15
1 Control Control Predictivo Predictivo: : pasado, presente y futuro pasado, presente y futuro Eduardo F. Camacho Universidad de Sevilla JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 2 MPC successful in industry. Many and very diverse and successful applications: Refining, petrochemical, polymers, Semiconductor production scheduling, Air traffic control Clinical anesthesia, …. Life Extending of Boiler-Turbine Systems via Model Predictive Methods, Li et al (2004) Many MPC vendors. JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 3 MPC successful in Academia Many MPC sessions in control conferences and control journals, MPC workshops. 4/8 finalist papers for the CEP best paper award were MPC papers (2/3 finally awarded were MPC papers) JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 4 Why is MPC so successful ? MPC is Most general way of posing the control problem in the time domain: Optimal control Stochastic control Known references Measurable disturbances Multivariable Dead time Constraints Uncertainties JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 5 t t+1 t+2 t+N t t+1 t+2 …….. t+N u(t) Only the first control move is applied Errors minimized over a finite horizon Constraints taken into account Model of process used for predicting JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 6 t+2 t+1 t+N t+N+1 t t+1 t+2 …….. t+N t+N+1 u(t) Only the first control move is applied again

Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

1

Control Control PredictivoPredictivo: : pasado, presente y futuropasado, presente y futuro

Eduardo F. CamachoUniversidad de Sevilla

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 2

MPC successful in industry.

Many and very diverse and successful applications:

Refining, petrochemical, polymers, Semiconductor production scheduling,Air traffic controlClinical anesthesia,….Life Extending of Boiler-Turbine Systems via Model Predictive Methods, Li et al (2004)

Many MPC vendors.

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 3

MPC successful in Academia

Many MPC sessions in control conferences and control journals, MPC workshops.4/8 finalist papers for the CEP best paper award were MPC papers (2/3 finally awarded were MPC papers)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 4

Why is MPC so successful ?

MPC is Most general way of posing the control problem in the time domain:

Optimal controlStochastic controlKnown referencesMeasurable disturbancesMultivariableDead timeConstraintsUncertainties

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 5

tt+1t+2

t+N t t+1 t+2 …….. t+N

u(t)

Only the first control move is applied

Errors minimized over a finite horizon

Constraints taken into account

Model of process used for predicting

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 6

t+2 t+1

t+N

t+N+1

t t+1 t+2 …….. t+N t+N+1

u(t)

Only the first control move is applied again

Page 2: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 7

MPC

PID: u(t)=u(t-1)+g0 e(t) + g1 e(t-1) + g2 e(t-2)

vs. PID

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 8

Real reason of success: EconomicsMPC can be used to optimize operating points (economic objectives). Optimum usually at the intersection of a set of constraints.Obtaining smaller variance and taking constraints into account allow to operate closer to constraints (and optimum).Repsol reported 2-6 months payback periods for new MPC applications.

P1 P2

Pmax

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 9

Flash

Línea 2

Línea 1 Lavado

Contacto 1

Contacto 3

Contacto 2

ESQUEMA GENERAL CIRCUITO DE GASES

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 10

- 5

- 4

- 3

- 2

- 1

0

1

2

1 1 0 0 1 9 9 2 9 8 3 9 7 4 9 6 5 9 5 6 9 4 7 9 3 8 9 2

S e r i e 1

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 11

GuiónUn poco de historiaMPC: conceptos fundamentalesMPC nolineal

ModeladoIdentificación y estimación de estadoEstabilidad y robustezImplementación

Algunas aplicacionesConclusiones

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 12

A little bit of history: the beginning

Kalman, LQG (1960) Propoi, “Use of LP methods ...” (1963)Richalet et al, Model Predictive Heuristic Control (MPHC) IDCOM (1976, 1978) (150.000 $/year benefits because of increased flowrate in the fractionator application)Cutler & Ramaker, DMC (1979,1980)Cutler et al QDMC (QP+DMC) (1983) Clarke et al GPC (1987)

First book: Bitmead et al, (1990)

Page 3: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 13

The impulse of the 90s. A renewed interest from Academia (stability)

Stability was difficult to prove because of the finite horizon and the presence of constraints (non linear controller, no explicit solution, …)

A breakthrough produced in the field. As pointed out by Morari: ”the recent work has removed this technical and to some extent psychological barrier (people did not even try) and started wide spread efforts to tackle extensions of this basic problem with the new tools”. (Rawlings & Muske, 1993)Many contributions to stability and robustness of MPC: Allgower, Campo, Chen, Jaddbabaie, Kothare, Limon, Magni, Mayne, Michalska, Morari, Mosca, de Nicolao, de Olivera, Scattolini, Scokaert…

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 14

The new millenium

Linear MPC is a mature discipline. More than 4500 industrial applications (not counting licensed technology companies app.) Qinand Badgwell’03. The number of applications seems to duplicate every 4 years.Some vendors have NMPC products: Adersa (PFC), Aspen Tech (Aspen Target), Continental Control (MVC), DOT Products (NOVA-NLC), Pavilon Tech. (Process Perfecter)Efforts to developed MPC for more difficult situations:

Multiple and logical objectives (Morari, Floudas)Hybrid processes (Morari, Bemporad, Borrelli, De Schutter, van den Boom …)Nonlinear (Alamir, Alamo, Allgower, Biegler, Bock, Bravo, Chen, De Nicolao, Findeisen, Jadbadbadie, Limon, Magni, …)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 15

MPC strategy

Consider a discrete time system:x+=f(x,u), x ∈ Rn, u ∈ Rm

The system is subject to hard constraintsx ∈ X, u ∈ U

Let u={u(0),...,u(N-1) } be a sequence of N control inputsapplied at x(0)=x,

the predicted state at i isx(i)=Φ(i;x, u)=f(x(i-1), u(i-1) )

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 16

MPC strategy (2)

1. Optimization problem PN(x,Ω):

u*= arg minu Σ(i=0,...,N-1) l(x(i),u(i)) + F(x(N))

Operating constaints .x(i) ∈ X, u(i) ∈ U, i=0,...,N-1

Terminal constraint (stability): x(N) ∈ Ω

2. Apply the receding horizon control law: KN(x)=u*(0).

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 17

Linear MPC

f(x,u) is an affine function (model)X,U,Ω are polyhedra (constraints)l and F are quadratic functions (or 1-norm or ∞-norm functions)

⇓QP or LP

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 18

Otherwise

If f(x,u) is not an affine functionOr any of X,U,Ω are not polyhedraOr any of l and F are not quadratic functions(or 1-norm or ∞-norm functions)

⇓Non linear MPC (NMPC)Non linear (non necessarily convex) optimization problem much more difficult to solve.

Page 4: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 19

MPC and nonlinear processes

Most processes are non-linear, Linear approximations works for small perturbations around the operating point (well in most cases)There are processes with

continuous transitions (startups, shutdowns, etc.) and spend a great deal of time away from a steady-state operating region or never in steady-state operation (i.e. batch processes, solar plants), where the whole operation is carried out in transient mode. severe nonlinearities (even in the vicinity of steady states) hybrid

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 20

NMPC vs. LMPC

Better predictions should be obtained from more accurate models.Better predictive control should be obtain with better predictions.Is that so ?

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 21

MPC turns out to be a linear controller with a feedback of the prediction of y(t+D)

H C Process

Predictory(t+D)^

u(t) y(t)

R

(Camacho & Bordons, 1995)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 22

Falatious congeture

An optimal predictor plus an optimal controller is going to produce the “best” closed loop behaviour.J. Normey et al (2000) showed that Smith predictor (and other DTC structures) produce “better” (more robust) controllers than optimal predictor.Optimal state estimator + optimal controller (LQG/LTR)Optimal identifier + optimal controller does not produce the optimal adaptive control (identification for control)Prediction for Control: A fundamental issue: The best model is the one that produces the “best” close loop controlnot necessarily best predictions..

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 23

GuiónUn poco de historiaMPC: conceptos fundamentalesMPC nolineal

ModeladoIdentificación y estimación de estadoEstabilidad y robustezImplementación

Algunas aplicacionesConclusiones

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 24

Modeling:

Fundamental Models (first principle) Empirical Models (fixed structure, parameters determined from data)

State space x(t+1)=f(x(t),u(t)), y(t)=g(x(t))

Input-output (NARMAX)y(t+)= Φ(y(t), ..., y(t-ny), u(t),...,u(t-nu),e(t),...,e(t-ne+1))

Volterra (FIR, bilineal)y(t+1)= y0+Σ {i=0..N}h1(i) u(k-i)+ Σ {i=0..M} Σ {i=0..M} h2(i,j)u(t-i)u(t-j)

HammersteinWienerNN

Page 5: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 25

Local Model Networks

A set of models to accommodate local operating regimesThe output of each submodel is passed through a processing function that generates a window of validity.

y(t+1)=F(Ψ(t), Φ(t)) = Σ {i=1.M}fi(Ψ(t), Φ(t)), ρi (Φ(t))

local models are usually linear multiplied by basis functions ρi (Φ(t)) chosen to have a value close to 1 in regimes where is a good approximation and a value close to 0 in other cases.

Piece Wise Affine (PWA) systems

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 26

PWA. (Sontag, 1981)

Nonlinear System:

PWA Approx.

Some hybrid processes can be modeled by PWA system

x(t+1)=f(x(t),u(t))

y(t)=g(x(t))

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 27

Function

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 28

PWA Approximation

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 29

Sistemas híbridos

Variables discretas

Enclavamientos

Modelos:- Ecuaciones diferenciales...

Modelos:Automata, redes de Petri nets, etc.

13

45

2C

AB

BB

C

CC

A))(),(()(

))(),(()1(kkgk

kkfkuxy

uxx=

=+

Variables continuas

Regulación

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 30

3

2CB

BB

CA

1

A5C

4

Hybrid Systems: Finite state machine approach

X={1,2,3,4,5}U={A,B,C}

output

1

dx/dt=f1(x)

X=1

reference control system

5

X=5

dx/dt=f2(x)

reference control system

4

X=4

dx/dt=f3(x)

reference control system

C

U=C, t=t1 U=A, t=t2

AState machine embedding dynamics

Page 6: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 31

Control engineering approach

x(k+1) = f(x(k),u(k))y(k) = g(x(k),u(k))

state x = [xcT, xd

T]T

output y = [ycT,yd

T]T

input u = [ucT,ud

T]T,

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 32

Control engineering approach

discretecontrol command

generator

dynamicalsystem

reference

output

1 - Piecewise Affine (PWA) Systems2 - Mixed Logical Dynamical (MLD) Systems 3 - Linear Complementary (LC) Systems 4 - Extended Linear Complementary (ELC) Systems5 - Max-Min-Plus-Scaling (MMPS) Systems6 - etc

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 33

Equivalence Results

Figure 1: Graphical representation of the links between the classes of hybrid systems. An arrow going from class A to class B means that A is a subset of B. The label next to each arrow corresponds to the result that states this relation. An arrow with a star (*) require conditions to establish the indicate inclusion.

PWA

MLD

LC MMPS

ELC

Prop. 9*

Prop. 6Prop. 5*

Prop. 1Prop. 2*Prop. 4*

Prop. 3

Prop. 7

Prop. 8*

Cor. 2Cor. 1*Cor. 3*Rem. 3

Rem. 4

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 34

GuiónUn poco de historiaMPC: conceptos fundamentalesMPC nolineal

ModeladoIdentificación y estimación de estadoEstabilidad y robustezImplementación

Algunas aplicacionesConclusiones

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 35

Nonlinear Identification is more difficult

Lack of a superposition principleA high number of plant tests required

tests with many different size steps Multivariable processes the difference in the number of tests required is even greater.

Optimization problem for parameter estimation is more difficult (offline)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 36

State estimation

The observer error must be small to guarantee stability of the closed-loop and in general little can be said about the necessary degree of smallness.No general valid separation principle for nonlinear systems exists. Nevertheless observers are applied successfully in many NMPC applications.Extended Kalman Filter (EKF), High gain estimators.

Page 7: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 37

State estimation (2)

Moving Horizon Estimation (MHE).Moving window looking backwardA dual problem to MPC: Control moves: known, process state: unknown, horizon: backwards. (Kwon et al’83), (Zimmer’94), (Mishalska and Mayne’95) ..IDCOM (Richalet’76) was developed as the dual to identification !!!

Set-membership estimationCompute a set of all states consistent with the measured output and the given noise parameters.Ellipsoidal bounding (Schweppe’68), (Kurzhanski and Valyi’96)Polyhedron bounding (Kuntsevich and Lychak’85)Interval arithmetics, zonotopes (Kieffer et al’01), (Alamo et al’03)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 38

NMPC stabilityInfinite horizon, the objective function can be considered a Lyapunovfunction, providing nominal stability. Cannot be implemented: an infinite set of decision variables.Terminal cost. Bitmead et al’90 (linear uncostrained), Rawling & Muske’93 (linear contrained).Terminal state equality constraint. Kwon & Pearson’77 (LQR constraints), Keerthi and Gilbert’88, x(k+N)= xS

xS

x(t)

x(t+1) x(t+2)

x(t+N)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 39

NMPC stability: Terminal region

Dual control. Michalska and Mayne(1993) x(N) ∈ ΩOnce the state enters Ω the controller switches to a previously computed stable linear strategy.

Quasi-infinite horizon. Chen and Allgower (1998). Terminal region and stabilizing control, but only for the computation of the terminal cost. The control action is determined by solving a finite horizon problem without switching to the linear controller even inside the terminal region. The term (|| x(t+N)||P)2 added to the cost function and approximates the infinite- horizon cost to go.

x(t)

x(t+1) x(t+2)

x(t+N)Ω

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 40

NMPC stability:all ingredients

Asymptotic stability theorem (Mayne 2001)The terminal set Ω is a control invariant set.The terminal cost F(x) is an associated Control Lyapunov function such thatmin{u ∈ U} {F(f(x,u))-F(x) + l(x,u) | f(x,u)∈Ω} ≤0 ∀ x∈Ω

Then the closed loop system is asymptotically stable in XN(Ω )

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 41

Removing the terminal constraint maintaining stability

The optimization problem is simplified (especially when the state is not constrained)

u*= arg minu Σ(i=0,...,N-1) l(x(i),u(i)) + F(x(N)) s.t. x(i) ∈ X, u(i) ∈ U, i=0,...,N-1 and to the terminal constraint: x(N) ∈ Ω

There is a strong interplay between infinite horizon-terminal cost and terminal regions :

A prediction horizon N and a quadratic terminal cost stabilizes the system in a neighborhood of the origin. (Parisini and Zoppoli’95)

The unconstrained (no terminal constraints) MPC satisfies the terminal constraint in a neighborhood of the origin. (Jadbabaie et al’01)

Given a terminal cost F(x) that is a CLF in Ω , define Fs(x)= F(x) if x ∈ Ω and Fs(x)= α if x ∉ Ω where Ω = {x ∈ Rn: F(x) ≤ α}. The MPC with Fs(x) as terminal cost is stabilizing for all initial state in the region where the optimal solution to PN(x,X) reaches the terminal region. (Hu and Linnemann’02)

Procedure for removing the terminal constraint while maintaining asymptotic stability and computing the domain of attraction. (Limon et al’03). Suboptimality

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 42

RobustnessNonlinear uncertain system: x+=f(x,u, θ ), x ∈ Rn, u ∈ Rm θ ∈ Rp

With bounded uncertainties θ∈Θ and subject to hard constraints x ∈ X, u ∈ U

The uncertain evolution sets: X(i)=Γ(i;x, u)= {z ∈ Rn | ∃ θ∈Θ , y ∈ X(i-1), z=f(y, u(i-1), θ)}

and X(0)=x

t t+1 t+2 … t+N

y(t)

u(t)

Page 8: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 43

Robustness (2)The stability conditions has to be satisfied for all possible values of the uncertainties.

The terminal set Ω is a robustcontrol invariant set. (i.e. ∀ x∈Ω, ∀θ∈Θ ∃ u ∈ U | f(x,u, θ)∈Ω)

The terminal cost F(x) is an associated Control Lyapunovfunction such thatmin{u ∈ U} {F(f(x,u,θ))-F(x) + l(x,u) |

f(x,u,θ)∈Ω} ≤0 ∀ x∈Ω, ∀ θ∈Θ

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 44

Computation of regions in robust NMPC

Invariant regions,domain of attraction, uncertain evolution setsbounding sets (state estimation)bounding sets (identification) …

−0.4 0−1

0

x1

x 2

Γ3 (λ=1)

X3

Ω

Γ3 (λ=10)

Continuous stirred tank reactor (CSTR)

•Relatively easy if regions are polyhedron and linear transformations (f(x,u, θ) ), Kerrigan’00

•NMPC more complex and approximations are normally used.

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 45

Example: continuos stirred tank reactor (CSTR) Zonotopes: (Bravo et al’03)

( )

( ) ( )

0

0

exp

exp

AAf A A

f A cp p

dC q EC C k Cdt V RT

H kdT q E U AT T C T Tdt V C RT V Cρ ρ

⎛ ⎞= ⋅ − − ⋅ − ⋅⎜ ⎟⎝ ⎠

Δ ⋅ ⋅⎛ ⎞= ⋅ − − ⋅ − ⋅ + ⋅ −⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

Sampling period 0.03.

A normalized additive uncertainty is added. It is bounded by w1=(-6.5*10-3, 6.5*10-3) and w2=(-1.2*10-3, 1.2*10-3).

A terminal robust positively invariant set is calculated.

A prediction horizon of N = 11 is used.

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 46

GuiónUn poco de historiaMPC: conceptos fundamentalesMPC nolineal

ModeladoIdentificación y estimación de estadoEstabilidad y robustezImplementación

Algunas aplicacionesConclusiones

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 47

NMPC implementation

Solving a Nonlinear (non QP), possibly nonconvex. Real time and no convexity >>> suboptimal solutions

Sequential Quadratic Programming (SQP)Simultaneous approach (Findeisen and Allgower’02)Using a sequential approach with successive linearization around the previous trajectory.PWA >>>> Mixed Integer Programming Problem.

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 48

MPC and PWA systems

PWA Model:

Where is a polyhedral partition ofstates and input space

Page 9: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 49

PWA approximations

Xkyk=Ckxk+gk

xk+1=Ak x k+Bk uk+f k?

Xk+1yk+1=Ck+1xk+1+gk+1

xk+2=Ak+1xk+1+Bk+1uk+1+fk+1

?Xk+2

yk+2=Ck+2xk+2+gk+2

xk+3=Ak+2xk+2+Bk+2uk+2+f k+2

The resulting optimization problem

U = {u(k), u(k+1), u(k+2), …,u (k+N-1)} realI = {I(k), I(k+1), I(k+2),…, I(k+N-1)} Integer

Mixed Integer-Real

Optimization Problem

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 50

I = {I(k), I(k+1), I(k+2),…, I(k+N-1)}

Index can be written as

The predicted vector is written as

The problem reduces to a QP Problem

Problem when I is fixed

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 51

...2 s1 ... 2 s1 ...2 s1 ... [Ik, Ik+1, Ik+2]

N = 2

State Transition Graph

Ik [Ik]

QP (LP) problem[Ik ,Ik+1 ,Ik+2 ]

1 s2

N = 1

[Ik, Ik+1]...

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 52

Computationalcosts

If the number of sub-systems is san the prediction horizon is N

Then the number of QP (or LP) to solve is

NRP = sN

We need to reduce the Computational Problem

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 53

2 - Use the systems information to prune (1)A - Reach and controllable sets

xk+1=Ak x k+Bk uk+f k

Xkyk=Ckxk+gk

Xk+1yk+1=Ck+1xk+1+gk+1

Xk+2yk+2=Ck+2xk+2+gk+2

xk+2=Ak+1xk+1+Bk+1uk+1+fk+1 xk+3=Ak+2xk+2+Bk+2uk+2+f k+2

? ?

Ik

...

[Ik,*,*]

1

2 s1 ...

s

2 s1 ...

[Ik,Ik+1,*]

[Ik,Ik+1,Ik+2]

2

2 s1 ...

Reach and controllable sets

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 54

Definition 1: (Kerrigan 2000) Reach set (RS)

Definition 2: n-Step Reachable Neighbors

Definition 3: Index set of n-SRN

The STG can be pruned as Ij+k should belong to Nk

j

Pruning using Reach Sets

2 - Use the systems information to prune (2)A - Reach and controllable sets

Page 10: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 55

2 - Use the systems information to prune (3)

A - Reach and controllable sets Reach Set

-3.5 -3 -2.5 -2 -1.5 -1

2

3

4

5

10

11

12

13

18

19

21

x

-6

-4

-2

0

2

x 2

11

11

N111 = {10, 11, 12, 13, 14, 16, 18, 19 ,21};

N211 = {3, 4, 5, 8, 10, 11, 13, 14, 12, 16, 18, 19, 21, 22};

11

N311 = {3, 4, 5, 8, 10, 11, 13, 14, 12, 16, 18, 19, 21, 22}

1

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 56

Definition 4: (Kerrigan 2000) The robust one-step controllable set

Definition 5: The robust one-step controllable set of the subsystem j over the subsystem i

Pruning using Controllable Sets

If xk∉Q1Ik+1|Ik is satisfied then the xk+1 state does not belong to Ik+1

transition; therefore, the transition from Ik to Ik+1is not allowed

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 57

-2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5

-10

-8

-6

-4

-2

0

2

9

10

11

12

13 16

17

18

19

2122

x 1

x2

1 12R (X )

Controllable sets

int(R1(X12),X 9)

Q29/12Q1

9/12 Q39/12

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 58

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

k

rootnode 0depth 0

k+N-2k+1 k+2 k+Nlevel 0 level 1 level 2 level N-2 level N

k+N-1level N-1

x(k) x(k+1) x(k+2) x(k+N-2) x(k+N)x(k+N-1)

node 1,1depth 1branch 1

node 1,sdepth 1branch s

node 2,1depth 2branch 1

node 2,s2

depth 2branch s2

leave N,1depth Nbranch 1

leave N,sN

depth Nbranch sN

+ >Branch & Bound

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 59

where

It can be rearranged as

Bound on the objective function

If the sequence of subsystems is defined

then, the state and input fulfill that

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 60

It is possible to obtain a minimum bound of Ji

This is a QP Problem

then

This is a lower bound of the index and can be used in a Branch & Bound algorithm

Somewhat conservative but there are more tricks

Page 11: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 61

Prediction horizon vs. Nº QP evaluation

2 4 6 8 10100

105

1010

1015

Prediction Horizon

Log(Number of QP evaluation)

Enumerative QPevaluation = SN-1

Max Number of QP evaluation

Min Number of QP evaluationMean Number of QP evaluation

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 62

NMPC implementation (2)

Although there are many clever tricks to alleviate the situation, these algorithms take time. This is a major obstacle. Only slow or small processes. Approximations and simplifications

Using short horizonsPrecomputation of solution over a grid in the state space (only small systems)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 63

Explicit solution

The control law can be write as u(x(k)) = Fi x(k) + Gi if ∈ x(k) ∈ Pi

- Multi-parametric Problems- Computational Expensive (off-line)- Only useful for simple systems

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 64

qc3

qc4h3

h4

h1h2

qo1 qo2

u2u1

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 65 JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 66

GuiónUn poco de historiaMPC: conceptos fundamentalesMPC nolineal

ModeladoIdentificación y estimación de estadoEstabilidad y robustezImplementación

Algunas aplicacionesConclusiones

Page 12: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 67 JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 68

Application of NMPC to a mobile robot: Path tracking in an unstructured environment

Problem Future trajectory known (computed by planner)Unexpected obstaclesControl signals and state are constrainedSystem model is highly nonlinearThe objective function: position error, the acceleration, robot angular velocity and the proximity between the robot and the obstacles (detected with an ultrasound proximity system) Unexpected obstacles makes the objective function more complex.

(Gómez-Ortega et al, 1994)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 69

Objective function

J= Σ {i=1..N} {|x(t+i)-xd(t+i)|2 + l (x(t+i)) +

|u(t+i-1)-u(t+i-2)|2 + |u(t+i-1)-ud(t+i-1)|2 }

l (x(.))

Potencial function (twoobstacles)

J(u)

N=1, One obstacle

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 70

NMPC for mobile robot

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 71

Controller training

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 72

Mobile robot NMPC

Page 13: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 73

NMPC at a Solar plant Almeria

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 74

Distributed collectors

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 75

Metal: ρm CmAm∂Tm/ ∂t= ηo I G – G Hl(Tm-Ta) – LHt(Tm-Tf)

Fluid: ρf CfAf∂Tf/ ∂t + ρf Cf q ∂Tm/ ∂x = LHt(Tm-Tf)

Process model

Simulink model can be downloaded from:http://www.esi.us.es/~eduardo/libro-s/libro.html

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 76

NMPC computation

(Berenguel et al, 1997)

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 77

Plant results: a clear day

Very fast setpoint tracking, little overshoot

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 78

Plant results: a cloudy day

Page 14: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 79

HYCON Network of ExcellenceFP6 – IST- 511368

Fuel cell: PWA model

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 80

Fuel cell: safety objective

Evaluate the possibility of starvation

Sistema

Ist

λo2

Fuel cell: PWA model

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 81

Obtained model is of the form:

where x is the state, r the ratio input, w the uncertainty, u the control action.

Suitable for MPC:1. It is possible to obtain the greatest robust (control) invariant set.2. It is possible (using LMIs) to design a controller of the form:

3. It is not difficult to implement a MPC generalizing the results of Kothare et al Automatica 1996.

Fuel cell: PWA model

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 82

Fuel cell: identification results

Example: a random current ratio

Output Error

10 20 30 40 50 60 70 80 90

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Time [s]

Lam

bda o2

LambdaIdIdint

10 20 30 40 50 60 70 80 90

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time [s]

Erro

r

Error IdError Id Int

Fuel cell: PWA model

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 83

HYCON benchmark exercise

Solar cooling plant9 groups participatingHYCON benchmark exercise award

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 84

Page 15: Control Predictivo: pasado, presente y futurointranet.ceautomatica.es/old/actividades/jornadas/XXVII/... · 2014. 2. 22. · pasado, presente y futuro Eduardo F. Camacho Universidad

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 85 JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 86

Detailed simulink model andprocess data available

HYCON WP2 websitenyquist.us.es/hycon/

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 87

Conclusiones

MPC notable éxitoGrandes expectativas (híbrido y nolineal)Contribuciones notables pero muchostemas abiertos.

JJAA Almeria'06 Eduardo F. Camacho Control Predictivo 88

[email protected]://www.esi.us.es/~eduardo