34
Control of Manufacturing Control of Manufacturing Processes Processes Subject 2.830 Spring 2004 Spring 2004 Lecture #22 Lecture #22 Discrete System Closed Discrete System Closed - - Loop Dynamics" Loop Dynamics" May 3, 2004 May 3, 2004

Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Control of Manufacturing Control of Manufacturing ProcessesProcesses

Subject 2.830 Spring 2004Spring 2004Lecture #22Lecture #22

““Discrete System ClosedDiscrete System Closed--Loop Dynamics"Loop Dynamics"May 3, 2004May 3, 2004

Page 2: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 2

Difference Equations and DynamicsDifference Equations and Dynamics

• Consider the Discrete Transfer Function:

G(z) =Y (z)U (z)

=K

(z − p)Y(z)(z − p) = KU (z)

The corresponding Difference Equation is:

yi+1 − pyi = Kui ⇒ yi+1 = pyi + Kui

next output = p*current output + K* current input

Page 3: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 3

Step DynamicsStep Dynamicsyi+1 = pyi + pui for p=0.5 and K=0.5 and u=unit step:

⇒ yi+1 = 0.5(yi + ui)I ui y i

1 1 0.0002 1 0.5003 1 0.7504 1 0.8755 1 0.9386 1 0.9697 1 0.9848 1 0.9929 1 0.996

10 1 0.99811 1 0.99912 1 1.00013 1 1.000

Page 4: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 4

Step ResponseStep Response

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

First Order

Transfer Function!G(z) =

Y (z)U (z)

=K

(z − p)=

0.5z −0.5

Page 5: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 5

Effect of Root Effect of Root pp

Time (samples)

TextEnd

Step Response

0 2 4 6 8 100

0.02

0.04

0.06

0.08

0.1

Time (samples)

Ampl

itude

TextEnd

Step Response

0 2 4 6 8 100

0.02

0.04

0.06

0.08

0.1

p=0.1 p=0.25

Ampl

itude

Time (samples)

TextEnd

Step Response

Time (samples)

TextEnd

Step Response

0 50 100 1500

50

100

150

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

Ampl

itude

Ampl

itude

p=0.5p=1.0

Page 6: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 6

Effect of Root Effect of Root pp

Time (samples)

Am

plitu

de

TextEnd

Step Response

0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

Time (samples)

Ampl

itude

TextEnd

Step Response

0 2 4 6 8 100

0.02

0.04

0.06

0.08

0.1

p=-0.1 p=-0.25

Time (samples)

TextEnd

Step Response

Time (samples)

TextEnd

Step Response

0 10 20 30 400

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

Ampl

itude

p=-1.0

Am

plitu

de

p=-0.5

Page 7: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 7

What’s Next?What’s Next?

•• ZZ-- domain modeling of control systemdomain modeling of control system•• Root locus in zRoot locus in z--domain (it’s the same!)domain (it’s the same!)•• Cycle to Cycle Stability LimitsCycle to Cycle Stability Limits

Page 8: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 8

Analysis of Dynamics of Analysis of Dynamics of Discrete Feedback SystemsDiscrete Feedback Systems

•• Given the Discrete Transfer Function Given the Discrete Transfer Function For the Process For the Process GGpp(z(z))

•• What are the Dynamics of the resulting What are the Dynamics of the resulting Closed Loop System?:Closed Loop System?:

Gc(z) Gp(z)

H(z)

R(z) Y(z)

-

Page 9: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 9

ClosedClosed--Loop DynamicsLoop Dynamics

Gc(z) Gp(z)

H(z)

R(z) Y(z)

-

Y (z )R(z)

= T (z) =GcGp

1+ GcGp H

and the characteristic equation is:

1 + Gc(z)Gp (z)H(z) = 0

Page 10: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 10

ZZ--Domain Root LocusDomain Root Locus

1+GcGp H(z) = 0

In general the CE:

will be a polynomial in z:

anzn + an−1z

n −1 + an −2 zn− 2 + ...a1z + a0 = 0

and the roots of this polynomial will define the dynamics of our system

Page 11: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 11

SS--Z Plane MappingZ Plane Mapping

z = esTRecall the Definition:

s = σ + jωAnd that

then z in polar coordinates is given by:

e(σ + jω )T = eσTejωT

z = eTσ ∠z = ωT

Page 12: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 12

MappingMapping

s

0

s = 0

z = e0 = 1 z

+1

Page 13: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 13

Mapping Mapping jjωω AxisAxis

s

0

s = + jω

z = e jωT = unit length vector at angle ωTz

+1

ωT

Page 14: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 14

Mapping Mapping jjωω AxisAxis

jω z

0 +1

Note: when ωT = π, we have reached -1 on z-plane

π /T

− π /T

And when ωT = -π, we have come around the other way

Page 15: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Settling Time MappingSettling Time Mappings = −p + jω

z = e− pT + jωT = e− pTe jωT

S-plane lines of constant settling:

0

ωT

s

ts=4/p

-p

z

+1

circle of radius e-pT

r=e-pT

5/4/04

ts = −4T

1ln(r)

Page 16: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Settling Time MappingSettling Time Mapping

s z

0 +1

ωT

circle of radius e-pT

ts

CLOSER TO Z=0 = FASTER SETTLING

Page 17: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Damping Ratio MappingDamping Ratio Mapping

s z

0

β

∠s = β = constant0 ≤ s ≤ ∞

s

+1

5/4/04

Page 18: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Stability?Stability?

jw axis maps to the “unit circle”zs

0

π /T

−π /T

+1

roots inside the unit circle are stable, outside are unstable

Page 19: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Mapping: Negative Real AxisMapping: Negative Real Axis

s z

0+1

+jω

∠z = ωT = 0

0 ≤ s ≤ −∞⇒ e0 ≤ z ≤ e−∞ ⇒1 ≤ z ≤ 0

-jω

Page 20: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 20

Mapping: What’s leftMapping: What’s left

s z

0

π /T

−π /T

−∞

oscillatory region

real-root

+1

Page 21: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

ZgridZgrid from Matlabfrom MatlabLines of constant damping ratio (ζ=0.7 shown)

Lines of constant natural frequency-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Page 22: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ZZ--Plane Plane -- ReponseReponseRelationshipRelationship

Page 23: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 23

Simple First Order Control System Simple First Order Control System

KC Gp(z)-R(z) Y(z)

G p(z) =K

(z − p) open loop root = +p

Page 24: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 24

Root LocusRoot LocusROOTS OF 1+KCG-P(z) = 0 ?

Same rules as before:

Starts at open loop pole = +p

Real axis part to left of

odd number of poles

Ends at zero at infinityp

z

Page 25: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 25

Root LocusRoot Locus-- InterpretationInterpretation

p

z

+1

slow, no oscillation

faster, no oscillation

fastest w/o overshoot

begins oscillating

very oscillatory

unstable

Page 26: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Now for Now for

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Imag

Axi

s

k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

5/4/04

G(z) =K

(z − p)=

0.5z − 0.5 K=0.5

p=0.5

Page 27: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Response?Response?k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

Page 28: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Response?Response?k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

5/4/04

Page 29: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Response?Response?k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

Page 30: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Response?Response?k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

Page 31: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Response?Response?k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

Page 32: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Response?Response?k r

0.22 0.39

0.73 0.13

1 0

1.5 -0.27

2.8 -0.92

3 -1

Page 33: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

5/4/04 Lecture 22 © D.E. Hardt, all rights reserved 33

Steady State Unit Step Error?Steady State Unit Step Error?

unit step

For s - domain y(∞) = lims→0

s G(s) 1s

For z - domain y(∞) = limz→1

(z −1) G(z) zz −1

T (z) =

KcK

z − p

1 +K

cK

z − p

=KcK

z − p + KcKOur closed-loop TF =

Page 34: Control of Manufacturing Processesdspace.mit.edu/bitstream/handle/1721.1/56569/2-830JSpring2004/NR/rdon...Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #22 “Discrete

Steady State Error?Steady State Error?

Kc p y(∞)

0.22 0.39 0.18

0.73 0.13 0.44

1 0 0.5

1.5 -0.27 0.6

2.8 -0.92 0.74

3 -1 0.75

Steady State Error is Minimized as K increases

limz→1

(z −1) T (z) z

z −1= (z −1)

KcKz − p + KcK

z

(z −1)

=KcK

1− p + KcK

K=0.5p=0.5