6
1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS TANI SHIGERU 1 SUMMARY The Hyogo-Ken Nambu Earthquake damaged many earthen structures. The Japanese Society of Civil Engineers stated that databases are needed to help determine the earthquake resistance of public structures in the second proposal for earthquake resistance. This paper describes the database on agricultural high dams at least 15m in height., which was recently created to provide information for quickly inspecting dam safety after earthquakes. Previous studies on earthquake damage revealed that there is a relationship between magnitude and epicentral distance within which damage may occur. The system is based on this relationship for listing dams requiring inspection after an earthquake. When the epicenter is inputted, the seismograph database can be used to output a list of dams where seismographs are installed. The system was proved effective by actual inspections conducted after several earthquakes. The objective of the recently developed database on agricultural high dams is to provide information of dams that need urgent inspection after an earthquake. We are improving the database to allow direct collection of seismic information from observation points and to improve the accuracy of earthquake inspections. INTRODUCTION In Japan, there are 1,796 agricultural irrigation dams of at least 15 m in height. Fill dams account for 90%, concrete dams for 9%, and composite dams for the remaining 1%. There are various kinds of information about dams, such as dam height, storage and other specifications. The Hyogo-ken Nambu Earthquake damaged many earthen structures but destroyed no high dam. The Second Proposal of the Japanese Society of Civil Engineering stated that databases are needed to help determine the earthquake resistance of dams. This paper describes a database system for agricultural dams, which we created to provide information for quickly inspecting dams after earthquakes. OUTLINE OF DATABASE The database covers agricultural dams of at least 15 m in height, and treats data, such as dam height, spillway specifications, and data from seismographs and other instruments installed at dam sites to maintain and prevent damage to the dams. A schematic diagram of the database is shown in Figure 1, which consists of 1) basic data, 2) instrument data, 3) seismograph data, 4) geographic information, and 5) other information. The content and function of each database component are described in the following sections.

CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

1202

1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS

TANI SHIGERU1

SUMMARY

The Hyogo-Ken Nambu Earthquake damaged many earthen structures. The Japanese Society ofCivil Engineers stated that databases are needed to help determine the earthquake resistance ofpublic structures in the second proposal for earthquake resistance. This paper describes thedatabase on agricultural high dams at least 15m in height., which was recently created to provideinformation for quickly inspecting dam safety after earthquakes. Previous studies on earthquakedamage revealed that there is a relationship between magnitude and epicentral distance withinwhich damage may occur. The system is based on this relationship for listing dams requiringinspection after an earthquake. When the epicenter is inputted, the seismograph database can beused to output a list of dams where seismographs are installed. The system was proved effective byactual inspections conducted after several earthquakes. The objective of the recently developeddatabase on agricultural high dams is to provide information of dams that need urgent inspectionafter an earthquake. We are improving the database to allow direct collection of seismicinformation from observation points and to improve the accuracy of earthquake inspections.

INTRODUCTION

In Japan, there are 1,796 agricultural irrigation dams of at least 15 m in height. Fill dams account for 90%,concrete dams for 9%, and composite dams for the remaining 1%. There are various kinds of information aboutdams, such as dam height, storage and other specifications. The Hyogo-ken Nambu Earthquake damaged manyearthen structures but destroyed no high dam. The Second Proposal of the Japanese Society of Civil Engineeringstated that databases are needed to help determine the earthquake resistance of dams. This paper describes adatabase system for agricultural dams, which we created to provide information for quickly inspecting damsafter earthquakes.

OUTLINE OF DATABASE

The database covers agricultural dams of at least 15 m in height, and treats data, such as dam height,spillway specifications, and data from seismographs and other instruments installed at dam sites to maintainand prevent damage to the dams. A schematic diagram of the database is shown in Figure 1, whichconsists of 1) basic data, 2) instrument data, 3) seismograph data, 4) geographic information, and 5) otherinformation. The content and function of each database component are described in the following sections.

Page 2: CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

12022

Figure 1; Outline of the database on agricultural high dams

CONTENTS AND FUNCTION OF EACH DATABASE

Geographic information and other public data

The database uses 1) maps, 2) national-land numerical (topographic and geological) information, 3) data onactive faults, 4) , seismic intensity maps, and 5) data concerning regions designated by each municipality under agovernment ordinance. Maps are important for knowing the locations and routes to dams. The previous databasefor earth dams has used the national-land numerical information. The new database loads maps sold on themarket for on-vehicle navigation systems. The maps, which can be displayed and scrolled at any scale between1/600,000 and 1/6,250, contain property data, such as roads, roadside facilities, railroads, public facilities,municipality names, rivers, and large buildings.

The topography and geology are classified and recorded for each 1-km mesh of the land. Topography isclassified into five groups, which are mountains, volcanoes, hills, plateaus, and low land. The surface soil isclassified into nine groups, which are 1) sand, 2) clay, 3) peat, 4) gravel, 5) sediment of mud, sand and gravels,6) consolidated or semi-consolidated sediment, 7) shirasu, 8) Ioam, and 9) rocks.

The active-fault information and its resultant digital maps of 1/200.000 in scale for active faults (Geo SupplyCo., Ltd.) are used. The system displays the location, certainty, and the activity of an active fault based on roadinformation. Seismic intensity classes that are prescribed by the road bridge specifications(1996) are used. Theregions that are designated by municipalities under a government ordinance is requiring special attention (duringan earthquake, for heavy snow fall, for depopulation, for frequent typhoons, or peninsula or mountain villages),and the names of locations of public (national, prefectural, or municipal) facilities are also included in thedatabase.

Dam basic database

The dam basic database covers 1,796 agricultural dams of at least 15 m in height and stores approximately 560kinds of data for each dam, such as dam specifications (height, crest length, storage, etc.), accessory facilities(spillway, intake facilities, etc.) and facilities for monitoring the dam. The database uses common road maps,facility codes, and dam property information with the instrument and seismograph databases, which will bedescribed below. Users can search dams by item (name, height, prefecture, etc.), epicentral location, address, ordistance from an active fault (active-fault search). By inputting an epicentral location, the system outputs a list ofdams in order of epicentral distance.

Page 3: CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

12023

Figure 2 plots the mean epicentral distance of each municipality against the percentage of small earth damsdamaged. The solid line in the figure should show the maximum percentage of small earth dams damagedestimated from the mean epicentral distance. An epicentral distance of damage ratio = 0, and damage ratio = o atfirst is decided as critical distance (•), and distance (•) respectively. This relationship could be effected by theconditions of the foundation and embankment. The solid line in the figure represents an approximate limit ofdamage. Critical distance (•) is applicable to small earth dam based on soft foundation. Critical distance (•)applies to fill dam based on rock foundation. Since the dam conditions were not considered, the maximumdamage ratio was adopted to make a safer judgment. By studying the relationshipbetween the ground conditionsand damage in more detail, It may be possible to accurately predict damage.This studies on earthquake damagerevealed that there is a fixed relationship shown in Figure 3 between magnitude and epicentral distance withinwhich small earth dams of smaller than 15 m in height may be affected either seriously or slightly. Sinceagricultural dams of at least 15 m in height (either fill dams or concrete dams) have scarcely been damaged, therelationship should slide to the safer side.

Num

ber

ofea

r th

dam

sda

mag

edD

a mag

eR

ate (

% ) =

~10

0T

otal

Nu m

ber

o fea

r th

dam

s

M = 7 .2

25

00

5

10

15

20

1 0 080604020

Critical distance (‡U )

Critical distance (‡T )

Mean distance from the epicenter R (Km)

Figure 2; Mean distance from epicenter and ratio of earth dams damaged bythe Hyogo-ken Nambu Earthquake

Fig.3 Relationship between magnitude M and critical distance R

1000

10

1

100

500

5 6 7 8 9Magnitude M

Cri

tica

l l

dis

tan

ce f

rom

ep

icen

ter

R(k

m)

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(1)@5<M<6.1 R=11(2)6.1… M<8@@@@ log R=0.846M-4.14(3)6.4… M<8 log R=0.774M-3.88@@@ 5<M<6.4 R=11@@@@

No damage area

Damage area (B)

Critical distance(‡U )

Damagearea (A)

Critical distance (‡T )

5

50

Page 4: CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

12024

We adopted this relationship as the standard for listing dams that should be inspected during an earthquake.Figure 4 shows a display of an epicentral-location search during the Hyogo-ken Nanbu Earthquake. The seismicintensity was not just determined by the seismic distance, but soil conditions were involved. We downloaded theacceleration data from K-NET of the National Research Center for Disaster Prevention, Science of TechnologyAgency, and used the acceleration data for making a list of dams to be inspected by displaying the estimatedacceleration at each dam site on maps as shown in Figure 5. Since the GPS kit is integrated into the system,users can check their current position with a lap-top computer and know the position in relation to the target damand routes to the dam. This helps them check the positions of dams during earthquakes and obtain informationabout various facilities.

INSTRUMENT DATABASE AND SEISMOGRAPH DATABASE

The instrument database collects data from the principal 52 agricultural dams. The kinds of data collected arelisted in Table 1. The detailed information about instruments, such as the types and measurement ranges, isstored as images of cards. The locations of instruments are also stored as image data as shown in Figure 5

Seismographs are installed at 154 agricultural dams. Some of the seismographs are old, and their detailed dataare not in the database. For the other 58, the specifications, such as the type, recording type, and trigger levels,are recorded in the database.

Table 1 shows an output of a seismograph record. The location of the instrument is shown in the order of planar,vertical, and horizontal locations. For example, "dam body (center, crest, halfway)" signifies that the device isinstalled along the center line of the dam body, at the crown, and hallway between the sides. Operational status is"•" for those that are operating"×" for those that are not working and "•" for unidentified. When an earthquakeoccurs, the system quickly outputs a list of dams on which seismographs are installed just by inputting theepicentral location. K-NET estimates automatically the acceleration near dams, but our system requires users toinput acceleration data, which are displayed on maps.

Figure 4; Output of epicentral search of the agricultural-dam database (Display of damsand active faultswithin 30 km from the epicenter)

Dam list in order of epicenter distanceACTIVE FAULT

LEVEL ‡T

‡U

‡V

15 km ACTIVE FAULT

Page 5: CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

12025

Figure 5; Output image of the instrument database(Locations of instruments)

[ ] : gal

Code 07401022 DANE NICYU DAM FILE 40100221.GIF TYPE OF Drawing NAME NAME IMAGE DATE

COMENT CROSS SECTION (A),

Location of instruments

EL.475.00

EL.460.00

EL.445.00

EL.430.00

EL.415.00

EL.400.00PK-5(45m)

PK-4(45m)APR-1-2(5m)

APR-3-4(15m)

R-5(30m)

S-4

AV-2

AP-11

S-3

AP-10

AP-8-9

AP-7

AP-1-5AE-1-5

No.5+9.617

No.5+12.617 No.10+17.370

R-4(30m)

BP-20-22

S-1-2

BV1-3A-3

BP-23A-2

BP-17-19BE-6-9BP-12-16

BP-9-11BP-6-8BE-1-5BP1-5A-1BPR-1-4(5m)BPR-5-6 (15m)

R-2 (30m)R-3 (35m)

R-1 (50m)

No.12+14.000

No.12+17.000 No.16+17.688

No.17+0.580

CV-2

CP-11

CP-10

CP-8-9

CP-7S-5CP-6

CE-1-5CP-1-5

CPP-1-2 (5m)CPP-3-4 (15m)

R-6 (30m)

S-6

Legend

PR Pressure cell (Rock zone) E Settlement gageP Pressure cell (Embankment) R Earth pressure meterV Differential settlement gage A Seismograph S Strain gage

Figure 6; Output image of the instrument database (Locations of instruments)

Page 6: CONSTRUCTION OF A DATA BASE SYSTEM FOR IRRIGATION DAMS · 1999. 12. 15. · 1202 1 National Research Institute of Agricultural Engineering, Tsukuba City , Japan Email; stani @ nkk.affrc.go.jp

12026

Table1; Output of a seismograph record

Seismograph ••• ••••• INSTRUMENT ACTIVE •CHANNEL . ••• Location ••• NAME CONDATION • NO. • ••X Y ZEMBANKMENT CREST AE-123 ••••×• • 1 2 3

FOUNDATION AE-456 • •••••• • 4 5 6

FOUNDATION Dam AF-789• ••×•• 7• 8 9Foundation

ABUTMENT Right AA-ABC • ••×•••••11 12 13Left AA-DEF•••×•••• ••14 15 16

FUTURE TOPICS

The main objective of this developed database on agricultural high dams is to provide information forquickly inspecting the safety of dams during earthquakes. This system is not yet fully operational but willbe improved by directly incorporating more earthquake information to help precise earthquake-resistanceinspection. The database, which is now operating only within the National Research Institute ofAgricultural Engineering, will be distributed throughout all sectors involved and will be utilized duringearthquakes. Finally, we thank the Agricultural Structure Improvement Bureau of the Ministry ofAgriculture and Forestry for providing us the basic data for our database.

REFERENCES

Japan society of civil engineering , Special task committee of earthquake Resistance of civil engineeringstructures (1996), Proposal on earthquake resistance of civil engineering structuresS.Tani (1998), Construction of dam database system of earth dams and its application to earthquake disasterprevention, The 11th Danube-European Conference on Soil Mechanics and Geotechnical Engineering, pp.359-366