27
Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal , Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University of Southern Denmark Thomas Mailund, Christian N. S. Pedersen, Andreas Sand Aarhus University, Bioinformatics Research Center Computer Science Institute, Charles University, Prague, Czech Republic, 18 September 2014 Work presented at SODA 2013 and ALENEX 2014

Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Embed Size (px)

Citation preview

Page 1: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Computing Triplet and Quartet Distances Between Trees

Gerth Stølting Brodal, Morten Kragelund Holt, Jens JohansenAarhus University

Rolf FagerbergUniversity of Southern Denmark

Thomas Mailund, Christian N. S. Pedersen, Andreas SandAarhus University, Bioinformatics Research Center

Computer Science Institute, Charles University, Prague, Czech Republic, 18 September 2014

Work presented at SODA 2013 and ALENEX 2014

Page 2: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Outline

Evolutionary trees – rooted vs. unrooted, binary vs. arbitrary degree

Tree distances– Robinson-Foulds, triplet, quartet

Results and previous work– triplet, quartet distances

Algorithms– triplet (quartet)

Experimental results (ALENEX 2014)

Page 3: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Evolutionary Tree

Bonobo Chimpanzee Human Neanderthal Gorilla Orangutan

Tim

e

Rooted

Page 4: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Unrooted Evolutionary Tree

Dominant modern approach to study evolution is from DNA analysis

Page 5: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Constructing Evolutionary Trees – Binary or Arbitrary Degrees ?

Sequence dataDistance matrix

1 2 3 ··· n123···

n

Neighbor JoiningSaitou, Nei 1987

[ O(n3) Saitou, Nei 1987 ]

Refined Buneman TreesMoulton, Steel 1999

[ O(n3) Brodal et al. 2003 ]

Buneman TreesBuneman 1971

[ O(n3) Berry, Bryan 1999 ]

123···

n

.... ....

Binary trees(despite no evidence

in distance data)

Arbitrary degrees(strong support for all edges ; few branches)

Arbitrary degree (compromise ; good

support for all edges)

Page 6: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Data Analysis vs Expert Trees – Binary vs Arbitrary Degrees ?

Linguistic expert classification (Aryon Rodrigues)

Neighbor Joining on linguistic data

Cultural Phylogenetics of the Tupi Language Family in Lowland South America. R. S. Walker, S. Wichmann, T. Mailund, C. J. Atkisson. PLoS One. 7(4), 2012.

Page 7: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Evolutionary Tree Comparison

?

split1357|2468

1

4

32

5

67

T2

81

6

3

2

5

47

T1

8

Common Only T1 Only T2

1357|2468 35|124678 57|123468

13567|248 48|123567

Robinson-Foulds distance = # non-common splits = 2 + 1 = 3

[Day 1985] O(n) time algorithm using 2 x DFS + radix sort

D. F. Robinson and L. R. Foulds. Comparison of weighted labeled trees. In Combinatorial mathematics, VI, Lecture Notes in Mathematics, pages 119–126. Springer, 1979.

Page 8: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

8

8

Robinson-Foulds Distance (unrooted trees)

?

T1

Common Only T1 Only T2

(none) 12567|3481257|3468157|2346857|123468

125678|3412578|3461578|2346578|1234678|123456

1

6

2

5

4

7T2

3

1

6

2

5

4

7

3

RF-dist(T1 , T2) = 4 + 5 = 9RF-dist(T1\{8} , T2\{8}) = 0

Robinson-Foulds very sensitive to outliers

D. F. Robinson and L. R. Foulds. Comparison of weighted labeled trees. In Combinatorialmathematics, VI, Lecture Notes in Mathematics, pages 119–126. Springer, 1979.

Page 9: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

resolved : ij|kl

Quartet Distance (unrooted trees)

Consider all quartets, i.e. topologies of subsets of 4 leaves {i,j,k,l}

Quartet T1 T2

{1,2,3,4} 14|23 14|23{1,2,3,5} 13|25 15|23{1,2,4,5} 14|25 1245{1,3,4,5} 14|35 1345{2,3,4,5} 25|34 23|45

i

j

k

l

i

j

k

l

unresolved : ijkl(only non-binary trees)

Quartet-dist(T1 , T2) = - # common quartets = 5 - 1 = 4

1

3

2 5

24

3 1

5

T1 T2

4

G. Estabrook, F. McMorris, and C. Meacham. Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units. Systematic Zoology, 34:193-200, 1985.

Page 10: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Triplet Distance (rooted trees)

Consider all triplets, i.e. topologies of subsets of 3 leaves {i,j,k}

Triplet T1 T2

{1,2,3} 2|13 2|13{1,2,4} 1|24 4|12{1,2,5} 1|25 5|12{1,3,4} 4|13 4|13{1,3,5} 5|13 5|13{1,4,5} 1|45 1|45{2,3,4} 3|24 4|23{2,3,5} 3|25 5|23{2,4,5} 5|24 2|45{3,4,5} 3|45 3|45

resolved : k|iji j

k i j k

unresolved : ijk(only non-binary trees)

Triplet-dist(T1 , T2) = - # common triplets = 10 - 5 = 5

1

2

53

T1

44

1

52

T2

3

D. E. Critchlow, D. K. Pearl, C. L. Qian: The triples distance for rooted bifurcating phylogenetic trees. Systematic Biology, 45(3):323-334, 1996.

Page 11: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

RootedTriplet distance

UnrootedQuartet distance

Binary O(n2)O(nlog2 n)O(nlog n)

CPQ 1996

SBFPM 2013

[SODA 2013]

O(n3)O(n2)

O(nlog2 n)O(nlog n)

D 1985

BTKL 2000

BFP 2001

BFP 2003

Arbitrarydegrees

O(n2)O(nlog n)

BDF 2011

[SODA 2013]

O(d 9nlog n)

O(n2.688)O(dnlog n)

SPMBF 2007

NKMP 2011

[SODA 2013][ALENEX 2014]

Computational Results

12

534 1

3

2 5

4

12

534 6

712

3 110

6 7 1311

58

9

Page 12: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Distance Computation T2

Resolved Unresolved

T1

ResolvedA : Agree

C

B : Disagree

Unresolved D E

i jk

i j k i j k

i j k

i jk

j ki

i kj

i kj

Triplet-dist(T1 , T2) = B + C + D = A – E

Sufficient to compute A and E D + E and C + E unresolved in one tree(For binary trees C, D and E are all zero)

i jk

j ki

O(n) triplets & quartets

O(n·log n) triplets & quartets

O(n·log n) triplets

O(d·n·log n) quartets

Page 13: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Parameterized Triplet & Quartet DistancesB + α·(C + D) , 0 α 1

BDF 2011 O(n2) for triplet, NKMP 2011 O(n2.688) for quartet[SODA 2013/ALENEX 2014] O(n·log n) and O(d·n·log n), respectively

T2

Resolved Unresolved

T1

ResolvedA : Agree

C

B : Disagree

Unresolved D E

i jk

i j k i j k

i j k

i jk

j ki

i kj

i kj

i jk

j ki

Page 14: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Counting Unresolved Triplets in One Tree

n1 n2 n3 ··· nd

v∑v

∑i < j < k

n i ·n j·n k

∑v ( ∑

i < j <k <l

n i· n j· n k · n l+(n−∑l

n l ) ∑i < j < k

n i ·n j·n k )

Computable in O(n) time using DFS + dynamic programming

n1 n2 n3 ··· nd

v

Triplet anchored at v

Quartet anchored at v

Quartets (root tree arbitrary)

Page 15: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Counting Agreeing Triplets(Basic Idea)

v

1 i j d

∑v T 1

∑w T 2

∑c

∑1 ≤i ≤d

(n i❑c

2 ) (n w−nc−n i❑w +n i

❑c )

T1

j

T2

c

i i

∑1 ≤ i ≤d

n i❑w

w0

Page 16: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Efficient ComputationLimit recolorings in T1 (and T2) to O(n·log n)

v

1 1 1

0v

1 2 d

0v

1

0v

0

v

1

0

v

1

0...

Count T2 contribution

(precondition)

Recolor Recolor Recurse

Recolor & recurse

T1

Reduce recoloring cost in T2 from O(n2) to O(n·log2 n)

1

2 3

4

56

7 891

24

79

8563

Reduce recoloring cost in T2 from O(n·log2 n) to O(n·log n)

T2

arbitrary

height

degree

H(T2)

binary

height

O(log n)

Contract T2 and reconstruct H(T2) during recursion

Page 17: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Counting Agreeing Triplets (II)

v

1 i j d

T10

node in H(T2) =component

composition in T2

∑1 ≤ i ≤d

(n i❑C1

2 )(n∗❑C 2−n i

❑C2 )∑1 ≤ i ≤d

(n∗❑C1−n i❑C1 ) n( ii )

❑ C2∑1 ≤ i ≤d

n i❑C1 ·n i↑∗

❑ C 2+ +

Contribution to agreeing triplets at node in H(T2)

i

i j

ii

j

j

ii

C2

C1

Page 18: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

From O(n·log2 n) to O(n·log n)Update O(1) counters for all

colors through node

∑2 ≤ i ≤d

log (¿ T 2∨¿n i )= ∑2 ≤i ≤d

n i ∙ lognv

n iColored path lengths

v

1 i j d

T10

nv

ni

w H ( T 2)

Compressed version of T2 of size O(nv)

Total cost for updating counters

∑leaf  l∈ T1

∑ancestor   a( j)not   heavy   child

logna ( j +1)

na ( j ) =   n ∙ log na(1)

a(2)

l=a(0)

a(3)

a(4) a(5)

T1

Page 19: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Counting Quartets...

Bottleneck in computing disagreeing resolved-resolved quartets

v

1 i j d

T10

i j i j

∑1 ≤ i <d  

∑i < j ≤ d

n ( ij )G1 ·n ( ij )G2

G1 G2

T2

double-sum factor d time

Root T1 and T2 arbitrary Keep up to 7d2 + 97d + 29 different counters per node in H(T2)...

Page 20: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Distance Computation T2

Resolved Unresolved

T1

ResolvedA : Agree

C

B : Disagree

Unresolved D E

i jk

i j k i j k

i j k

i jk

j ki

i kj

i kj

Triplet-dist(T1 , T2) = B + C + D = A – E

Sufficient to compute A and E

i jk

j ki

O(n·log n) triplets & quartets

O(n·log n) triplets

O(d·n·log n) quartets

Page 21: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

ALENEX 2014: Implementation(M.Sc. thesis Morten Kragelund Holt and Jens Johansen)

Worst-case #counters per node in HDT(T2)

First implementation for triplets for arbitrary degree Space usage 10 KB per node for quartet (binary trees)

can handle 1,000,000 leaves 64 bit integers, except 128 bit integers for values > n3

quartet distance of up to 2,000,000 leaves

Binary Arbitrary degreetime counters time counters

Triplet O(n log n) 6 O(n log n) 4d+2

Quartet O(n log n) 40

O(max(d1, d2) n log n) 2d2 + 79d + 22 (B, with T1T2)

O(min(d1, d2) n log n)7d2 + 97d + 29 (B, no swap)d2 + 12d + 12 (E, no swap)

Page 22: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Experimental ResultsQuartet Distance – Binary Trees

[SODA 2013]MP 2004

NKMP 2011

[ALENEX 2014] are the first O(nlog n) implementations MP 2004 overhead from working with polynomials

Page 23: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Experimental ResultsQuartet Distance – High Degree Trees

d = 256

NKMP 2011[SODA 2013]max

d = 1024

[ALENEX 2014] are the first npoly(log n,d) implementation

Page 24: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Experimental ResultsTriplet Distance – Binary Trees

[ALENEX 2014] are the first O(nlog n) implementation SBFPM 2013 only binary trees, no contractions

[SODA 2013]

SBFPM 2013

Page 25: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

Experimental ResultsTriplet Distance – High Degree Trees

[ALENEX 2014] first implementation Triplet distance appears hardest for binary trees

SODA 2013

[SBFPM 2013]

[SODA 2013], d = 2

[SODA 2013], d = 256

[SODA 2013], d = 1024

Page 26: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

RootedTriplet distance

UnrootedQuartet distance

Binary O(n2)O(nlog2 n)O(nlog n)

CPQ 1996

SBFPM 2013

[SODA 2013]

O(n3)O(n2)

O(nlog2 n)O(nlog n)O(nlog n)

D 1985

BTKL 2000

BFP 2001

BFP 2003

[SODA 2013]

Arbitrarydegrees

O(n2)O(nlog n)

BDF 2011

[SODA 2013]

O(d 9nlog n)

O(n2.688)O(dnlog n)

SPMBF 2007

NKMP 2011

[SODA 2013][ALENEX 2014]

Summary

d = minimal degree of any node in T1 and T2

12

534 1

3

2 5

4

12

534 6

712

3 110

6 7 1311

58

9

O(n·log n) ?

o(n·log n) ?

= fastest implementation for large n

Page 27: Computing Triplet and Quartet Distances Between Trees Gerth Stølting Brodal, Morten Kragelund Holt, Jens Johansen Aarhus University Rolf Fagerberg University

References On the Scalability of Computing Triplet and Quartet Distances.

M.K. Holt, J. Johansen, G.S. Brodal. ALENEX 2014. Algorithms for Computing the Triplet and Quartet Distances for Binary and General Trees. A.

Sand, M.K. Holt, J. Johansen, R. Fagerberg, G.S. Brodal, C.N.S. Pedersen, T. Mailund. Biology - Special Issue on Developments in Bioinformatic Algorithms, 2013.

A practical O(n log2 n) time algorithm for computing the triplet distance on binary trees. A. Sand, G.S. Brodal, R. Fagerberg, C.N.S. Pedersen, T. Mailund. BMC Bioinformatics 2013.

Efficient Algorithms for Computing the Triplet and Quartet Distance Between Trees of Arbitrary Degree. G.S. Brodal, R. Fagerberg, C.N.S. Pedersen, T. Mailund, A. Sand. SODA 2013.

A sub-cubic time algorithm for computing the quartet distance between two general trees. J. Nielsen, A. K. Kristensen, T. Mailund, C.N.S. Pedersen. Algorithms in Molecular Biology 2011.

Computing the Quartet Distance Between Evolutionary Trees of Bounded Degree. M. Stissing, C.N.S. Pedersen, T. Mailund, G.S. Brodal, R. Fagerberg. APBC 2007.

QDist - Quartet Distance between Evolutionary Trees. T. Mailund and C.N. S. Pedersen. Bioinformatics 2004.

Computing the Quartet Distance Between Evolutionary Trees in Time O(n log n). G.S. Brodal, R. Fagerberg, C.N.S. Pedersen. Algorithmica 2004.

Computing the Quartet Distance Between Evolutionary Trees in Time O(n log2 n). G.S. Brodal, R. Fagerberg, C.N.S. Pedersen. ISAAC 2001. birc.au.dk/software