15
Conference paper ESD Design Challenges in nano-CMOS SoC Design SoC conference 2008 The Silicon Controlled Rectifier (‘SCR’) is widely used for ESD protection due to its superior performance and clamping capabilities. However, many believe that SCR based ESD protection is prone to latchup, competitive triggering, long development cycles and slow trigger speed. This paper provides an overview of the problems and corresponding design solutions available.

Conference paper ESD Design Challenges in nano-CMOS SoC

Embed Size (px)

Citation preview

Page 1: Conference paper ESD Design Challenges in nano-CMOS SoC

Conference paper ESD Design Challenges in nano-CMOS SoC

Design  SoC conference 2008 

 The  Silicon Controlled Rectifier  (‘SCR’)  is widely used  for  ESD protection due to its superior performance and clamping capabilities. However, many believe  that  SCR based ESD protection  is prone  to  latch‐up,  competitive triggering,  long  development  cycles  and  slow  trigger  speed.  This  paper provides an overview of the problems and corresponding design solutions available.   

Page 2: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

1

SARNOFF EUROPESARNOFF EUROPE

ESD DESIGNESD DESIGN

SOLUTIONSSOLUTIONS

ESD Design Challenges in ESD Design Challenges in

nanonano--CMOS CMOS SoCSoC DesignDesign

November 2008

Benjamin Van Camp

Savant Company Inc.

The 6th International System-on-Chip (SoC) Conference, Exhibit, and Workshops

November 2008, Newport Beach, California

Sarnoff Europe © 2008

Proprietary & Confidential 2

Sarnoff Europe ESD design solutionsSarnoff Europe ESD design solutions

� On-chip ESD solutions

– Enable customers to integrate product proven ESD

solutions in their ICs

� Faster time to market

� Lower R&D/IP risk and expense

� Track record in 8 CMOS generations, BiCMOS and BCD

– Since 2007: 32 ICs released in 65nm CMOS

– July 2008: 40nm ESD solutions validated in silicon!

– IDM, Fabless customers and foundry partners

� TSMC DCA partner, UMC IP Alliance partner

� Toshiba, SONY, Infineon, Altera, PMC, Gennum,

Actel, THine, AMIS, RedMere, ON… 75

137

222

354

450

'04 '05 '06 '07 '08

Page 3: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

2

Purpose of this presentationPurpose of this presentation

� Highlight ESD threats in advanced SoC’s in 45 and beyond

– IO and core protection is not enough

– Case studies: Core failures during ESD testing found

� Provide clarification

– Failures at interfaces between functional blocks

– Overview of dangerous situations

� Propose solutions

– Silicon and product proven approach

Sarnoff Europe © 2008

Proprietary & Confidential 3

Sarnoff Europe © 2008

Proprietary & Confidential 4

OutlineOutline

� Introduction

� ESD issues in System on Chip (SoC)

� Conclusions

Page 4: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

3

Sarnoff Europe © 2008

Proprietary & Confidential 5

What is What is Electro Static Discharge (ESD)?Electro Static Discharge (ESD)?

� What is Electrostatic Discharge (‘ESD’)?

– The sudden discharge of a charged body

� Short time (<1us)

� Short rise time (<10ns)

� High current levels (1-10A)

� ESD damages in integrated circuits

– Industry quotes about ESD failures:

� “Responsible for 20-30% of IC failures”

� “25.8% of the products rejected”

� “Estimated 8 to 33% of all product losses”

Sarnoff Europe © 2008

Proprietary & Confidential 6

How to deal with ESD? How to deal with ESD? –– ESD protection approachESD protection approach

� Solution: On-chip ESD protection clamps

– Included in IO library

– ESD tolerant driver design (foundry guidelines)

– Does this solve all stress cases?

VDD

VSS

CoreIN OUT

Page 5: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

4

Sarnoff Europe © 2008

Proprietary & Confidential 7

OutlineOutline

� Introduction

� ESD issues in System on Chip (SoC)

– SoC complexity

– ESD in advanced CMOS

– Investigation of most dangerous cases

� Conclusions

System on Chip complexity System on Chip complexity –– backgroundbackground

� System on Chip (SoC)

– Advanced technology nodes: 65nm, 45nm

– Multi million $ investment

� Mask costs

� Innovation

� Design

� Tools

– High revenue based products to justify the substantial cost of investment

– Complex architecture

� Multiple voltage domains

� Multiple IP blocks from various vendors

� ESD difficulty increasing...

– Due to advanced technology and product complexity

Sarnoff Europe © 2008

Proprietary & Confidential 8

Page 6: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

5

ESD Design Margin evaporates for advanced CMOSESD Design Margin evaporates for advanced CMOS

� Decreasing solution space

– Normal operation (VDD)

� Slight decrease

Sarnoff Europe © 2008

Proprietary & Confidential 9

0 5 10 15 20 25

Node [nm]

V [V]

Vdd500

350

250

180130

906545

Technology

scaling

ESD Design Margin evaporates for advanced CMOSESD Design Margin evaporates for advanced CMOS

� Decreasing solution space

– Normal operation (VDD)

� Slight decrease

– Maximum voltage decreases rapidly

� Transient breakdown of gate oxides

� Burn-out of output drivers

� Core failure voltage

Sarnoff Europe © 2008

Proprietary & Confidential 10

0 5 10 15 20 25

Node [nm]

V [V]

Maximum

voltageVdd500

350

250

180130

906545

Page 7: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

6

ESD Design Margin evaporates for advanced CMOSESD Design Margin evaporates for advanced CMOS

� Decreasing solution space

– Normal operation (VDD)

� Slight decrease

– Maximum voltage decreases rapidly

� Transient breakdown of gate oxides

� Burn-out of output drivers

� Core failure voltage

– Difference = ESD design window

� Rapid reduction of design margins

Sarnoff Europe © 2008

Proprietary & Confidential 11

0 5 10 15 20 25

Node [nm]

V [V]

Maximum

voltageVdd500

350

250

180130

906545

ESD design

window

45nm/40nm:

ESD design space reduced to 3V!

Sarnoff Europe © 2008

Proprietary & Confidential 12

OutlineOutline

� Introduction

� ESD issues in System on Chip (SoC)

– SoC complexity

– ESD in advanced CMOS

– Investigation of most dangerous cases

� Conclusions

Page 8: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

7

How about How about youryour ASIC circuits?ASIC circuits?

� Dangerous situations (1/4)

– Cause: Include on-chip decoupling capacitors

� Stabilize Vdd supply potential

� Reduce board level components: BOM

� Designers use GOX1 gate capacitance: highest Cap/area

– Problem:

� LV Core breakdown determined

by sensitive thin gate oxide

� Reduced ESD design margin

– Solution:

� Low voltage triggered

power clamp

Sarnoff Europe © 2008

Proprietary & Confidential 13

Vdd

Vss

Core block

GOX1

capacitance

How about How about youryour ASIC circuits?ASIC circuits?

� Dangerous situations (2/4)

– Cause:

� Analog tricks to improve circuit speed

� Include core transistors in 3.3V domain

� Designers use GOX1 transistor for speed reasons

� Designers do not use ESD foundry rules

– Problem:

� HV Core breakdown determined

by sensitive thin gate transistor

� Reduced ESD design margin

– Solution:

� Low voltage triggered

power clamp for High Voltage domain

Sarnoff Europe © 2008

Proprietary & Confidential 14

D+

3.3V VDD

VSS

HV transistor

LV

transistors

Page 9: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

8

How about How about youryour ASIC circuits?ASIC circuits?

� Dangerous situations (3/4)

– Cause:

� Cascode configurations

� Increase signal voltage tolerance (5V tolerant)

� Designers do not use ESD foundry rules

– Problem:

� Unballasted cascode design ESD sensitive

� Reduced ESD design margin

– Solution:

� Improved cascode layout

� Local (IO) protection approach

Sarnoff Europe © 2008

Proprietary & Confidential 15

Up to 5V

3.3V VDD

VSS

How about How about youryour ASIC circuits?ASIC circuits?

� Issues 1-3

– Reduced ESD design margins

– Example solution

� 40nm CMOS – 0.9V domain

� 3.6kV HBM

� 245V MM

� < 100pA leakage

Sarnoff Europe © 2008

Proprietary & Confidential 16

0

0.5

1

1.5

2

0 1 2 3 4 5 6

I [A]

V [V]

Vh > Vdd + 10%

Vt1 > Vdd + 50%

40nm 0.9V

power clamp

example

33

um

38 um

Page 10: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

9

SoC’s add another level of complexitySoC’s add another level of complexity

� SoC’s main ESD problem?

– IP block 1: Within specs

� Fully qualified for ESD protection

� Silicon proven, product proven

Sarnoff Europe © 2008

Proprietary & Confidential 17

1.2V VDD

VSS

IP #1

IP#1 alone

>2kV HBM,

>500V CDM

SoC’s add another level of complexitySoC’s add another level of complexity

� SoC’s main ESD problem?

– IP block 1: Within specs

� Fully qualified for ESD protection

� Silicon proven, product proven

– IP block 2: Above specs

� Fully qualified for ESD protection

� Silicon proven, product proven

Sarnoff Europe © 2008

Proprietary & Confidential 18

1.2V VDD

VSS

1.2V VDD

VSS

IP #1 IP #2

IP#2 alone

>4kV HBM,

>1000V CDM

IP#1 alone

>2kV HBM,

>500V CDM

Page 11: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

10

SoC’s add another level of complexitySoC’s add another level of complexity

� SoC’s main ESD problem?

– IP block 1: Within specs

� Fully qualified for ESD protection

� Silicon proven, product proven

– IP block 2: Above specs

� Fully qualified for ESD protection

� Silicon proven, product proven

– Wired together in SoC: Below spec

� Functionality: OK

� ESD qualification: below spec!

� Which IP provider is responsible?

Sarnoff Europe © 2008

Proprietary & Confidential 19

1.2V VDD

VSS

1.2V VDD

VSS

IP #1 IP #2

Full product

<1kV HBM,

<100V CDM

IP#2 alone

>4kV HBM,

>1000V CDM

IP#1 alone

>2kV HBM,

>500V CDM

How about How about youryour ASIC circuits?ASIC circuits?

� Dangerous situations (4/4)

– Cause:

� Multiple functional core blocks – separately biased

� Multiple voltage domains (Digital, Analog, IO, ...)

� Multiple IP blocks from various vendors

– Problem:

� Unprotected internal / on-chip

communication lines

– Solution:

� Ground to ground

� Improved cascode layout

� Local (IO) protection approach

Sarnoff Europe © 2008

Proprietary & Confidential 20

1.2V VDD

1.2V VSS

1.2V VDD

1.2V VSS

Page 12: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

11

slide 21

Industry reports on this issue since 90nm node Industry reports on this issue since 90nm node

� Worley (Conexant), 2004

– Oxide failure at receiving circuit

� Signal line between 2 domains

– Different solution approaches

� Remote blocks

� Adjacent blocks

� Hayashi (Oki), 2004

– ESD failure at signal line between two supply units

– Reason: slow power/core protection (SB NMOS)

� Brennan (IBM), 2004

Sarnoff Europe © 2008

Proprietary & Confidential

Sarnoff Europe © 2008

Proprietary & Confidential 22

OutlineOutline

� Introduction

� ESD issues in System on Chip (SoC)

� Conclusions

Page 13: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

12

ConclusionsConclusions

� Growing difficulty for ESD protection

– Advanced CMOS

– Complex System-on-Chip designs

� Public solutions

– Exploding silicon cost, increased risk (Industry group)

– IO based protection not suffucient

– Core interface circuits need specific care

� Solutions available

– Treat on-chip interfaces as external interfaces for ESD

– Include protection clamps at sensitive receiver

Sarnoff Europe © 2008

Proprietary & Confidential 23

slide 24

Simple solution to core failures?Simple solution to core failures?

GND1 GND2

VDD1 VDD2

� L. Avery (Sarnoff patent), 1996 – Rubber band technique

– Multi domain core protection

– Isolation resistance to limit the current

– Local gate protection for most sensitive gates

Sarnoff Europe © 2008

Proprietary & Confidential

Page 14: Conference paper ESD Design Challenges in nano-CMOS SoC

11/22/2008

13

Sarnoff Europe © 2008

Proprietary & Confidential 25

Contact usContact us

TakeCharge Technology

Benjamin Van Camp [email protected]

Bart Keppens [email protected]

TakeCharge Business

Katty Van Mele [email protected]

Koen Verhaege [email protected]

Sarnoff Europe

Brugsebaan 188A, B-8470 Gistel, BELGIUM

(tel) +32-59-275-915, (fax) +32-59-275-916

www.sarnoffeurope.com

Page 15: Conference paper ESD Design Challenges in nano-CMOS SoC

Sofics Proprietary – ©2011

About Sofics

Sofics  (www.sofics.com)  is  the  world  leader  in  on‐chip  ESD  protection.  Its patented  technology  is  proven  in more  than  a  thousand  IC  designs  across  all major foundries and process nodes. IC companies of all sizes rely on Sofics for off‐the‐shelf  or  custom‐crafted  solutions  to  protect  overvoltage  I/Os,  other  non‐standard  I/Os,  and  high‐voltage  ICs,  including  those  that  require  system‐level protection on the chip. Sofics technology produces smaller I/Os than any generic ESD configuration. It also permits twice the IC performance in high‐frequency and high‐speed applications. Sofics ESD solutions and service begin where the foundry design manual ends. 

Our service and support

Our business models include • Single‐use, multi‐use or royalty bearing license for ESD clamps • Services to customize ESD protection 

o Enable unique requirements for Latch‐up, ESD, EOS o Layout, metallization and aspect ratio customization o Area, capacitance, leakage optimization 

• Transfer of individual clamps to another target technology • Develop custom ESD clamps for foundry or proprietary process • Debugging and correcting an existing IC or IO • ESD testing and analysis 

Notes

As  is  the  case with many  published  ESD  design  solutions,  the  techniques  and protection  solutions described  in  this data  sheet  are protected by patents  and patents  pending  and  cannot  be  copied  freely.  PowerQubic,  TakeCharge,  and Sofics are trademarks of Sofics BVBA. 

Version

May 2011

  

  ESD SOLUTIONS AT YOUR FINGERTIPS 

Sofics BVBA Groendreef 31 

B‐9880 Aalter, Belgium (tel) +32‐9‐21‐68‐333 (fax) +32‐9‐37‐46‐846 

[email protected] RPR 0472.687.037