12
International site for Spirax Sarco Tel: (800) 5750394 Fax: (803) 7142222 [email protected] http://www.SpiraxSarco.com/us/ This tutorial briefly describes the basic components of different types of linear and rotary action control valves available for use in steam and water systems. Use the quick links below to take you to the main sections of this tutorial: Contact Us The printable version of this page has now been replaced by The Steam and Condensate Loop Book View the complete collection of Steam Engineering Tutorials You are here: Home Resources Steam Engineering Tutorials Control Hardware: Electric/Pneumatic Actuation Control Valves Control Valves Introduction to Electric / Pneumatic Controls Block 6 of The Steam and Condensate Loop considers the practical aspects of control, putting the basic control theory discussed in Block 5 into practice. A basic control system would normally consist of the following components: Control valves. Actuators. Controllers. Sensors. All of these terms are generic and each can include many variations and characteristics. With the advance of technology, the dividing line between individual items of equipment and their definitions are becoming less clear. For example, the positioner, which traditionally adjusted the valve to a particular position within its range of travel, can now: Take input directly from a sensor and provide a control function. Interface with a computer to alter the control functions, and perform diagnostic routines. Modify the valve movements to alter the characteristics of the control valve. Interface with plant digital communication systems. However, for the sake of clarity at this point, each item of equipment will be considered separately. Control Valves Whilst a wide variety of valve types exist, this document will concentrate on those which are most widely used in the automatic control of steam and other industrial fluids. These include valve types which have linear and rotary spindle movement. Linear types include globe valves and slide valves. Rotary types include ball valves, butterfly valves, plug valves and their variants. The first choice to be made is between twoport and threeport valves. Twoport valves 'throttle' (restrict) the fluid passing through them. Threeport valves can be used to 'mix' or 'divert' liquid passing through them. Twoport valves Globe valves Globe valves are frequently used for control applications because of their suitability for throttling flow and the ease with which they can be given a specific 'characteristic', relating valve opening to flow. Two typical globe valve types are shown in Figure 6.1.1. An actuator coupled to the valve spindle would provide valve movement. Control Hardware: Electric/Pneumatic Actuation Control Valves Control Valve Capacity Control Valve Sizing for Water Systems Control Valve Sizing for Steam Systems Control Valve Characteristics Control Valve Actuators and Positioners Controllers and Sensors Related Content Control Valves Browse the range of control valves from here. Pneumatic Actuators Browse the range of electric actuators from here. Electric Actuators Browse the range of electric actuators from here. The Steam and Condensate Loop Book A comprehensive best practice guide to saving energy and optimising plant performance, this book covers all aspects of steam and condensate systems. Feature Home About Us Products & Services Industries & Applications Training Resources Contact

Control Valves _ International Site for Spirax Sarco

Embed Size (px)

DESCRIPTION

per

Citation preview

InternationalsiteforSpiraxSarco Tel:(800)5750394Fax:(803)[email protected]://www.SpiraxSarco.com/us/This tutorial briefly describes the basiccomponentsofdifferenttypesoflinearandrotaryaction control valves available for use in steamandwatersystems.Use the quick links below to take you to the mainsectionsofthistutorial:ContactUsTheprintableversionofthispagehasnowbeenreplacedbyTheSteamandCondensateLoopBookViewthecompletecollectionofSteamEngineeringTutorialsYouarehere: Home Resources SteamEngineeringTutorialsControlHardware:Electric/PneumaticActuation ControlValvesControlValvesIntroductiontoElectric/PneumaticControlsBlock 6 of The Steam and Condensate Loop considers the practical aspects of control, putting the basiccontroltheorydiscussedinBlock5intopractice.Abasiccontrolsystemwouldnormallyconsistofthefollowingcomponents:Controlvalves.Actuators.Controllers.Sensors.Allofthesetermsaregenericandeachcanincludemanyvariationsandcharacteristics.Withtheadvanceoftechnology,thedividinglinebetweenindividualitemsofequipmentandtheirdefinitionsarebecominglessclear.Forexample,thepositioner,whichtraditionallyadjustedthevalvetoaparticularpositionwithinitsrangeoftravel,cannow:Takeinputdirectlyfromasensorandprovideacontrolfunction.Interfacewithacomputertoalterthecontrolfunctions,andperformdiagnosticroutines.Modifythevalvemovementstoalterthecharacteristicsofthecontrolvalve.Interfacewithplantdigitalcommunicationsystems.However,forthesakeofclarityatthispoint,eachitemofequipmentwillbeconsideredseparately.ControlValvesWhilstawidevarietyofvalvetypesexist,thisdocumentwillconcentrateonthosewhicharemostwidelyused in the automatic control of steam and other industrial fluids. These include valve types which havelinearandrotaryspindlemovement.Lineartypesincludeglobevalvesandslidevalves.Rotarytypesincludeballvalves,butterflyvalves,plugvalvesandtheirvariants.Thefirstchoicetobemadeisbetweentwoportandthreeportvalves.Twoportvalves'throttle'(restrict)thefluidpassingthroughthem.Threeportvalvescanbeusedto'mix'or'divert'liquidpassingthroughthem.TwoportvalvesGlobevalvesGlobevalvesarefrequentlyusedforcontrolapplicationsbecauseoftheirsuitabilityforthrottlingflowandtheeasewithwhichtheycanbegivenaspecific'characteristic',relatingvalveopeningtoflow.TwotypicalglobevalvetypesareshowninFigure6.1.1.Anactuatorcoupledtothevalvespindlewouldprovidevalvemovement.ControlHardware:Electric/PneumaticActuationControlValvesControlValveCapacityControlValveSizingforWaterSystemsControlValveSizingforSteamSystemsControlValveCharacteristicsControlValveActuatorsandPositionersControllersandSensorsRelatedContentControlValvesBrowsetherangeofcontrolvalvesfromhere.PneumaticActuatorsBrowsetherangeofelectricactuatorsfromhere.ElectricActuatorsBrowsetherangeofelectricactuatorsfromhere.TheSteamandCondensateLoopBookAcomprehensivebestpracticeguidetosavingenergyandoptimisingplantperformance,thisbookcoversallaspectsofsteamandcondensatesystems.FeatureHome AboutUs Products&Services Industries&Applications Training Resources ContactFig.6.1.1TwodifferentlyshapedglobevalvesThemajorconstituentpartsofglobevalvesare:Thebody.Thebonnet.Thevalveseatandvalveplug,ortrim.Thevalvespindle(whichconnectstotheactuator).Thesealingarrangementbetweenthevalvestemandthebonnet.Figure 6.1.2 is a diagrammatic representation of a single seat twoport globe valve. In this case the fluidflowispushingagainstthevalveplugandtendingtokeeptheplugoffthevalveseat.Fig.6.1.2Flowthroughasingleseat,twoportglobevalveThedifferenceinpressureupstream(P1)anddownstream(P2)ofthevalve,againstwhichthevalvemustclose,isknownasthedifferentialpressure(DP).Themaximumdifferentialpressureagainstwhichavalvecanclosewilldependuponthesizeandtypeofvalveandtheactuatoroperatingit.Inbroadterms,theforcerequiredfromtheactuatormaybedeterminedusingEquation6.1.1.Equation6.1.1Where:A =Valveseatingarea(m)DP =Differentialpressure(kPa)F =Closingforcerequired(kN)OrderyourcopytodayInasteamsystem,themaximumdifferentialpressureisusuallyassumedtobethesameastheupstreamabsolute pressure. This allows for possible vacuum conditions downstream of the valve when the valvecloses.Thedifferentialpressureinaclosedwatersystemisthemaximumpumpdifferentialhead.Ifalargervalve,havingalargerorifice,isusedtopassgreatervolumesofthemedium,thentheforcethattheactuatormustdevelopinordertoclosethevalvewillalsoincrease.Whereverylargecapacitiesmustbe passed using large valves, or where very high differential pressures exist, the point will be reachedwhereitbecomesimpracticaltoprovidesufficientforcetocloseaconventionalsingleseatvalve.Insuchcircumstances,thetraditionalsolutiontothisproblemisthedoubleseattwoportvalve.Asthenameimplies,thedoubleseatvalvehastwovalveplugsonacommonspindle,withtwovalveseats.Notonlycanthevalveseatsbekeptsmaller(sincetherearetwoofthem)butalso,ascanbeseeninFigure6.1.3,theforcesarepartiallybalanced.Thismeansthatalthoughthedifferentialpressureistryingtokeepthetopvalveplugoffitsseat(aswithasingleseatvalve)itisalsotryingtopushdownandclosethelowervalveplug.Fig.6.1.3Flowthroughadoubleseat,twoportvalveHowever,apotentialproblemexistswithanydoubleseatvalve.Becauseofmanufacturingtolerancesanddiffering coefficients of expansion, few double seat valves can be guaranteed to give good shutofftightness.ShutofftightnessControl valve leakage is classified with respect to how much the valve will leak when fully closed. TheleakagerateacrossastandarddoubleseatvalveisatbestClassIII,(aleakageof0.1%offullflow)whichmaybetoomuchtomakeitsuitableforcertainapplications.Consequently,becausetheflowpathsthroughthetwoportsaredifferent,theforcesmaynotremaininbalancewhenthevalveopens.Variousinternationalstandardsexistthatformaliseleakageratesincontrolvalves.ThefollowingleakageratesaretakenfromtheBritishStandardBS5793Part4(IEC605344).Foranunbalancedstandardsingleseatvalve,theleakageratewillnormallybeClassIV,(0.01%offullflow),althoughitispossibletoobtainClassV,(1.8x105xdifferentialpressure(bar)xseatdiameter(mm).Generally,thelowertheleakageratethemorethecost.BalancedsingleseatvalvesBecause of the leakage problem associated with double seat valves, when a tight shutoff is required asingle seat valve should be specified. The forces required to shut a single seat globe valve increaseconsiderablywithvalvesize.Somevalvesaredesignedwithabalancingmechanismtoreducetheclosingforce necessary, especially on valves operating with large differential pressures. In a pistonbalancedvalve,someoftheupstreamfluidpressureistransmittedviainternalpathwaysintoaspaceabovethevalveplug, which acts as a pressure balancing chamber. The pressure contained in this chamber provides adownforceonthevalveplugasshowninFigure6.1.4,balancingtheupstreampressureandassistingthenormalforceexertedbytheactuator,toclosethevalve.Fig.6.1.4AsteamcontrolvalvewithpistonbalancingSlidevalves,spindleoperatedSlidevalvestendtocomeintwodifferentdesignswedgegatetypeandparallelslidetype.Bothtypesarewellsuitedforisolatingfluidflow,astheygiveatightshutoffand,whenopen,thepressuredropacrossthemisverysmall.Bothtypesareusedasmanuallyoperatedvalves,butifautomaticactuationisrequired,the parallel slide valve is usually chosen, whether for isolation or control. Typical valves are shown inFigure6.1.5.Fig.6.1.5Wedgegatevalveandparallelslidevalve(manualoperation)Theparallelslidevalveclosesbymeansoftwospringloadedslidingdisks(springsnotshown),whichpassacrosstheflowpathofthefluid,thefluidpressureensuringatightjointbetweenthedownstreamdiskanditsseat.Largesizeparallelslidevalvesareusedinmainsteamandfeedlinesinthepowerandprocessindustriestoisolatesectionsoftheplant.Smallboreparallelslidesarealsousedforthecontrolofancillarysteamandwaterservicesalthough,mainlyduetocost,thesetasksareoftencarriedoutusingactuatedballvalvesandpistontypevalves.RotarytypevalvesRotarytypevalves,oftencalledquarterturnvalves,includeplugvalves,ballvalvesandbutterflyvalves.Allrequirearotarymotiontoopenandclose,andcaneasilybefittedwithactuators.EccentricplugvalvesFigure6.1.6showsatypicaleccentricplugvalve.Thesevalvesarenormallyinstalledwiththeplugspindlehorizontalasshown,andtheattachedactuatorsituatedalongsidethevalve.Plugvalvesmayincludelinkagesbetweentheplugandactuatortoimprovetheleverageandclosingforce,and special positioners that modify the inherent valve characteristic to a more useful equal percentagecharacteristic(valvecharacteristicsarediscussedinTutorial6.5).Fig.6.1.6Sideviewofaneccentricplugvalve(showninapartiallyopenposition)BallvalvesFigure6.1.7showsaballvalveconsistingofasphericalballlocatedbetweentwosealingringsinasimplebodyform.Theballhasaholeallowingfluidtopassthrough.Whenalignedwiththepipeends,thisgiveseitherfullboreornearlyfullboreflowwithverylittlepressuredrop.Rotatingtheballthrough90opensandclosestheflowpassage.Ballvalvesdesignedspecificallyforcontrolpurposeswillhavecharacterizedballsorseats,togiveapredictableflowpattern.Fig.6.1.7Ballvalve(showninafullyopenposition)Ballvalvesareaneconomicmeansofprovidingcontrolwithtightshutoffformanyfluidsincludingsteamattemperatures up to 250C (38 bar g, saturated steam). Above this temperature, special seat materials ormetaltometalseatingsarenecessary,whichcanbeexpensive.Ballvalvesareeasilyactuatedandoftenused for remote isolation and control. For critical control applications, segmented balls and balls withspeciallyshapedholesareavailabletoprovidedifferentflowcharacteristics.ButterflyvalvesFigure6.1.8isasimpleschematicdiagramofabutterflyvalve,whichconsistsofadiscrotatingintrunnionbearings.Intheopenpositionthediscisparalleltothepipewall,allowingfullflowthroughthevalve.Intheclosedpositionitisrotatedagainstaseat,andperpendiculartothepipewall.Fig.6.1.8Butterflyvalve(showninitsopenposition)Traditionally,butterflyvalveswerelimitedtolowpressuresandtemperatures,duetotheinherentlimitationsof the soft seats used. Currently, valves with higher temperature seats or high quality and speciallymachinedmetaltometalseatsareavailabletoovercomethesedrawbacks.Standardbutterflyvalvesarenowusedinsimplecontrolapplications,particularlyinlargersizesandwherelimitedturndownisrequired.Specialbutterflyvalvesareavailableformoredemandingduties.A fluid flowing through a butterfly valve creates a low pressure drop, in that the valve presents littleresistancetoflowwhenopen.Ingeneralhowever,theirdifferentialpressurelimitsarelowerthanthoseforglobe valves. Ball valves are similar except that, due to their different sealing arrangements, they canoperateagainsthigherdifferentialpressuresthanequivalentbutterflyvalves.OptionsTherearealwaysanumberofoptionstoconsiderwhenchoosingacontrolvalve.Forglobevalves,theseincludeachoiceofspindleglandpackingmaterialandglandpackingconfigurations,whicharedesignedtomakethevalvesuitableforuseonhighertemperaturesorfordifferentfluids.SomeexamplesofthesecanbeseeninthesimpleschematicdiagramsinFigure6.1.9.Itisworthnotingthatcertaintypesofglandpackingproduceagreaterfrictionwiththevalvespindlethanothers.Forexample,thetraditionalstuffingboxtypeofpackingwillcreategreaterfrictionthanthePTFEspringloadedchevrontypeorbellowssealedtype.Greaterfrictionrequiresahigheractuatorforceandwillhaveanincreasedpropensityforhaphazardmovement.Springloadedpackingreadjustsitselfasitwears.Thisreducestheneedforregularmanualmaintenance.Bellows sealed valves are the most expensive of these three types, but provide minimal friction with thebeststemsealingmechanism.AscanbeseeninFigure6.1.9,bellowssealedvalvesusuallyhaveanothersetoftraditionalpackingatthetopofthevalvespindlehousing.Thiswillactasafinaldefenceagainstanychanceofleakingthroughthespindletoatmosphere.Fig.6.1.9AlternativeglandpackingsValvesalsohavedifferentwaysofguidingthevalvepluginsidethebody.Onecommonguidancemethod,asdepictedinFigure6.1.10,isthe'doubleguided'method,wherethespindleisguidedatboththetopandthebottomofitslength.Anothertypeisthe'guidedplug'methodwheretheplugmaybeguidedbyacageoraframe.Somevalvescanemployperforatedplugs,whichcombineplugguidanceandnoisereduction.Fig.6.1.10GuidingarrangementsSummaryoftwoportvalvesusedforautomaticcontrolByfarthemostwidelyusedvalvetypefortheautomaticcontrolofsteamprocessesandapplicationsistheglobevalve.Itisrelativelyeasytoactuate,itisversatile,andhasinherentcharacteristicswellsuitedtotheautomaticcontrolneedsofsteam.Itshouldalsobesaidthattwoportautomaticcontrolvalvesarealsousedwithinliquidsystems,suchaslow, medium and high temperature hot water systems, and thermal oil systems. Liquid systems carry aninherentneedtobebalancedwithregardtomassflows.Inmanyinstances,systemsaredesignedwheretwoportvalvescanbeusedwithoutdestroyingthebalanceofdistributionnetworks.However,whentwoportvalvescannotbeusedonaliquidsystem,threeportvalvesareinstalled,whichinherentlymaintainabalanceacrossthedistributionsystem,byactinginadivertingormixingfashion.ThreeportvalvesThreeport valves can be used for either mixing or diverting service depending upon the plug and seatarrangementinsidethevalve.AsimpledefinitionofeachfunctionisshowninFigure6.1.11.Fig6.1.12Pistonvalve(shownasadivertingvalve)Fig.6.1.11ThreeportvalvedefinitionTherearethreebasictypesofthreeportvalve:Pistonvalvetype.Globeplugtype.Rotatingshoetype.PistonvalvesThis type of valve has a hollow piston, (Figure6.1.12), which is moved up and down by theactuator,coveringandcorrespondinglyuncoveringthetwoportsAandB.PortAandportBhavethesameoverallfluidtransitareaand,atanytime,thecumulative crosssectional area of both is alwaysequal.Forinstance,ifportAis30%open,portBis70% open, and vice versa. This type of valve isinherently balanced and is powered by a selfacting control system. Note: The portingconfigurationmaydifferbetweenmanufacturers.Globetypethreeportvalves(alsocalled'liftandlay')Here, the actuator pushes a disc or pair of valveplugs between two seats (Figure 6.1.13),increasing or decreasing the flow through ports AandBinacorrespondingmanner.Fig.6.1.13GlobetypethreeportvalvesNote:Alinearcharacteristicisachievedbyprofilingtheplugskirt(seeFigure6.1.14).Fig.6.1.14PlugskirtmodifiedtogivealinearcharacteristicRotatingshoethreeportvalveThis type of valve employs a rotating shoe, which shuttles across the port faces. The schematicarrangementinFigure6.1.15illustratesamixingapplicationwithapproximately80%flowingthroughportAand20%throughportB,100%toexitthroughportAB.Fig.6.1.15RotatingshoeonamixingapplicationUsingthreeportvalvesNot all types can be used for both mixing and diverting service. Figure 6.1.16 shows the incorrectapplicationofaglobevalvemanufacturedasamixingvalvebutusedasadivertingvalve.Fig.6.1.16ThreeportmixingvalveusedincorrectlyasadivertingvalveThe flow entering the valve through port AB can leave from either of the two outlet ports A or B, or aproportionmayleavefromeach.WithportAopenandportBclosed,thedifferentialpressureofthesystemwillbeappliedtoonesideoftheplug.WhenportAisclosed,portBisopen,anddifferentialpressurewillbeappliedacrosstheothersideoftheplug.Atsomeintermediateplugposition,thedifferentialpressurewillreverse.Thisreversalofpressurecancausetheplugtomoveoutofposition,givingpoorcontrolandpossiblenoiseastheplug'chatters'againstitsseat.Toovercomethisproblemonaplugtypevalvedesignedfordiverting,adifferentseatconfigurationisused,asshowninFig.6.1.17.Here,thedifferentialpressureisequallyappliedtothesamesidesofbothvalveplugsatalltimes.Fig.6.1.17PlugtypedivertingvalveInclosedcircuits,itispossibletousemixingvalvesordivertingvalves,dependinguponthesystemdesign,asdepictedinFigures6.1.18and6.1.19.InFigure6.1.18,thevalveisdesignedasamixingvalveasithastwoinletsandoneoutlet.However,whenplacedinthereturnpipeworkfromtheload,itactuallyperformsadivertingfunction,asitdivertshotwaterawayfromtheheatexchanger.Fig.6.1.18MixingValveinstalledonthereturnpipeworkConsider the mixing valve used in Figure 6.1.18, when the heat exchanger is calling for maximum heat,perhapsatstartup,portAwillbefullyopen,andportBfullyclosed.ThewholeofthewaterpassingfromtheboilerispassedthroughtheheatexchangerandpassesthroughthevalveviaportsABandA.Whentheheatloadissatisfied,portAwillbefullyclosedandportBfullyopen,andthewholeofthewaterpassingfromtheboilerbypassestheloadandpassesthroughthevalveviaportsABandB.Inthissense,thewaterisbeingdivertedfromtheheatexchangerinrelationtotherequirementsoftheheatload.Thesameeffectcanbeachievedbyinstallingadivertingvalveintheflowpipework,asdepictedbyFigure6.1.19.TheprintableversionofthispagehasnowbeenreplacedbyTheSteamandCondensateLoopBookViewthecompletecollectionofSteamEngineeringTutorialsContactUsFig.6.1.19DivertingvalveinstalledontheflowpipeworkWhatdoIdonow?