31
Contribution to GMGW‐1 RENAUD Thomas ONERA – The French Aerospace Lab PID 05 1 st Geometry and Mesh Generation Workshop Denver, CO June 3‐4, 2017

Contribution to GMGW‐1 - gmgworkshop.com · John P. Steinbrenner. ... meshed with quad‐dominant unstructured grid and T‐Rex method to keep a smooth cell size ratio

  • Upload
    leanh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Contribution to GMGW‐1

• RENAUD Thomas• ONERA – The French Aerospace Lab• PID 05

1st Geometry and Mesh Generation WorkshopDenver, CO  June 3‐4, 2017

Summary of grids generated:Case Code(s) Starting

Geometry Model

Grid Type Number Grid Levels

HL‐CRM full gap Pointwise IGES Overset Structured 1

HL‐CRM full gap Pointwise IGES Unstructured Hexa Tetra Prisms 2

GMGW‐1, Denver CO, June 2017 2

• Pointwise (http://www.pointwise.com):• Structured, unstructured, overset, and hybrid meshing software• Highly automated T‐Rex (anisotropic tetrahedral extrusion) technique for boundary layer resolved hybrid meshes

John P. Steinbrenner. "Construction of Prism and Hex Layers from Anisotropic Tetrahedra", 22nd AIAA Computational Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA 2015‐2296) 

• Unstructured grid:• Mixed elements: hexa, tetra, prisms with hexa‐dom cells

• Structured grid:• Near‐body/off‐body grids with overlapping conditions• Background grid automatically generated and adapted with Cassiopée(ONERA in‐house suite of pre‐ and post‐processing tools)

Benoit, C., Péron, S., and Landier, S., “Cassiopee: A CFD pre‐ and post‐processing tool”, Aerospace Science and Technology, Vol. 45, 2015, pp. 272‐283.Péron, S. and Benoit, C., “Automatic off‐body overset adaptive Cartesian mesh method based on an octree approach”, Journal of Computational Physics, Vol. 232, No. 1, 2013, pp. 153‐173.

Geometry Import and Preparation

GMGW‐1, Denver CO, June 2017 3

• Geometry preparation process• IGES import: no difficulty• Layering: hiding component to work on local grid• For overset structured grid, choice has been done to mesh the full wing and to 

blank it with fluid blocks to generate the slat/flap cavities  necessity to unhide some geometry patches

• No modification of the geometry

• Lessons learned• The layering could be automatically done either by CAD families or by adjacent 

geometry entities

Mesh Generation (unstructured)

GMGW‐1, Denver CO, June 2017 4

• Mesh generation process• Process flow:

• Automatic edges creation, merged within tolerance. Only characteristic edges are kept.• Surface meshes: structured grids are mainly done on intrados/extrados. Either surfaces are 

meshed with quad‐dominant unstructured grid and T‐Rex method to keep a smooth cell size ratio.

• Volume mesh: with BL imposed parameters (no first uniform layers possible), T‐Rex method for the BL (hexa/prisms cells)

• Control of resolution: manual input for edges boundaries, imposed maximum cell size on surfaces and a smooth volume cell size decay (0.95)

• Mesh export file formats: CGNS

• Difficulties encountered• First uniform BLs not possible with T‐Rex method (uniform extrusion+T‐Rex

creates large cell size ratios)• Some difficulties to respect a smooth cell size ratio with multiple adjacent T‐Rex

Mesh Generation (unstructured)

GMGW‐1, Denver CO, June 2017 5

• Difficulties encountered• Volume mesh generation crashed in the wing flaps cavity  some iterations to 

solve this issue but finally I needed to coarsen the wing cavity trailing edges to perform the volume grid

• Lessons learned• Volume mesh generation can be quite long… and eventually not work 

optimization possible?• More information of reasons of crash (representation of the issuing cells and its 

adjacent cells)• Local smoothing or improving of cells shapes could be useful

Mesh Generation (structured)

GMGW‐1, Denver CO, June 2017 6

• Mesh generation process• Process flow:

• Choice has been made to create the wing cavities by blanking the full wing grid. A collar grid is used between fuselage and wing.

• Automatic edges creation, merged within tolerance. Only characteristic edges are kept.• Surface meshes: mainly by TFI. Some are done by extrusion on wall surfaces.• Near‐body volume mesh: by extrusion with BL imposed parameters (4 first uniform layers). 

Manual TFI when extrusion is limited.• Off‐body background grid: automatically generated and adapted to the near‐body cell sizes by 

Cassiopée in‐house tool.• Blanking for elsA CFD solver is done by Cassiopée.

• Control of resolution: manual input for edges boundaries, ratio of extrusion = 1/1.1/1.16 in BL, 1.2 outside BL

• Mesh export file formats: CGNS

Mesh Generation (structured)

GMGW‐1, Denver CO, June 2017 7

• Difficulties encountered• Overset assembly can be tedious if too overlapping grids• So the main difficulty was the meshing of the flaps cavity: the chosen topology 

for the surface mesh required to refine the wing trailing edge and the BL extrusion was tricky with 3 directions in the corners. 

• Few process iterations to ensure a good overset assembly

• Lessons learned• The mesh generation process could be improved by accepting more 

overlapping patches on wall surface.

Mesh Statistics

GMGW‐1, Denver CO, June 2017 8

Geometry Model Grid Type Grid Level Nodes BFaces Volume Cells Jacobian Max. included angle<=0 Positive 

skewMin max

HLCRM‐Full Gap Overset Structured Medium 52.0 M 370K 49.0M 0 2191

HLCRM‐Full Gap Unstructured HexaTetra Prism

Coarse 5.0 M 181K 7.9M 71.523 179.993

Medium 11.3 M 288K 18.6M 71.282 179.989

Max. included angle histogram for medium unstructured mesh

Surface MeshWing Upper Surface

9GMGW‐1, Denver CO, June 2017

Surface MeshWing Lower Surface

GMGW‐1, Denver CO, June 2017 10

Surface Mesh ‐ Wing Slat LE at Root 

GMGW‐1, Denver CO, June 2017 11

Surface Mesh ‐ Wing Flap TE at Root 

GMGW‐1, Denver CO, June 2017 12

Surface Mesh ‐ Wing Tip LE 

GMGW‐1, Denver CO, June 2017 13

Surface Mesh ‐ Wing Tip TE

GMGW‐1, Denver CO, June 2017 14

Flap Gap Upper Surface

GMGW‐1, Denver CO, June 2017 15

Volume Mesh Cut at y=277.5

GMGW‐1, Denver CO, June 2017 16

Volume Mesh Cut at y=638

GMGW‐1, Denver CO, June 2017 17

Volume Mesh Cut at y=1050

GMGW‐1, Denver CO, June 2017 18

Surface MeshWing Upper Surface

19GMGW‐1, Denver CO, June 2017

Surface MeshWing Lower Surface

GMGW‐1, Denver CO, June 2017 20

Surface Mesh ‐ Wing Slat LE at Root 

GMGW‐1, Denver CO, June 2017 21

Surface Mesh ‐ Wing Flap TE at Root 

GMGW‐1, Denver CO, June 2017 22

Surface Mesh ‐ Wing Tip LE 

GMGW‐1, Denver CO, June 2017 23

Surface Mesh ‐ Wing Tip TE

GMGW‐1, Denver CO, June 2017 24

Flap Gap Upper Surface

GMGW‐1, Denver CO, June 2017 25

Volume Mesh Cut at y=277.5

GMGW‐1, Denver CO, June 2017 26

Volume Mesh Cut at y=638

GMGW‐1, Denver CO, June 2017 27

Volume Mesh Cut at y=1050

GMGW‐1, Denver CO, June 2017 28

Mesh Evaluation

GMGW‐1, Denver CO, June 2017 29

• Evaluation• Overset structured mesh: Jacobian >0 (positive skew ok), no orphan points 

during overset assembly• Unstructured mesh: decrease the maximum included angle• Solution has been computed on the medium unstructured grid (not presented 

at HLPW)• Low turb. visc. on slat intrados

• Adherence to meshing guidelines• Overset structured: not adherence for the 4x multigridable grids (not full 

validated for overset grids with elsA) and for the cells alignment with wakes (lack of time)

• Unstructured: not adherence for the 4x multigridable grids (not possible with elsA), for the cells alignment with wakes (lack of time) and for the first constant BL layers (not possible with T‐Rex functionality)

Additional Topics

GMGW‐1, Denver CO, June 2017 30

• Future Technology • Improvement of unstructured mesh by local smoothing or cell shapes 

deformation• ONERA works also on intersection of unstructured grids and on robustness of 

extrusion for polyhedral meshes. It will be tested for HLCRM.

Summary

• What I learned from this exercise (first time I meshed a complex aircraft geometry)• What was the easiest?  The geometry was clean (generally not the case)

• What was the hardest? For the structured grid, the extrusion in the flap cavity is tricky. For the unstructured grid, decreasing the max angle is difficult without crash. The cells alignment with component wakes can be tricky even with refinement source regions.

GMGW‐1, Denver CO, June 2017 31