblem formulation

Model:

State dRt = Rt[ωt ]×dt+Rt ◦ [σBdBt ]× R0 ∼ π0

Observation dZt = h(Rt)dt+ σWdWt

Notation Rt ∈ SO(3), Zt ∈ Rm

ωt ∈ R3 : angular velocity in body frame

Applications:

aircraft navigation ( Crassidis et. al 03’ [JGCD], Hua et. al 14’ [IEEE TCST] )

robot localization ( Hesch et. al 13’ [IJRR], Kelly et. al 11’ [IJRR] )

visual tracking ( Choi et. al 11’ [ICRA], Kwon et. al 13’ [IEEE TPAMI] )

FPF:

dRit = (dynamaics) +Rit [ Kt(Rit) ◦ (dZt −

1

2(h(Rit) + ht) dt) ]×︸ ︷︷ ︸

correction

gain function Kt(R) = grad(φ)(R)

φ satisfies the Poisson equation on SO(3)

diffusion map algorithm is extended to SO(3)

C. Zhang, A. Taghvaei, P. G. Mehta Feedback Particle Filter on Riemannian Manifolds and Matrix Lie groups, IEEE TAC, 2017

Amirhossein Taghvaei 25 / 31 Amirhossein Taghvaei

Page 93: Controlled Interacting Particle Systems for Estimation and

Attitude estimation problemProblem formulation

Model:

State dRt = Rt[ωt ]×dt+Rt ◦ [σBdBt ]× R0 ∼ π0

Observation dZt = h(Rt)dt+ σWdWt

FPF:

dRit = (dynamaics) +Rit [ Kt(Rit) ◦ (dZt −

1

2(h(Rit) + ht) dt) ]×︸ ︷︷ ︸

correction

gain function Kt(R) = grad(φ)(R)

φ satisfies the Poisson equation on SO(3)

diffusion map algorithm is extended to SO(3)

C. Zhang, A. Taghvaei, P. G. Mehta Feedback Particle Filter on Riemannian Manifolds and Matrix Lie groups, IEEE TAC, 2017

Amirhossein Taghvaei 25 / 31 Amirhossein Taghvaei

Page 94: Controlled Interacting Particle Systems for Estimation and

Attitude estimation problemNumerical experiment

Comparison with:

MEKF: Multiplicative EKF (Markley 03’)

USQUE: Unscented Quaternion Estimator (Crassidis et. al 03’)

LIEKF: Left invariant EKF (Bonnabel et. al 09’)

Performance metric: RMSE of rotation angle RMSEt =

√1

100

∑100

j=1(δθjt )

2

Amirhossein Taghvaei 26 / 31 Amirhossein Taghvaei

Page 95: Controlled Interacting Particle Systems for Estimation and

Arm motion tracking

State: (Rt, ϕt) ∈ SO(3)× SO(2)

Observation: dZt = RTt h(ϕt) + σWdWt

C. Zhang, A. Taghvaei, P. G. Mehta, Attitude Estimation of a Wearable Motion Sensor, ACC 2017

Amirhossein Taghvaei 27 / 31 Amirhossein Taghvaei

Page 96: Controlled Interacting Particle Systems for Estimation and

Arm motion tracking

State: (Rt, ϕt) ∈ SO(3)× SO(2)

Observation: dZt = RTt h(ϕt) + σWdWt

C. Zhang, A. Taghvaei, P. G. Mehta, Attitude Estimation of a Wearable Motion Sensor, ACC 2017

Amirhossein Taghvaei 27 / 31 Amirhossein Taghvaei

Page 97: Controlled Interacting Particle Systems for Estimation and

Arm motion tracking

State: (Rt, ϕt) ∈ SO(3)× SO(2)

Observation: dZt = RTt h(ϕt) + σWdWt

C. Zhang, A. Taghvaei, P. G. Mehta, Attitude Estimation of a Wearable Motion Sensor, ACC 2017

Amirhossein Taghvaei 27 / 31 Amirhossein Taghvaei

Page 98: Controlled Interacting Particle Systems for Estimation and

Arm motion tracking

State: (Rt, ϕt) ∈ SO(3)× SO(2)

Observation: dZt = RTt h(ϕt) + σWdWt

C. Zhang, A. Taghvaei, P. G. Mehta, Attitude Estimation of a Wearable Motion Sensor, ACC 2017

Amirhossein Taghvaei 27 / 31 Amirhossein Taghvaei

Page 99: Controlled Interacting Particle Systems for Estimation and

Optimal control of locomotion gaits2-body System

[Click to play the movie]

A. Taghvaei, S. Hutchinson and P. G. Mehta. A coupled-oscillators-based control architecture for locomotory gaits. IEEE CDC (2014).

Amirhossein Taghvaei 28 / 31 Amirhossein Taghvaei

Page 100: Controlled Interacting Particle Systems for Estimation and

Summary

Controlled interacting particle system:

feedback particle filter

prior posterior

Poisson equation

3 2 1 0 1 2 3x

0

2

4

6

8

10

K

const. gain

exact= 0.02= 0.10= 0.50= 2.00

mean-field control design gain function approximation

Question: can the design and approximation be addressed in a single framework?

some directions for future research

Amirhossein Taghvaei 29 / 31 Amirhossein Taghvaei

Page 101: Controlled Interacting Particle Systems for Estimation and

Summary

Controlled interacting particle system:

feedback particle filter

prior posterior

Poisson equation

3 2 1 0 1 2 3x

0

2

4

6

8

10

K

const. gain

exact= 0.02= 0.10= 0.50= 2.00

mean-field control design gain function approximation

Question: can the design and approximation be addressed in a single framework?

some directions for future research

Amirhossein Taghvaei 29 / 31 Amirhossein Taghvaei

Page 102: Controlled Interacting Particle Systems for Estimation and

Summary

Controlled interacting particle system:

feedback particle filter

prior posterior

Poisson equation

3 2 1 0 1 2 3x

0

2

4

6

8

10

K

const. gain

exact= 0.02= 0.10= 0.50= 2.00

mean-field control design gain function approximation

Question: can the design and approximation be addressed in a single framework?

some directions for future research

Amirhossein Taghvaei 29 / 31 Amirhossein Taghvaei

Page 103: Controlled Interacting Particle Systems for Estimation and

Reinforcement learning with partial observation

Minimize Bellman error

sensory data

rewardcontrol input

estimate

TD-learning

coupled oscillator FPF

Idea: particles represent the belief state

Challenge: filtering is based on known dynamic and observation model

Amirhossein Taghvaei 30 / 31 Amirhossein Taghvaei

Page 104: Controlled Interacting Particle Systems for Estimation and

Interplay between optimization and sampling

MCMC

dXit = −∇V (Xi

t)dt+√

2dBit

Controlled interacting particle system

d

dtXit = −∇V (Xi

t) +∇ log(pt(Xit))︸ ︷︷ ︸

interaction

Example: Stein variational gradient descent (Liu & Wang, 2016)

Questions:

Principled method to approximate the interaction term

What are the fundamental differences and trade-offs between two approaches?

A. Taghvaei, P. G. Mehta. Accelerated flow for probability distributions, ICML 2019

Amirhossein Taghvaei 31 / 31 Amirhossein Taghvaei

Page 105: Controlled Interacting Particle Systems for Estimation and

The End

Optimal transporttheory

feedback particle filter

prior posterior

Thank you for your attention!

Questions?

Amirhossein Taghvaei 31 / 31 Amirhossein Taghvaei