54
Constraining Gravitational Waves from Inflation Ema Dimastrogiovanni The University of New South Wales BEYOND19 - Warsaw— July 5th 2019

Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Constraining Gravitational Waves from Inflation

Ema DimastrogiovanniThe University of New South Wales

BEYOND19 - Warsaw— July 5th 2019

Page 2: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Outline

Brief intro + current bounds

Particle sources during inflation

Tensor fossils

Polarized Sunyaev–Zeldovich tomography

1810.09463 - Deutsch, ED, Fasiello, Johnson, Muenchmeyer1707.08129 - Deutsch, ED, Johnson, Muenchmeyer, Terrana

1806.05474 - ED, Fasiello, Hardwick, Assadullahi, Koyama, Wands

1608.04216 - ED, Fasiello, Fujita 1411.3029 - Biagetti, ED, Fasiello, Peloso

1708.01587 - Biagetti, ED, Fasiello1407.8204 - ED, Fasiello, Jeong, Kamionkowski

1504.05993 - ED, Fasiello, Kamionkowski

1906.07204 - ED, Fasiello, Tasinato

Page 3: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Outline

Particle sources during inflation

Tensor fossils

Polarized Sunyaev–Zeldovich tomography

Brief intro + current bounds

Page 4: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

about 13.8 billion years

The universe over time

Page 5: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

P⇣(k) =1

8⇡2

1

H2

M2pl

✓k

k⇤

◆ns�1

2.2⇥ 10�9

0.968± 0.006

[k⇤ = 0.05Mpc�1, 68%C.L.]

from Planck measurements of CMB anisotropies

�� ! ⇣ ! �T

Two-point statistics of primordial perturbations: scalars

Page 6: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

�ii = @i�ij = 0 two polarization states of the graviton

Gravitational waves

ds2 = �dt2 + a2(t) (�ij + �ij) dxidxj

Page 7: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

• homogeneous solution: GWs from vacuum fluctuations

GW background from inflation

• inhomogeneous solution: GWs from sources

⇧TTij /

scalars

{@i�@j�}TT

vectors

{EiEj +BiBj}TT

tensors

{�ij}TT

anisotropic stress-energy

tensor�Tij(from )

�ij + 3H �ij + k2�ij = 16⇡G⇧TT

ij

Page 8: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

red tilt: amplitude decreases

as we go towards smaller scales

energy scale of inflation

Pvacuum� (k) =

2

⇡2

H2

M2pl

✓k

k⇤

◆nT

nT = �r/8

• homogeneous solution: GWs from vacuum fluctuations

and non-chiral!!!

GW background from inflation

r ⌘ P�

P⇣

Page 9: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

10�1610�18 10�14 10�12 10�10 10�8 10�6 10�4 10�2 1 102wave

frequency (Hz)

space-based interferometers

terrestrialinterfer.

time between wave peaks

(age of the universe) (hours) (secs) (millisecs)

CMB anisotropies

Scales — Experiments

(years)

pulsar timing arrays (PTA)

Page 10: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Observational bounds/sensitivities

Implications for model building:

threshold for large field inflation

��

Mpl&

⇣r⇤8

⌘1/2N⇤ &

⇣ r⇤0.01

⌘1/2

H . 5⇥ 1013 GeVupper bound on the

energy scale of inflation

r[0.05Mpc�1] < 0.06

BICEP2/KECK+Planck

Next generation:BICEP, SPT-3G,

Simons Obs., LiteBIRD, CMB-S4,

PICO

�(r) ! 0.0005

Page 11: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Observational bounds/sensitivities

Page 12: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Outline

Particle sources during inflation

Tensor fossils

Polarized Sunyaev–Zeldovich tomography

Brief intro + current bounds

Page 13: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

�ij + 3H �ij + k2�ij = 16⇡G⇧TT

ij

INFLATON SPECTATOR SECTOR+

negligible energy density compared to the inflaton

P tot� = P vacuum

� + P spectator�

• inhomogeneous solution: GWs from sources

GW background from inflation

Page 14: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Why additional fields?

Interesting for phenomenology: qualitatively different signatures w.r.t. basic single-field inflation testable!

Natural from a top-down perspective: plenty of candidates from string theory (e.g. moduli fields, axions, Kaluza-Klein modes, gauge fields…)

Page 15: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Scalar field (I)

Spectator fields with small sound speed

P (X,�)

subdominant at the background levelrelevant for perturbations

[Biagetti, Fasiello, Riotto 2012, Biagetti, ED, Fasiello, Peloso 2014, Fujita, Yokoyama, Yokoyama, 2014]

�ij + 3H �ij + k2�ij = 16⇡G⇧TT

ij

Pspectator� / 1

cns

H4

M4P

Sourced may be comparable to vacuum fluctuations

Breaking standard r—H relation: r = f(✏, cs)

small sound speed: from integrating out heavy fields

c2s =PX

PX + �20PXX

< 1

X ⌘ � (@�)2

/ @i�@j�

Page 16: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Scalar field (II)

[Chung et al., 2000, Senatore et al, 2011, Pearce et al, 2017]

Auxiliary scalars with time-varying mass

graviton (and scalar fluctuations!) production

g2

2(�� �⇤)

2 �2

particle burst when inflaton crosses over value�⇤

features in the power spectra

Page 17: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Axion-Gauge fields models: genesis

✏ ⌘M2

p

2

V

0

V

!2

, ⌘ ⌘ M2pV

00

V

… but flatness may be spoiled by radiative corrections!

Generic requirement for inflation: nearly flat potential: ✏, |⌘| ⌧ 1

� ! �+ c

V (') = ⇤4 [1� cos ('/f)]

Flatness protected by axionic shift symmetryNatural Inflation [Freese, Frieman, Olinto 1990]

f & MPAgreement with observations requires:

undesirable constraint on the theory[Kallosh, Linde, Susskind, 1995, Banks et al, 2003]

V (�)

Page 18: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Axion-Gauge fields models: motivation

naturally light inflaton

��

4fF F

sub-Planckian axion decay constant

support reheating

Anber - Sorbo 2009, Cook - Sorbo 2011, Barnaby - Peloso 2011, Barnaby - Namba - Peloso 2011Adshead - Wyman 2011, Maleknejad - Sheikh-Jabbari, 2011, ED - Fasiello - Tolley 2012ED - Peloso 2012, Namba - ED - Peloso 2013, Adshead - Martinec -Wyman 2013, ED - Fasiello - Fujita 2016Agrawal - Fujita - Komatsu 2017, Thorne - Fujita - Hazumi - Katayama - Komatsu - Shiraishi ’17Caldwell - Devulder 2017, …

Page 19: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

LspectatorP�,vacuum P�,sourced

L = Linflaton � 1

2(@�)2 � U(�)� 1

4FF +

��

4fF F

Inflaton field dominates energy density of the universe

Spectator sector contribution to curvature fluctuations negligible

[ED-Fasiello-Fujita 2016]

Axion-Gauge fields models: SU(2)

Aa0 = 0

Aai = aQ�ai

slow-roll background attractor solution

�Aai = tai + ... TT-component A �

Page 20: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

One helicity of the gauge field fluctuations is amplified from coupling with axion the same helicity of the tensor mode is amplified

�R

tRgauge field(L)

A

[ED-Fasiello-Fujita 2016]

Axion-Gauge fields models: SU(2)

Page 21: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Axion-Gauge fields models: signatures

Non-Gaussianity

Chirality

Scale dependence

Page 22: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Scale-dependence

basic single-field inflation axion-gauge fields models

nT ' �r/8

(nearly flat spectrum)

[ED-Fasiello-Fujita 2016, Thorne et al, 2017]

detectably large and running nT

bump may occur at small scales

Page 23: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Chirality

basic single-field inflation axion-gauge fields models

�L = �R �L 6= �Rnon-chiral chiral

hTBi, hEBi 6= 0hTBi, hEBi = 0(parity conservation)

Detectable at 2 by LiteBIRD for r > 0.03 [Thorne et al, 2017]

Page 24: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

basic single-field inflation axion-gauge fields models

�L = �R �L 6= �Rnon-chiral chiral

Interferometers: need advanced design with multiple (non co-planar) detectors [Thorne et al. 2017, Smith-Caldwell 2016]

Chirality

Page 25: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Non-Gaussianity: beyond the power spectrum

k1

k2

k3

h��1k1��2k2��3k3i = (2⇡)3�(3)(k1 + k2 + k3)B

�1�2�3� (k1, k2, k3)

tensor bispectrum

shape:

amplitude: fNL =B

P 2⇣

Page 26: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Tensor non-Gaussianity

k1

k2

k3

from interactions of the tensors with other fields or from self-interactions

Page 27: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

[Agrawal - Fujita - Komatsu 2017]detectable by upcoming CMB space missions

axion-gauge fields models

� �

AA

A

A A

basic single-field inflation

fNL = O(r2)

too small for detection

Tensor non-Gaussianity

fNL = r2 · 50✏B

Page 28: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Mixed (scalar-tensor) non-Gaussianity

testing interactions of tensors and matter fields

A

� ⇣

[ED - Fasiello - Hardwick - Koyama - Wands 2018, Fujita - Namba - Obata 2018]

potentially observable!

Page 29: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Inflationary GWs from vacuum fluctuations

One or more of these predictions may be easily violated beyond

the minimal set-up!

• Energy scale of inflation: V 1/4infl ⇡ 1016GeV (r/0.01)1/4

• Scalar field excursion (Lyth bound): ��/MP & (r/0.01)1/2

• Non-chiral:

H ⇡ 2⇥ 1013p

r/0.01GeV

nT ' �2✏ = �r/8• Red tilt:

• Nearly Gaussian: fNL ⌧ 1

PL = PR

Page 30: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Outline

Particle sources during inflation

Tensor fossils

Polarized Sunyaev–Zeldovich tomography

Brief intro + current bounds

Page 31: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

amplitude of long-wavelength modes coupled with amplitude of short-wavelength modes

long wavelength

short wavelength

short wavelengthk3 k2

k1

Squeezed non-Gaussianity

31

Page 32: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Soft limits and fossils

squeezed 3pf affects the 2pf

• No squeezed non-Gaussianity h�~k1�~k2

i = �(3)(~k1 + ~k2)P (k1)diagonal

2p correlation

• Squeezed non-Gaussianity

~K ~k1

~k2

there is also a

off-diagonal

contribution!h�~k1

�~k2i ~K = �(3)(~k1 + ~k2 + ~K)

⇥f(~k1,~k2)A(K)

short-wavelength modes

long-wavelength mode

Page 33: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

[ED, Fasiello, Jeong, Kamionkowski - 2014, ED, Fasiello, Kamionkowski - 2015, Biagetti, ED, Fasiello - 2017]

Soft limits and fossils

⇣~K ~k1

~k2comes fromIf

constrain tensor modes amplitude/interactions with induced quadrupole anisotropy

super-Hubble K:

~k0

1~k

0

2

~k2

~k1~k

00

1

~k00

2

~k000

2

~k000

1

~K

estimate tensor modes amplitudefrom off-diagonal correlations

sub-Hubble K:

P⇣(k,xc)|�L = P⇣(k)⇣1 +Q`m(xc,k)k`km

Page 34: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Soft limits and fossils

�~K ~k1

~k2from

constrain tensor modes amplitude/interactions with induced quadrupole anisotropy

super-Hubble K:

P�(k,xc)|�L = P�(k)⇣1 +Q`m(xc,k)k`km

Page 35: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Soft limits and fossils

�~K ~k1

~k2from

constrain tensor modes amplitude/interactions with induced quadrupole anisotropy

super-Hubble K:

P�(k,xc)|�L = P�(k)⇣1 +Q`m(xc,k)k`km

Important remark: primordial bispectrum highly suppressed on small scales(superposition of signals from a large number of Hubble patches

+ Shapiro time-delay)[Bartolo, De Luca, Franciolini, Lewis, Peloso, Riotto 2018]

Page 36: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

[ED, Fasiello, Tasinato 2019]

Soft limits and fossils

�~K ~k1

~k2from

constrain tensor modes amplitude/interactions with induced quadrupole anisotropy

super-Hubble K:

Crucial observable for tensor non-Gaussianityat interferometer scales!

P�(k,xc)|�L = P�(k)⇣1 +Q`m(xc,k)k`km

Page 37: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Why is squeezed non-Gaussianity

so important?

37

Page 38: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

kN+1

k1k2

k3

kN

limkN+1!0

⇠ 0[ ]SINGLE-FIELD (single-clock) inflation: soft-limits not observable

Intuitive understanding :

[Maldacena 2003, Creminelli, Zaldarriaga 2004]

Soft limits in inflation

Soft mode rescales background for hard modes Effect can be gauged away!

Super-horizon modes freeze-out Standard initial conditions

Page 39: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Extra fields Soft limits reveal(extra) fields mediating

inflaton or graviton interactions

squeezed bispectrum delivers info on mass spectrum!!!

energy

Hm�

�⇣, �

⇣, �

⇣, �

39

Soft limits in inflation

Page 40: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

probe for (extra) fields, pre-inflationary dynamics, (non-standard) symmetry patterns

Non-Bunch Davies initial states[Holman - Tolley 2007, Ganc - Komatsu 2012, Brahma - Nelson - Shandera 2013, …]

Broken space diffs (e.g. space-dependent background)[Endlich et al. 2013, ED - Fasiello - Jeong - Kamionkowski 2014, …]

[Chen - Wang 2009, ED - Fasiello - Kamionkowski 2015, ED - Emami 2016, Biagetti - ED - Fasiello 2017, …]

Extra fields

40

Soft limits in inflation

Page 41: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Learning about primordial gravitational waves through non-Gaussian effects

Local observables affected by long modes (anisotropic effects / off-diagonal correlations)

Effects from “squeezed” tensor-scalar-scalar bispectrum particularly effective at constraining inflation!

Tensor fossils

Quadrupole anisotropy crucial observable for tensor non-Gaussianity at interferometer scales

Page 42: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Outline

Particle sources during inflation

Tensor fossils

Polarized Sunyaev–Zeldovich tomography

Brief intro + current bounds

Page 43: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Large scale structure surveys

Primordial Gravitational Waves

CMB polarization

Interferometers

Page 44: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Polarized Sunyaev-Zel’dovich effect

• Polarization from Thomson scattering of (quadrupolar) radiation by free electrons

• Used to obtain a map of the remote (= locally observed) CMB quadrupole

• Additional information w.r.t. primary CMB (scattered photons from off our past light cone)

Page 45: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Notice:

(Q± iU)(ne)��pSZ

= �p6

10�T

Zd�e a(�e)ne(ne,�e) q

±e↵(ne,�e)

qme↵(ne,�e ! 0) = aT2m

qme↵(ne,�e) =

Zd2n

⇥⇥(ne,�e, n) +⇥T (ne,�e, n)

⇤Y ⇤2m(n)

q±e↵(ne,�) =2X

m=�2

qme↵(ne,�e)±2Y2m(ne)

“Remote” (observed at the location of the scatterer) CMB quadrupole

Polarized Sunyaev-Zel’dovich effect

Page 46: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

pSZ tomography

Reconstructing the remote quadrupole field from CMB-LSS cross-correlation:

tracer of electron number density

long-wavelength modulation of

small-scale power

ensemble average over small-scales

(q treated as a fixed deterministic field)

[Kamionkowski, Loeb 1997, Alizadeh, Hirata 2012, Deutsch, ED, Johnson, Muenchmeyer, Terrana - 2017]

D(Q± iU)

��pSZ

�(�e)E⇠ h� q± �i ⇠ q±(ne, �e)h� �i(�e)

Page 47: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

pSZ tomography

[A.-S. Deutsch, ED, M.C. Johnson, M. Muenchmeyer, A. Terrana - 2017]

Bin-averaged quadrupole field moments decomposition:

q±↵(ne) =X

`m

aq±↵`m ±2Y`m(ne)

aq,E ↵`m = �1

2

�aq+↵`m + aq�↵

`m

aq,B ↵`m = � 1

2i

�aq+↵`m � aq�↵

`m

�{ scalars/tensors

tensorsonly

Optimal unbiased estimator : X = E, B

aq,X ↵`m =

X

`1m1`2m2

⇣WX,E

`m`1m1`2m2aE`1m1

+WX,B`m`1m1`2m2

aB`1m1

⌘�⌧↵`2m2

binned density

field

Page 48: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Primordial gravitational wave phenomenology with pSZ tomography

Page 49: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

[A.-S. Deutsch, ED, M. Fasiello, M.C. Johnson, M. Muenchmeyer - 2018]

full set of correlations between primary CMB and reconstructed remote quadrupole field

aT`m primary CMB temperature

E-mode remote quadrupole field

B-mode remote quadrupole field

aqE`m(�)

aqB`m(�)

primary CMB polarizationaB`m

aE`m

{

Page 50: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

chirality primordial tensorpower spectrum

[A.-S. Deutsch, ED, M. Fasiello, M.C. Johnson, M. Muenchmeyer - 2018]

Page 51: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Fisher matrix forecast to derive exclusion bounds

• Our parameters:

amplitude

scale-dependence

chirality �c

r

nT

[A.-S. Deutsch, ED, M. Fasiello, M.C. Johnson, M. Muenchmeyer - 2018]

Page 52: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

• green: zero-noise cosmic variance limit using primary CMB T, E, B

• red: T, E, B, qE, qB with instrumental noise 1µK � arcmin

0.1µK � arcmin• blue: T, E, B, qE, qB with instrumental noise

• grey: T, E, B, qE, qB with no instrumental noise

Forecasted parameter constraints

[A.-S. Deutsch, ED, M. Fasiello, M.C. Johnson, M. Muenchmeyer - 2018]

Page 53: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

Observers: optimize future missions to go after these signals

improvements on constraints on phenomenological models of the tensor sector w.r.t. using the primary CMB (only)

pSZ tomography

Page 54: Constraining Gravitational Waves from Inflation · 2019-08-07 · Brief intro + current bounds. ... pl k k ⇤ n s 1 2.2 ⇥ 109 0.968 ± 0.006 [k ⇤ =0.05Mpc1, 68%C.L.] from Planck

can lead to discovery of new physics

testable on a vast range of scales (and from cross-correlations of different probes!)

Primordial gravitational waves

different observables (amplitude, chirality, scale dependence, non-Gaussianity) to characterize them and identify their sources

a very important probe of inflation

Thank you!