42
Conditional Expectation Manifolds and Brain Population Analysis Samuel Gerber, University of Utah

Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Embed Size (px)

Citation preview

Page 1: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Conditional Expectation Manifoldsand

Brain Population Analysis

Samuel Gerber, University of Utah

Page 2: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Manifold Learning

Some observations on popular algorithms

−30 −20 −10 0 10 20 30 40−25

−20

−15

−10

−5

0

5

10

15

20

25

Page 3: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Isomap• Approximate geodesic distances by

shortest path in nearest neighbor graph

• Preserve approximate geodesics

• Multidimensional scaling

X ∼ Uniform([0,1]d)

P(X ∈ Sd) =πd/2

Γ(d/2+1)2d

limd→∞ P(X ∈ Sd) = 0minx = ∑i, j[δ (yi,y j)−d(xi,x j)]2

var(PY )X = PYyi = ∑N

k=0 P(Ck|xi)(ak +bkxi)ri(y) = E[X ∈Ci|Y = y]Ci = xi : src(xi) = xmin,sink(xi) = xmaxri(y) = E[X ∈Ci|Y = y]

1

X ∼ Uniform([0,1]d)

P(X ∈ Sd) =πd/2

Γ(d/2+1)2d

limd→∞ P(X ∈ Sd) = 0minx = ∑i, j[δ (yi,y j)−d(xi,x j)]2

var(PY )X = PYyi = ∑N

k=0 P(Ck|xi)(ak +bkxi)ri(y) = E[X ∈Ci|Y = y]Ci = xi : src(xi) = xmin,sink(xi) = xmaxri(y) = E[X ∈Ci|Y = y]

1

Page 4: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Properties• Only relies on accurate local distances

• Shortcuts in graph - very bad approximation

• Quality measure based on graph embedding

• Hard to detect

−30 −20 −10 0 10 20 30 40−25

−20

−15

−10

−5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

DimensionD

isto

rtio

n

Page 5: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Properties

• Classical multidimensional scaling is not minimizing

• Optimization based approaches

X ∼ Uniform([0,1]d)

P(X ∈ Sd) =πd/2

Γ(d/2+1)2d

limd→∞ P(X ∈ Sd) = 0minx = ∑i, j[δ (yi,y j)−d(xi,x j)]2

var(PY )X = PYyi = ∑N

k=0 P(Ck|xi)(ak +bkxi)ri(y) = E[X ∈Ci|Y = y]Ci = xi : src(xi) = xmin,sink(xi) = xmaxri(y) = E[X ∈Ci|Y = y]

1

A. Agarwal, J. Phillips and S. Venkatasubramanian, Universal Multi-Dimensional Scaling, Conference on Knowledge Discovery and Data Mining 2010

J. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika 1964

Page 6: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Laplacian Eigenmaps• Given a manifold find functions

such that is minimized

• The low dimensional embedding is

• Small gradient implies that close by points will be mapped close together

−10 −5 0 5 10 150

50

100−15

−10

−5

0

5

10

−10 −5 0 5 10 150

50

100−15

−10

−5

0

5

10

−0.06 −0.04 −0.02 0 0.02 0.04 0.06−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

fM∇ f (y)2dy M ∆ f

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)

1

fM∇ f (y)2dy M ∆ f

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)

1

f : M → RM∇ f (y)2dy M ∆ f

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)

1

f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

1

f1f2x = [ f1(y), f2(y)]f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

1

f1f2x = [ f1(y), f2(y)]f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

1

f1f2x = [ f1(y), f2(y)]f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

1

Page 7: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Properties

• Again only local distances important

• No quality measure of the embedding

f1f2x = [ f1(y), f2(y)]f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

1

f1f2x = [ f1(y), f2(y)]f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

1

f1f2x = [ f1(y), f2(y)]f : M → RM∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

1

Page 8: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Eigenfunction Issue

• Minimzing

• Orthogonality constraint on f in function space (not geometrically on manifold)

• Eigenvectors with higher frequency along same extension on the manifold can have smaller cost

fM∇ f (y)2dy M ∆ f

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)

1

Page 9: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Eigenfunction Issue

• B is orthogonal to A (in function space)

• Cost of B less than C (the desired eigenvector)

Samuel Gerber, Tolga Tasdizen, Ross Whitaker, Robust Non-linear Dimensionality Reduction using Successive 1-Dimensional Laplacian Eigenmaps, ICML 2007

x

yx

y

x

y

y

fx

fx

f

B

C

A

Page 10: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Conditional Expectation Manifolds

Manifold learning as unsupervised non-parametric model fitting

Page 11: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Principal Curves/SurfacesCurve through the middle of a density

T. Hastie, W. Stuetzle, Principal curvesJournal of the American Statistical Association 1989

Page 12: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Principal Surface Definition• Minimal orthogonal projection onto surface

• Principal surface iff conditional expectation of the projection equal to surface

Page 13: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Principal Surface Estimation

• Principal surfaces are extremal points of (objective function)

• Pick a parametrized surface model

• Optimize over parameters of

• Unfortunately principal surfaces are all saddle points of

• Projection is a non-linear optimization problem

Page 14: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Conditional Expectation Manifolds (CEM)

• Define a coordinate mapping

• Model surface as conditional expectation of coordinate mapping.

• Optimize coordinate mapping

Page 15: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

CEM Estimation

• Coordinate mapping as kernel regression

s

Samuel Gerber, Tolga Tasdizen, Ross Whitaker "Dimensionality Reduction and Principal Surfaces via Kernel Map Manifolds", (ICCV 2009)

Page 16: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

CEM Estimation

• Conditional expectation estimated with kernel regression

s

Samuel Gerber, Tolga Tasdizen, Ross Whitaker "Dimensionality Reduction and Principal Surfaces via Kernel Map Manifolds", (ICCV 2009)

Page 17: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Some results

• Effect of optimization

Input Initial MSE 8.6 Optimized MSE 2.6

Page 18: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Some results• 1965 images of different facial expression (20x28)

Page 19: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Work in Progress• Saddle point property of extrema is

problematic for model selection

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y1

y 2

ground truthinitializationintermediatesselected

0 20 40 60 80 100

0.02

0.04

0.06

0.08

iteration

d(!,

Y)2

!

!

traintest

(a) (b)

Figure 2: Minimization of d(λ ,Y )2 with automatic bandwidth selection starting fromσg = 1 and σλ = 0.1. (a) fitted curve with optimization path and (b) train and test errorwith points indicating minimal train and test error, respectively.

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y1

y 2

ground truthinitializationintermediatesselected

0 20 40 60 80 1000.000

0.004

0.008

iteration

q(!,

Y)2

!

!

traintest

(a) (b)

Figure 3: Minimization of q(λ ,Y )2 with automatic bandwidth selection starting fromσg = 1 and σλ = 0.1. (a) fitted curve with optimization path and (b) train and test errorwith points indicating minimal train and test error, respectively.

14

Page 20: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Work in Progress• Conditional expectation manifolds pave

way for other objective functions

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y1

y 2

ground truthinitializationintermediatesselected

0 20 40 60 80 100

0.00

0.02

0.04

0.06

iteration

d(!,

Y)2

!

!

traintest

(a) (b)

Figure 4: Minimization of d(λ ,Y )2 with automatic bandwidth selection starting fromσg = 0.1 and σλ = 0.1. (a) fitted curve with optimization path and (b) train and testerror with points indicating minimal train and test error, respectively.

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y1

y 2

ground truthinitializationintermediatesselected

0 20 40 60 80 1000.00

0.01

0.02

0.03

0.04

iteration

q(!,

Y)2

!!

traintest

(a) (b)

Figure 5: Minimization of q(λ ,Y )2 with automatic bandwidth selection starting fromσg = 0.1 and σλ = 0.1. (a) fitted curve with optimization path and (b) train and testerror with points indicating minimal train and test error, respectively.

15

Page 21: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Brain Population Analysis

Page 22: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Motivation

• Proof of concept

• Conditional expectation manifold for brain images

• Non-linearity in shape space

• Natural extension at the time from single atlas to multiple atlases to continuum

• Simplify statistics on shape spaces

Page 23: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Measuring Shape Differences

• Euclidean space does not capture changes in shape

• Distance based on measuring length of transformation

Page 24: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

• Diffeomorphic transform

• Riemannian metric ( )

• Geodesics on diffeomorphic transformations

• Induces metric on images

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

Large Deformation Diffeomorphic Metric

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

d(e,φ)2 = minv t

0

Ωv(r,τ)Qdr dτd(yi,y j)2 = minv

10 v(r,τ)Q dτ

such that

Ωyi(φ(r,1))− y j(r))22 dr = 0

(4)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (5)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (6)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(7)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

var(PY )X = PY

2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

Page 25: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Manifold in Brain SpaceSpace of Smooth Images

Manifold induced by

diffeomorphic image

metric

Learned data

manifold

Samples/images

Frechet mean on

metric manifold

Frechet mean on

data manifold

Page 26: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Data set:spiral segments Manifold mean Diffeomorphic mean

mean on

metric manifold

Manifold in Brain Space

Page 27: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Approximating the Diffeomorphic Metric

• For small deformations work in tangent space

• Distance defined by

• For symmetry

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

d(yi,y j)2 = minv 1

0 v(r,τ)Q dτsuch that

Ωyi(φ(r,1))− y j(r))2

2 dr = 0(1)

φ(r,1)≈ v(r,0) = u(r), and d(yi,y j)2 ≈minu

Ωu(r)Q dr,subject to

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (2)

da(yi,y j)2 = minu

Ω ||u(r)||2Q drsuch that

Ωyi(r +u(r))− y j(r))2

2 dr ≤ ε (3)

limd→∞ P(X ∈ Sd) = 0d(yi,y j) = 1

2(da(yi,y j)+da(y j,yi)) .(4)Q = α∇+(1−α)Iu(r)2

Q = α||∇u(r)||2 +(1−α)||u(r)||2M ∆ f (y) f (y)dy

1

Page 28: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Manifold Representation

• Represent manifold as conditional expectation of some function

• Non euclidean space use Frechet mean

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

1

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

1

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

1

B. Davis, P. Fletcher, E. Bullitt, S. Joshi, Population shape regression from random design data, ICCV 2007

Page 29: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Manifold Representation• Compute embedding based on pairwise

distance matrix (isomap)

• Define coordinate mapping based kernel map manifold approach

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

1

Page 30: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

• In all steps:

• Large distances have negligible effect

Manifold Representation

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

1

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

M∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτv(r,τ)Q

1

Page 31: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Results• OASIS data set

• 416 subjects, age 16 to 80

• 100 subjects diagnosed with mild to moderate dementia

• ADNI data set

• 156 Subjects, age 57 to 88

• 38 normal, 84 MCI, 34 early AD

20 22 24 26 28 300

5

10

15

20

25

30 MMSE Histogram

10 15 20 25 300

20

40

60

80

100

120

140 MMSE Histogram

Page 32: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

OASIS 2D Embedding

Page 33: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Manifold Fit - OASIS• Measure reconstruction error

• Comparison to PCA

• Comparison of different metrics

• Scale by average nearest neighbor distance

f(y) = ∑ni=1

Ky(d(y,yi))zi∑n

j=1 Ky(d(y,y j)).(1)

g(x) = argminy ∑ni=1

Kx(x− f (yi))2)∑n

j=1 Kx(x− f (y j))2)d(y,yi)2 .(2)

ym = argminy∈M ∑ni=1 wid(y,yi)2 , (3)

g(x) = E[Y | f (y) = x]M∇ f (y)2dy

error = ∑i d(g( f (yi)),yi)∑i d(nn(yi),yi)

∆ fx = [ f1(y), . . . , fn(y)] ∈ Rn

min f E[g( f (Y ))−Y2]minz1,...,zn ∑ig( f (yi))− yi2

φ(r, t) = r + t

0 v(φ(r,τ),τ) dτ

1

Manifold Model PCA

Page 34: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Manifold Fit - ADNI

1.07 0.81 1.23Projection distance

Page 35: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Statistical Analysis - OASIS• Linear regression on age, MMSE, CDR

• Comparison to PCA and age as predictor

• Controlled for age - BIC to select best model

Page 36: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Statistical Analysis - OASIS

• Restricted to subjects age above 60

Page 37: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Statistical Analysis - ADNI

Page 38: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Reconstructions -ADNI

Page 39: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

ADNI - Statistics

Page 40: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Extensions• Different Metrics?

• Transformation based metric is expensive

• No optimization of conditional expectation manifold

• Embedding/Statistics including metric tensor.

• Adding supervision

• Fit manifold with respect to a clinical predictor

Page 41: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Thank you

This work is supported by

NIH/NCBC grant U54-EB005149NSF grant CCF-073222

NIBIB grant 5RO1EB007688-02

Page 42: Conditional Expectation Manifolds and Brain Population ...campar.in.tum.de/personal/mateus/2011MICCAIManifoldTutorial/html/... · Laplacian Eigenmaps • Given a manifold find functions

Thoughts on Manifold Learning• For which applications / tasks is manifold learning

effective?

• Purely unsupervised tasks are rare

• Exploratory analysis

• In supervised settings:

• Manifold learning as regularization

• Feature extraction

• Stratified, non flat-able manifolds and detection of non-manifold structure