69
Continuous-Time Fourier Transform 1

Continuous-Time Fourier Transform©orie du signal/CFT.pdf · 2016. 6. 29. · Pf) f (t) f ( t) Pf) Even F(j ... ³ jtf t e j t dt f f 40 [ ( )] F Z [ jtf (t)] Continuous-Time Fourier

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Continuous-Time Fourier Transform

    1

  • Content

    Introduction

    Fourier Integral

    Fourier Transform

    Properties of Fourier Transform

    Convolution

    Parseval’s Theorem

    2

  • Continuous-Time Fourier Transform

    Introduction

    3

  • The Topic

    Fourier

    Series

    Discrete

    Fourier

    Transform

    Continuous

    Fourier

    Transform

    Fourier

    Transform

    Continuous

    Time

    Discrete

    Time

    Per

    iodic

    Aper

    iod

    ic

    4

  • Review of Fourier Series

    Deal with continuous-time periodic signals.

    Discrete frequency spectra.

    A Periodic Signal

    T 2T 3T

    t

    f(t)

    5

  • Two Forms for Fourier Series

    T

    ntb

    T

    nta

    atf

    n

    n

    n

    n

    2sin

    2cos

    2)(

    11

    0Sinusoidal

    Form

    Complex

    Form:

    n

    tjn

    nectf0)( dtetf

    Tc

    T

    T

    tjn

    n

    2/

    2/

    0)(1

    dttfT

    aT

    T2/

    2/0 )(

    2tdtntf

    Ta

    T

    Tn 0

    2/

    2/cos)(

    2

    tdtntfT

    bT

    Tn 0

    2/

    2/sin)(

    2

    6

  • How to Deal with Aperiodic Signal?

    A Periodic Signal

    T

    t

    f(t)

    If T, what happens?

    7

  • Continuous-Time Fourier Transform

    Fourier Integral

    8

  • tjn

    n

    nT ectf0)(

    Fourier Integral

    n

    tjnT

    T

    jn

    T edefT

    002/

    2/)(

    1

    dtetfT

    cT

    T

    tjn

    Tn

    2/

    2/

    0)(1

    T

    20

    2

    1 0

    T

    n

    tjnT

    T

    jn

    T edef00

    0

    2/

    2/)(

    2

    1

    LetT

    20

    0 dT

    n

    tjnT

    T

    jn

    T edef00

    2/

    2/)(

    2

    1

    1 ( )2

    j j tf e d e d

    9

  • dedeftf tjj)(2

    1)(

    Fourier Integral

    F(j)

    dtetfjF tj

    )()(

    dejFtf tj)(2

    1)( Synthesis

    Analysis

    10

  • Fourier Series vs. Fourier Integral

    n

    tjn

    nectf0)(

    Fourier

    Series:

    Fourier

    Integral:

    dtetfT

    cT

    T

    tjn

    Tn

    2/

    2/

    0)(1

    dtetfjF tj

    )()(

    dejFtf tj)(2

    1)(

    Period Function

    Discrete Spectra

    Non-Period

    Function

    Continuous Spectra11

  • Continuous-Time Fourier Transform

    Fourier Transform

    12

  • Fourier Transform Pair

    dtetfjF tj

    )()(

    dejFtf tj)(2

    1)( Synthesis

    Analysis

    Fourier Transform:

    Inverse Fourier Transform:

    13

  • Existence of the Fourier Transform

    dttf |)(|

    Sufficient Condition:

    f(t) is absolutely integrable, i.e.,

    14

  • dtetfjF tj

    )()(

    Continuous Spectra

    )()()( jjFjFjF IR

    )(|)(| jejF FR(j)

    FI(j)

    ()

    MagnitudePhase

    15

  • Example

    1-1

    1

    t

    f(t)

    dtetfjF tj

    )()( dte tj

    1

    1

    1

    1

    1

    tje

    j

    )(

    jj eej 2sin

    2sin 2c f

    16

  • Example

    1-1

    1

    t

    f(t)

    dtetfjF tj

    )()( dte tj

    1

    1

    1

    1

    1

    tje

    j

    )(

    jj eej

    sin2

    -10 -5 0 5 10-1

    0

    1

    2

    3

    F(

    )-10 -5 0 5 10

    0

    1

    2

    3

    |F(

    )|

    -10 -5 0 5 100

    2

    4arg

    [F(

    )]

    17

  • Example

    dtetfjF tj

    )()( dtee tjt

    0

    t

    f(t)

    et

    dte tj

    0

    )(

    j

    1

    18

  • Example

    dtetfjF tj

    )()( dtee tjt

    0

    t

    f(t)

    et

    dte tj

    0

    )(

    j

    1

    -10 -5 0 5 100

    0.5

    1

    |F(j

    )|

    -10 -5 0 5 10-2

    0

    2

    arg

    [F(j

    )]

    =2

    19

  • Continuous-Time Fourier Transform

    Properties of

    Fourier Transform

    20

  • Notation

    )()( jFtf F

    )()]([ jFtfF

    )()]([1 tfjF- F

    21

  • Linearity

    )()()()( 22112211 jFajFatfatfaF

    22

  • Time Scaling

    ajF

    aatf

    ||

    1)( F

    23

  • Time Reversal

    jFtf F)(

    Pf)dtetftf tj

    )()]([F dtetft

    t

    tj

    )(

    )()( tdetft

    t

    tj

    )()( tdetft

    t

    tj

    dtetft

    t

    tj

    )( dtetft

    t

    tj

    )(

    dtetf tj

    )( )( jF

    24

  • Time Shifting

    0)( 0tj

    ejFttf

    F

    Pf)dtettfttf tj

    )()]([ 00F dtettft

    t

    tj

    )( 0

    )()( 0)(0

    0

    0 ttdetftt

    tt

    ttj

    dtetfet

    t

    tjtj

    )(0

    dtetfe tjtj

    )(0tj

    ejF 0)(

    25

  • Frequency Shifting (Modulation)

    )()( 00

    jFetfj F

    Pf)dteetfetf tj

    tjtj

    00 )(])([F

    dtetftj

    )( 0)(

    )( 0 jF

    26

  • Symmetry Property

    )(2)]([ fjtFF

    Pf)

    dejFtf tj)()(2

    dejFtf tj)()(2

    dtejtFf tj

    )()(2

    Interchange symbols and t

    )]([ jtFF27

  • Fourier Transform for Real Functions

    If f(t) is a real function, and F(j) = FR(j) + jFI(j)

    F(j) = F*(j)

    dtetfjF tj

    )()(

    dtetfjF tj

    )()(* )( jF28

  • Fourier Transform for Real FunctionsFourier Transform for Real Functions

    If f(t) is a real function, and F(j) = FR(j) + jFI(j)

    F(j) = F*(j)

    FR(j) is even, and FI(j) is odd.

    FR(j) = FR(j) FI(j) = FI(j)

    Magnitude spectrum |F(j)| is even, and

    phase spectrum () is odd.

    29

  • Fourier Transform for Real FunctionsFourier Transform for Real Functions

    If f(t) is real and even

    F(j) is real

    If f(t) is real and odd

    F(j) is pure imaginary

    Pf)

    )()( tftf

    Pf)

    Even

    )()( jFjF

    )(*)( jFjFReal

    )(*)( jFjF

    )()( tftf Odd

    )()( jFjF

    )(*)( jFjFReal

    )(*)( jFjF

    30

  • Example:

    )()]([ jFtfF ?]cos)([ 0 ttfF

    Sol)

    ))((2

    1cos)( 000

    tjtjeetfttf

    ])([2

    1])([

    2

    1]cos)([ 000

    tjtjetfetfttf

    FFF

    )]([2

    1)]([

    2

    100 jFjF

    31

  • Example:

    d/2d/2

    1

    t

    wd(t)

    d/2d/2t

    f(t)=wd(t)cos0t

    /2

    /2

    2 1( ) [ ( )] sin sin sin

    2

    dj t

    d dd

    dW j w t e dt fd d c fd

    f

    F

    ]cos)([)( 0ttwjF d F0

    0

    0

    0 )(2

    sin)(2

    sin

    dd

    32

  • Example:

    d/2d/2

    1

    t

    wd(t)

    d/2d/2t

    f(t)=wd(t)cos0t

    /2

    /2

    2( ) [ ( )] sin sin

    2

    dj t

    d dd

    dW j w t e dt d c fd

    F

    ]cos)([)( 0ttwjF d F0

    0

    0

    0 )(2

    sin)(2

    sin

    dd

    -60 -40 -20 0 20 40 60-0.5

    0

    0.5

    1

    1.5

    F(j

    )

    d=2

    0=5

    33

  • Example:

    t

    attf

    sin)( ?)( jF

    Sol)

    d/2d/2

    1

    t

    wd(t)

    2sin

    2)(

    djWd

    )(22

    sin2

    )]([

    dd w

    td

    tjtW FF

    )(sin

    )]([ 2

    aw

    t

    attf FF

    ||1

    ||0

    a

    a

    34

  • About writing

    35

    2[ ( )] sin 2 ( )

    2d d

    tdW jt w

    t

    F F

    2

    2

    ,2 2

    sin[ ( )] ( )

    ( ) ( )[ ( )] sin ( ) Re Re

    2 /

    1 / 2( )

    Re ( )

    0

    a

    a

    atf t w

    t

    a ff t cat w ct c

    a a

    if xx

    be carreful ct x

    otherwise

    F F

    F F

  • Fourier Transform of f’(t)

    ( ) and if lim ( ) 0t

    f t F j f t

    F

    Pf)dtetftf tj

    )(')]('[F

    dtetfjetf tjtj )()(

    )()(' jFjtf F

    )( jFj36

  • Fourier Transform of f (n)(t)

    ( ) and if lim ( ) 0t

    f t F j f t

    F

    )()()()( jFjtf nn F

    37

  • Fourier Transform of Integral

    ( ) and if ( ) 0 0f t F j f t dt F

    F

    jFj

    dxxft 1

    )(F

    Let dxxftt

    )()( 0)(lim tt)()()]([)]('[ jjjFtft FF

    )(1

    )(

    jFj

    j

    38

  • (Suite)

    39

    1( ) (0) ( ) ( )

    t

    f d F F jj

    General case

    By convolution with heaviside distribution

  • The Derivative of Fourier Transform

    d

    jdFtjtf FF )]([

    Pf)

    dtetfjF tj

    )()(

    dtetfd

    d

    d

    jdF tj

    )(

    )(dtetf tj

    )(

    dtetjtf tj

    )]([ )]([ tjtfF40

  • Continuous-Time Fourier Transform

    Convolution

    41

  • Basic Concept

    Linear Systemfi(t) fo(t)=L[fi(t)]

    fi(t)=a1 fi1(t) + a2 fi2(t) fo(t)=L[a1 fi1(t) + a2 fi2(t)]

    A linear system satisfies fo(t) = a1L[fi1(t)] + a2L[fi2(t)]

    = a1fo1(t) + a2fo2(t)42

  • Basic Concept

    Time Invariant

    System

    fi(t) fo(t)

    fi(t +t0) fo(t + t0)

    fi(t t0) fo(t t0)

    tfi(t)

    tfo(t)

    tfi(t+t0)

    tfo(t+t0)

    tfi(tt0)

    tfo(tt0)

    43

  • Basic Concept

    Causal

    System

    fi(t) fo(t)

    A causal system satisfies

    fi(t) = 0 for t < t0 fo(t) = 0 for t < t0

    44

  • Basic Concept

    Causal

    System

    fi(t) fo(t)

    tfi(t)

    tfo(t)

    t0t0

    t0t

    fi(t)t

    fo(t)

    t0fi(t)

    t tfo(t)

    t0t0

    Which of the following

    systems are causal?

    45

  • Unit Impulse Response

    LTI

    System

    (t) h(t)=L[(t)]

    f(t) L[f(t)]=?

    Facts: )()()()()( tfdtfdtf

    dtfLtfL )()()]([

    dtLf )]([)(

    dthf )()( Convolution

    46

  • Unit Impulse Response

    Impulse Response

    LTI System

    h(t)f(t) f(t)*h(t)

    47

    )(*)()]([ thtftfL

  • Convolution Definition

    dtfftf )()()( 21

    The convolution of two functions f1(t) and

    f2(t) is defined as:

    )(*)( 21 tftf

    48

  • Properties of Convolution

    )(*)()(*)( 1221 tftftftf

    dtfftftf )()()(*)( 2121

    dtff )()( 21

    )(])([)( 21

    tdttftf

    t

    t

    dftf )()( 21

    dftf )()( 21 )(*)( 12 tftf

    49

  • Impulse Response

    LTI System

    h(t)

    f(t) f(t)*h(t)

    Properties of Convolution

    )(*)()(*)( 1221 tftftftf

    Impulse Response

    LTI System

    f(t)

    h(t) h(t)*f(t)

    50

  • Properties of Convolution

    )](*)([*)()(*)](*)([ 321321 tftftftftftf

    51

  • Properties of Convolution

    )](*)([*)()(*)](*)([ 321321 tftftftftftf

    h1(t) h2(t) h3(t)

    h2(t) h3(t) h1(t)

    The following two

    systems are identical

    52

  • Properties of Convolution

    )()(*)( tfttf (t)f(t) f(t)

    dtfttf )()()(*)(

    dtf )()(

    )(tf

    53

  • Properties of Convolution

    )()(*)( tfttf (t)f(t) f(t)

    )()(*)( TtfTttf

    dTtfTttf )()()(*)(

    dTtf )()(

    )( Ttf 54

  • Properties of Convolution

    f(t) f(t T)

    )()(*)( TtfTttf

    0 T

    (tT)

    tf (t)

    0t

    f (t)

    0 T

    55

  • Properties of Convolution

    f(t) f(t T)

    )()(*)( TtfTttf

    0 T

    (tT)

    tf (t)

    0t

    f (t)

    0 T

    System function (tT) serves as an

    ideal delay or a copier.

    56

  • Properties of Convolution

    )()()(*)( 2121 jFjFtftfF

    dtedtfftftfF tj

    )()()](*)([ 2121

    ddtetff tj)()( 21

    dejFf j)()( 21

    defjF j)()( 12 )()( 21 jFjF57

  • Properties of Convolution

    )()()(*)( 2121 jFjFtftfF

    dtedtfftftfF tj

    )()()](*)([ 2121

    ddtetff tj)()( 21

    dejFf j)()( 21

    defjF j)()( 12 )()( 21 jFjF

    Time Domain Frequency Domain

    convolution multiplication

    58

  • Properties of Convolution

    )()()(*)( 2121 jFjFtftfF

    Time Domain Frequency Domain

    convolution multiplication

    Impulse Response

    LTI System

    h(t)f(t) f(t)*h(t)

    Impulse Response

    LTI System

    H(j)F(j) F(j)H(j)

    59

  • Properties of Convolution

    )()()(*)( 2121 jFjFtftfF

    Time Domain Frequency Domain

    convolution multiplication

    F(j)

    F(j)H1(j)

    H2(j)H1(j) H3(j)

    F(j)H1(j)H2(j)

    F(j)H1(j)H2(j)H3(j)

    60

  • Properties of Convolution

    )()()(*)( 2121 jFjFtftfF

    An Ideal Low-Pass Filter

    0

    Fi(j)

    0

    Fo(j)

    0

    H(j)

    pp

    1

    61

  • Properties of Convolution

    )()()(*)( 2121 jFjFtftfF

    An Ideal High-Pass Filter

    0

    Fi(j)

    0

    H(j)

    pp

    1

    0

    Fo(j)

    62

  • Properties of Convolution

    )(*)(2

    1)()( 2121

    jFjFtftf F

    djFjFtftf )]([)(

    2

    1)()( 2121

    F

    63

  • Properties of Convolution

    )(*)(2

    1)()( 2121

    jFjFtftf F

    djFjFtftf )]([)(

    2

    1)()( 2121

    F

    Time Domain Frequency Domain

    multiplication convolution

    64

  • Continuous-Time Fourier Transform

    Parseval’s Theorem

    65

  • Properties of Convolution

    djFjFdttftf ][)(

    2

    1)]()([ 2121

    djFjFtftf )]([)(

    2

    1)()( 2121

    F

    djFjFdtetftf tj )]([)(

    2

    1)]()([ 2121

    djFjFdttftf )]([)(

    2

    1)]()([ 2121=0

    66

  • Properties of Convolution

    djFjFdttftf ][)(

    2

    1)]()([ 2121

    If f1(t) and f2(t) are real functions,

    djFjFdttftf ][)(

    2

    1)]()([ *2121

    f2(t) real ][][*

    22 jFjF67

  • Parseval’s Theorem:Energy Preserving

    djFdttf 22 |)(|

    2

    1|)(|

    dtetftf tj

    )(*)](*[F

    djFjF )]([*)(

    2

    1

    2| ( ) | ( ) *( ) ( )f t dt f t f t dt Energy of f t

    *

    )(

    dtetf tj )(* jF

    djF 2|)(|

    2

    1

    68

  • Isometry

    69

    1 2 1 2 1 21

    ( ), ( ) ( ), ( ) ,2

    f t f t F F F F

    2 2 22 2 21

    2L L Lf t F F