Computer-Aided Design for Micro-Electro-Mechanical Systems

Embed Size (px)

Citation preview

  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    1/115

    CAD for

    MEMS

    ResonantMEMS

    HiQLab

    Anchor

    Losses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Computer-Aided Design for

    Micro-Electro-Mechanical Systems

    Eigenvalues, Energy Losses, and Dick Tracy Watches

    D. Bindel

    Computer Science DivisionDepartment of EECSUniversity of California, Berkeley

    Purdue, 17 Apr 2006

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    2/115

    CAD for

    MEMS

    ResonantMEMS

    HiQLab

    Anchor

    Losses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    The Computational Science Picture

    Application modeling

    Checkerboard resonatorDisk resonatorShear ring resonator

    Mathematical analysis

    Physical modeling and finite element technologyStructured eigenproblems and reduced-order modelsParameter-dependent eigenproblems

    Software engineeringHiQLabSUGARFEAPMEX

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    3/115

    CAD for

    MEMS

    ResonantMEMS

    HiQLab

    Anchor

    Losses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    The Computational Science Picture

    Application modeling

    Checkerboard resonatorDisk resonatorShear ring resonator

    Mathematical analysis

    Physical modeling and finite element technologyStructured eigenproblems and reduced-order modelsParameter-dependent eigenproblems

    Software engineeringHiQLabSUGARFEAPMEX

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    4/115

    CAD for

    MEMS

    ResonantMEMS

    HiQLab

    Anchor

    Losses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Outline

    1 Resonant MEMS

    2 HiQLab

    3 Anchor Losses

    4 Disk Resonator Analysis

    http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    5/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Outline

    1 Resonant MEMS

    2 HiQLab

    3 Anchor Losses

    4 Disk Resonator Analysis

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    6/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    What are MEMS?

    http://applications/AMSVisualizer.apphttp://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    7/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    MEMS Basics

    Micro-Electro-Mechanical Systems

    Chemical, fluid, thermal, optical (MECFTOMS?)

    Applications:Sensors (inertial, chemical, pressure)Ink jet printers, biolab chipsRadio devices: cell phones, inventory tags, pico radio

    Use integrated circuit (IC) fabrication technology

    Tiny, but still classical physics

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    8/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Radio-Frequency MEMS

    Microguitars from Cornell University (1997 and 2003)

    MHz-GHz mechanical resonators

    Impact: smaller, lower-power cell phonesOther uses:

    Sensing elements (e.g. chemical sensors)Really high-pitch guitars

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    9/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Micromechanical Filters

    Mechanical filter

    Capacitive senseCapacitive drive

    Radio signal

    Filtered signal

    Mechanical high-frequency (high MHz-GHz) filterYour cell phone is mechanical!New MEMS filters can be integrated with circuitry= smaller and lower power

    http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    10/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Ultimate Success

    Calling Dick Tracy!

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    11/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Designing Transfer Functions

    Time domain:

    Mu + Cu + Ku = b(t)

    y(t) = pTu

    Frequency domain:

    2Mu+ iCu+ Ku = b()

    y() = pTu

    Transfer function:

    H() = pT(2M+ iC+ K)1b

    y() = H()()

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    12/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Narrowband Filter Needs

    20log10 |H()|

    Want sharp poles for narrowband filters

    = Want to minimize damping

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    13/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Checkerboard Resonator

    D+

    D

    D+

    D

    S+ S+

    S

    S

    Anchored at outside corners

    Excited atnorthwestcorner

    Sensed atsoutheastcorner

    Surfaces move only a few nanometers

    http://movies/corner95.avihttp://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    14/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Checkerboard Model Reduction

    Finite element model: N=2154

    Expensive to solve for everyH()evaluation!

    Build areduced-order modelto approximate behavior

    Reduced system of 80 to 100 vectorsEvaluateH()in milliseconds instead of secondsWithout damping: standard Arnoldi projectionWith damping: Second-Order ARnoldi (SOAR)

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    15/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Checkerboard Simulation

    0 2 4 6 8 10

    x 105

    9 9.2 9.4 9.6 9.8

    x 107

    200

    180

    160

    140

    120

    100

    Frequency (Hz)

    Amplitude(dB)

    9 9.2 9.4 9.6 9.8

    x 107

    0

    1

    2

    3

    4

    Frequency (Hz)

    Phase

    (rad)

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    16/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Checkerboard Measurement

    S. Bhave, MEMS 05

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    17/115

    CAD for

    MEMS

    ResonantMEMS

    MEMS Basics

    RF MEMS

    Checkerboard Model

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Contributions

    Built predictive model used to design checkerboardUsed model reduction to get thousand-fold speedup

    fast enough for interactive use

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    18/115

    CAD for

    MEMS

    ResonantMEMS

    HiQLab

    Anchor

    LossesDiskResonatorAnalysis

    Conclusions

    Backup Slides

    Outline

    1 Resonant MEMS

    2 HiQLab

    3 Anchor Losses

    4 Disk Resonator Analysis

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    19/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    Anchor

    LossesDiskResonatorAnalysis

    Conclusions

    Backup Slides

    Damping andQ

    Designers want highquality of resonance(Q)

    Dimensionless damping in a one-dof system

    d2udt2

    + Q1 dudt

    + u=F(t)

    For a resonant mode with frequency C:

    Q:= ||2 Im() = Stored energy

    Energy loss per radian

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    20/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Enter HiQLab

    Existing codes do not compute quality factors

    ... and awkward to prototype new solvers

    ... and awkward to programmatically define meshes

    So I wrote a new finite element code: HiQLab

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    21/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Heritage of HiQLab

    SUGAR: SPICE for the MEMS world

    System-level simulation using modified nodal analysis

    Flexible device description language

    C core with MATLAB interfaces and numerical routines

    FEAPMEX: MATLAB + a finite element code

    MATLAB interfaces for steering, testing solvers, running

    parameter studies

    Time-tested finite element architecture

    But old F77, brittle in places

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    22/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Other Ingredients

    Lesser artists borrow. Great artists steal.

    Picasso, Dali, Stravinsky?

    Lua: www.lua.orgEvolved from simulator data languages (DEL and SOL)Pascal-like syntax fits on one page; complete languagedescription is 21 pagesFast, freely available, widely used in game design

    MATLAB: www.mathworks.comThe Language of Technical ComputingGood sparse matrix supportStar-P: http://www.interactivesupercomputing.com/

    Standard numerical libraries: ARPACK, UMFPACK

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    23/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    HiQLab Structure

    User interfaces

    (C++)Core libraries

    Solver library(C, C++, Fortran, MATLAB)

    Element library

    (C++)

    Problem description

    (Lua)

    (MATLAB, Lua)

    Standard finite element structures + some new ideas

    Full scripting language for mesh input

    Callbacks for boundary conditions, material properties

    MATLAB interface for quick algorithm prototyping

    Cross-language bindings are automatically generated

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    24/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    HiQLabs Hello World

    mesh = Mesh:new(2)

    mat = make_material(silicon2, planestrain)

    mesh:blocks2d( { 0, l }, { -w/2.0, w/2.0 },

    mat )

    mesh:set_bc(function(x,y)

    if x == 0 then return uu, 0, 0; end

    end)

    HiQL b H ll W ld

    http://goback/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    25/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    HiQLabs Hello World

    >> mesh = Mesh_load(beammesh.lua);

    >> [M,K] = Mesh_assemble_mk(mesh);

    >> [V,D] = eigs(K,M, 5, sm);

    >> opt.axequal = 1; opt.deform = 1;

    >> Mesh_scale_u(mesh, V(:,1), 2, 1e-6);

    >> plotfield2d(mesh, opt);

    C t ib ti

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    26/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Contributions

    Wrote a new code, HiQLab, to study damping

    HiQLab is based on my earlier simulators:

    SUGAR, for system-level MEMS simulationFEAPMEX, for scripting parameter studies

    O tli

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    27/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Outline

    1 Resonant MEMS

    2 HiQLab

    3 Anchor Losses

    4 Disk Resonator Analysis

    E l Di k R t

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    28/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Example: Disk Resonator

    SiGe disk resonators built by E. Quvy

    Damping Mechanisms

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    29/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Damping Mechanisms

    Possible loss mechanisms:

    Fluid damping

    Material losses

    Thermoelastic dampingAnchor loss

    Model substrate as semi-infinite with a

    Perfectly Matched Layer (PML).

    Perfectly Matched Layers

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    30/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Perfectly Matched Layers

    Complex coordinate transformation

    Generates a perfectly matched absorbing layer

    Idea works with general linear wave equationsElectromagnetics (Berengr, 1994)Quantum mechanics exterior complex scaling(Simon, 1979)Elasticity in standard finite element framework

    (Basu and Chopra, 2003)

    Model Problem

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    31/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    ConclusionsBackup Slides

    Model Problem

    Domain: x [0,)

    Governing eq:

    2u

    x2

    1

    c22u

    t2 =0

    Fourier transform:

    d2u

    dx2 + k2u=0

    Solution:

    u=couteikx + cine

    ikx

    Model Problem Illustrated

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    32/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    ConclusionsBackup Slides

    Model Problem Illustrated

    Outgoing exp(ix) Incoming exp(ix)

    Transformed coordinate

    Re(x)

    0 2 4 6 8 10 12 14 16 18

    0 5 10 15 200 5 10 15 20

    -4

    -2

    0

    -1

    -0.5

    0

    0.5

    1

    -1

    -0.5

    0

    0.5

    1

    Model Problem Illustrated

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    33/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    ConclusionsBackup Slides

    Model Problem Illustrated

    Outgoing exp(ix) Incoming exp(ix)

    Transformed coordinate

    Re(x)

    0 2 4 6 8 10 12 14 16 18

    0 5 10 15 200 5 10 15 20

    -4

    -2

    0

    -2

    -1

    0

    1

    2

    3

    -1

    -0.5

    0

    0.5

    1

    Model Problem Illustrated

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    34/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    ConclusionsBackup Slides

    Model Problem Illustrated

    Outgoing exp(ix) Incoming exp(ix)

    Transformed coordinate

    Re(x)

    0 2 4 6 8 10 12 14 16 18

    0 5 10 15 200 5 10 15 20

    -4

    -2

    0

    -4

    -2

    0

    2

    4

    6

    -1

    -0.5

    0

    0.5

    1

    Model Problem Illustrated

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    35/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Model Problem Illustrated

    Outgoing exp(ix) Incoming exp(ix)

    Transformed coordinate

    Re(x)

    0 2 4 6 8 10 12 14 16 18

    0 5 10 15 200 5 10 15 20

    -4

    -2

    0

    -10

    -5

    0

    5

    10

    15

    -1

    -0.5

    0

    0.5

    1

    Model Problem Illustrated

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    36/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Model Problem Illustrated

    Outgoing exp(ix) Incoming exp(ix)

    Transformed coordinate

    Re(x)

    0 2 4 6 8 10 12 14 16 18

    0 5 10 15 200 5 10 15 20

    -4

    -2

    0

    -20

    0

    20

    40

    -1

    -0.5

    0

    0.5

    1

    Model Problem Illustrated

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    37/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Model Problem Illustrated

    Outgoing exp(ix) Incoming exp(ix)

    Transformed coordinate

    Re(x)

    0 2 4 6 8 10 12 14 16 18

    0 5 10 15 200 5 10 15 20

    -4

    -2

    0

    -50

    0

    50

    100

    -1

    -0.5

    0

    0.5

    1

    Finite Element Implementation

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    38/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Finite Element Implementation

    x()

    2

    1

    x1

    x2

    x2

    x1

    e e

    x(x)

    Combine PML and isoparametric mappings

    k

    e

    = B

    T

    DBJ d

    me =

    NTNJ d

    Matrices arecomplex symmetric

    Eigenvalues and Model Reduction

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    39/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Eigenvalues and Model Reduction

    Want to know about the transfer functionH():

    H() =pT(K 2M)1b

    Can either

    Locate poles ofH(eigenvalues of(K,M))

    PlotHin a frequency range (Bode plot)

    Usual tactic: subspace projection

    Build an Arnoldi basisV

    Compute with much smallerVKV andVMV

    Can we do better?

    Variational Principles

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    40/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    p

    Variational form for complex symmetric eigenproblems:

    Hermitian (Rayleigh quotient):

    (v) = vKv

    vMv

    Complex symmetric (modified Rayleigh quotient):

    (v) = vTKv

    vTMv

    First-order accurate eigenvectors =Second-order accurate eigenvalues.

    Key: relation between left and right eigenvectors.

    Accurate Model Reduction

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    41/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Build new projection basis fromV:

    W =orth[Re(V), Im(V)]

    span(W)contains both Knand Kn= double digits correct vs. projection with V

    Wis a real-valued basis

    = projected system is complex symmetric

    Contributions

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    42/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    Substrate modeling

    1-D Example

    Finite Elements

    Complex Symmetry

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    New formulation of perfectly matched layers

    Easy to apply PML to axisymmetric, 2D, or 3D modelsSame formulation applies to electromagnetics, etc.

    Analysis of discretization error for PMLs

    Results in cheap, automatic parameter optimization

    Structure-preserving model reduction for complexsymmetric systems

    Double accuracy for same work as standard method

    Outline

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    43/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    1 Resonant MEMS

    2 HiQLab

    3 Anchor Losses

    4 Disk Resonator Analysis

    Disk Resonator Simulations

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    44/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Disk Resonator Mesh

    http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    45/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    PML region

    Wafer (unmodeled)

    Electrode

    Resonating disk

    0 1 2 3 4

    x 105

    4

    2

    0

    2

    x 106

    Axisymmetric model with bicubic mesh

    About 10K nodal points in converged calculation

    Mesh Convergence

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    46/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Mesh density

    Computed

    Q

    Cubic

    LinearQuadratic

    1 2 3 4 5 6 7 80

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    Cubic elements converge with reasonable mesh density

    Model Reduction Accuracy

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    47/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Frequency (MHz)

    Transfer(dB)

    Frequency (MHz)

    Phase(degrees)

    47.2 47.25 47.3

    47.2 47.25 47.3

    0

    100

    200

    -80

    -60

    -40

    -20

    Results from ROM (solid and dotted lines) near

    indistinguishable from full model(crosses)

    Model Reduction Accuracy

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    48/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Frequency (MHz)

    |H()

    Hredu

    ced

    ()|/H()|

    Arnoldi ROMStructure-preserving ROM

    45 46 47 48 49 50

    106

    104

    102

    Preserve structure =get twice the correct digits

    Response of the Disk Resonator

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    49/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Variation in Quality of Resonance

    http://movies/disk40cycle.movhttp://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    50/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Film thickness (m)

    Q

    1.2 1.3 1.4 1.5 1.6 1.7 1.8100

    102

    104

    106

    108

    Simulation and lab measurements vs. disk thickness

    Explanation ofQVariation

    http://movies/sweep35s.movhttp://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    51/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Real frequency (MHz)

    Imaginaryfreque

    ncy(MHz)

    ab

    cdd

    e

    a b

    cdd

    e

    a =1.51 m

    b =1.52 m

    c =1.53 m

    d =1.54 m

    e =1.55 m

    46 46.5 47 47.5 480

    0.05

    0.1

    0.15

    0.2

    . 5

    Interaction of two nearby eigenmodes

    Contributions

    http://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://movies/sweep35s.movhttp://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    52/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Built disk model in HiQLab and verified against lab

    measurements

    Demonstrated dominance of anchor loss for this device

    Predicted geometric sensitivity of quality factor Q

    (which was subsequently verified in the lab)

    ExplainedQsensitivity in terms of mode interference

    Contributions Summary (1)

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    53/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Application modeling

    Finite element models of several devicesDiscovery of effects of mode interference

    Importance of anchor loss vs thermoelastic dampingMathematical analysis

    Reformulation of perfectly-matched layersAnalysis of discretization and parameter choice in PMLsComplex symmetry-preserving model reduction

    Perturbation solution for thermoelastic dampingSoftware: HiQLab, FEAPMEX, SUGAR

    Contributions Summary (2)

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    54/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    HiQLab (about 33000 lines of code)

    Collaborations at Berkeley, Cornell, Stanford, Bosch

    FEAPMEX (about 5000 lines of code)

    2400+ page viewsUsed for instrument models, stochastic structuralanalysis, ultrasonic nondestructive evaluation problems,material parameter identification problems

    SUGAR (about 18000 lines of code)

    2000+ downloadsUsed in classes at Berkeley, Cornell, Johns HopkinsContinued research use for design optimization

    Other Contributions

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    55/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Lowered complexity of rootsfromO(n3)toO(n2)

    Code to go into next LAPACK release

    Developed first sparse subspace continuation code

    Going into the next Matcont release

    Developed new network tomography method

    Designed initial security model for OceanStore

    Served as IEEE 754R secretary

    Responsible for last CLAPACK version

    Future Work

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    56/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    Code development

    Structural elements and elements for different physicsDesign and implementation of parallelized version

    Theoretical analysisMore damping mechanismsSensitivity analysis and variational model reduction

    Application collaborations

    Use of nonlinear effects (quasi-static and dynamic)

    New designs (e.g. internal dielectric drives)Continued experimental comparisons

    Conclusions

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    57/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup Slides

    RF MEMS are a great source of problems

    Interesting applications

    Interesting physics (and not altogether understood)Interesting numerical mathematics

    http://www.cs.berkeley.edu/~dbindel

    Application: Network monitoring

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    58/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Set ofnhosts in a large network

    n(n 1)directed paths between them

    Want latency and packet loss rates for each path

    Use info to choose servers, route around faults

    Network distance metrics

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    59/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Linear relation between path lengthyijand link length xl:

    yij=

    lpath

    xl=

    l

    gijlxl

    wheregijlindicates if linklis used on path i j.Write in matrix form (one path per row): y=Gx.

    Examples:

    LatencyLog probability of transmission success

    Jitter (variance in latency)

    Path dependencies

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    60/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    A3

    B3

    B2

    B1

    A1

    A2

    (Ai Bi) = (A1 Bi) + (Ai B1) (A1 B1)

    Many linear dependencies among paths!

    k :=rank(G) n2

    Measure onlykpaths to infer properties for all paths

    Rank ofG: Lucent scan (bound)

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    61/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    100 200 300 400 500 600 700 800 900 10000

    1

    2

    3

    4

    5

    6

    7x 10

    4

    Number of end hosts ontheoverlay (n)

    Rankofpathspace(k)

    original measurementregression on nregression on nlogn

    regressino on n1.25

    regression on n1.5

    regression on n1.75

    Rank ofG: AS-level Albert-Barabasi

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    62/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation100 200 300 400 500 600 700 800 900 10000

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    Number of endhostson the overlay(n)

    Rankofpathspace

    (k)

    original measurementregression on nregression on nlogn

    regressino on n1.25

    regression on n1.5

    regression on n1.75

    Rank ofG: AS Barabasi + RT Waxman

    http://find/http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    63/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation100 200 300 400 500 600 700 800 900 10000

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    Number of endhostson the overlay(n)

    Rankofpathspace

    (k)

    original measurementregression on nregression on nlogn

    regression on n1.25

    regression on n1.5

    regression on n1.75

    Contributions

    http://find/http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    64/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Accurate predictions onO(n2)paths from a smallnumber of measurements

    Prototype monitoring system on PlanetLab

    Ongoing work on fault diagnosis using similar ideas

    See: http://list.cs.northwestern.edu/

    Model with Perfectly Matched Layer

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    65/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Transformed domainx

    Regular domain

    dx

    dx =(x)where(s) =1 i(s)

    d2u

    dx2

    + k2u=0

    u=couteikx + cine

    ikx

    Model with Perfectly Matched Layer

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    66/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Transformed domainx

    Regular domain

    dx

    dx =(x)where(s) =1 i(s),

    1

    d

    dx

    1

    du

    dx+ k

    2u=0

    u=couteikxk(x) + cine

    ikx+k(x)

    (x) = x

    0

    (s) ds

    Model with Perfectly Matched Layer

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    67/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Transformed domainx

    Regular domain

    If solution clamped atx=Lthen

    cincout

    =O(ek)where= (L) =

    L

    0

    (s) ds

    Eigenvalues and Model Reduction

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    68/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex SymmetryDamping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Want to know about the transfer functionH():

    H() =pT(K 2M)1b

    Can either

    Locate poles ofH(eigenvalues of(K,M))PlotHin a frequency range (Bode plot)

    Usual tactic: subspace projection

    Build an Arnoldi basisV

    Compute with much smallerVKV andVMV

    Can we do better?

    Variational Principles

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    69/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Variational form for complex symmetric eigenproblems:

    Hermitian (Rayleigh quotient):

    (v) = vKv

    vMv

    Complex symmetric (modified Rayleigh quotient):

    (v) = vTKv

    vTMv

    First-order accurate eigenvectors =Second-order accurate eigenvalues.

    Key: relation between left and right eigenvectors.

    Accurate Model Reduction

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    70/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Build new projection basis fromV:

    W =orth[Re(V), Im(V)]

    span(W)contains both Knand Kn= double digits correct vs. projection with V

    Wis a real-valued basis

    = projected system is complex symmetric

    Model Reduction Accuracy

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    71/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Frequency (MHz)

    Transfer(dB)

    Frequency (MHz)

    Phase(degrees)

    47.2 47.25 47.3

    47.2 47.25 47.3

    0

    100

    200

    -80

    -60

    -40

    -20

    Results from ROM (solid and dotted lines) near

    indistinguishable from full model (crosses)

    Model Reduction Accuracy

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    72/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Frequency (MHz)

    |H()

    Hred

    uced

    ()|/H()|

    Arnoldi ROM

    Structure-preserving ROM

    45 46 47 48 49 50

    106

    10

    4

    102

    Preserve structure =get twice the correct digits

    Time-Averaged Energy Flux

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    73/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    0 0.5 1 1.5 2 2.5 3 3.5

    x 105

    2

    0

    2

    x 106

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    x 106

    1

    0.5

    0

    0.5

    1

    1.5

    2

    2.5x 10

    6

    Sources of Damping

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    74/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Fluid damping

    Air is a viscous fluid (Re 1)Can operate in a vacuumShown not to dominate in many RF designs

    Material lossesLow intrinsic losses in silicon, diamond, germaniumTerrible material losses in metals

    Thermoelastic damping

    Volume changes induce temperature change

    Diffusion of heat leads to mechanical lossAnchor loss

    Elastic waves radiate from structure

    Sources of Damping

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    75/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Fluid damping

    Air is a viscous fluid (Re 1)Can operate in a vacuumShown not to dominate in many RF designs

    Material losses

    Low intrinsic losses in silicon, diamond, germaniumTerrible material losses in metals

    Thermoelastic damping

    Volume changes induce temperature change

    Diffusion of heat leads to mechanical lossAnchor loss

    Elastic waves radiate from structure

    Fabrication Outline

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    76/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    1 Si wafer

    2 Deposit 2 microns SiO2

    3 Pattern and etch SiO2 layer

    4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer

    6 Release etch remaining SiO2

    Fabrication Outline

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    77/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    2 um

    1 Si wafer

    2 Deposit 2 microns SiO2

    3 Pattern and etch SiO2 layer

    4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer

    6 Release etch remaining SiO2

    Fabrication Outline

    http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    78/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    2 um

    1 Si wafer

    2 Deposit 2 microns SiO2

    3 Pattern and etch SiO2 layer

    4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer

    6 Release etch remaining SiO2

    Fabrication Outline

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    79/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    2 um

    2 um

    1 Si wafer

    2 Deposit 2 microns SiO2

    3 Pattern and etch SiO2 layer

    4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer

    6 Release etch remaining SiO2

    Fabrication Outline

    http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    80/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    2 um

    2 um

    1 Si wafer

    2 Deposit 2 microns SiO2

    3 Pattern and etch SiO2 layer

    4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer

    6 Release etch remaining SiO2

    CAD f

    Fabrication Outline

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    81/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    2 um

    2 um

    1 Si wafer

    2 Deposit 2 microns SiO2

    3 Pattern and etch SiO2 layer

    4 Deposit 2 microns polycrystalline Si

    5 Pattern and etch Si layer

    6 Release etch remaining SiO2

    CAD for

    Fabrication Result

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    82/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    300 um

    2 um

    2 um

    (C. Nguyen, iMEMS 02)

    CAD for

    Role of simulation

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    83/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    HiQLab: Modeling RF MEMSExplore fundamental device physics

    Particularly details of damping

    Detailed finite element modeling

    Reduced models eventually to go into SUGAR

    SUGAR: Be SPICE to the MEMS world

    Fast enough for early design stages

    Simple enough to attract users

    Support design, analysis, optimization, synthesis

    Verify models by comparison to measurement

    CAD for

    Why simulate?

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    84/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Build and break is too expensive

    Wafer processing costs months, thousands of dollarsFabrication is impreciseDays or weeks to take good measurements

    Good experiments need good hypotheses

    Even when device behavior is understood, still need to

    understand system behavior

    CAD for

    From simulation to synthesis

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    85/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Computer can assist at many levels:

    Fundamental physics

    Detailed device models

    System-level models and macromodels

    Metrology

    Design optimization

    Design synthesis

    CAD for

    Research thrusts

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    86/115

    CAD forMEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Model development (e.g. new finite elements)

    Numerical algorithms (e.g. model reduction)

    Numerical software engineering (SUGAR, HiQLab)

    Metrology and comparison to measurement

    Optimization and design synthesis

    CAD for

    Research group

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    87/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Faculty Students

    A. Agogino (ME) D. Bindel (CS)

    Z. Bai (Math,CS,UCD) J.V. Clark (AS&T)

    J. Demmel (Math,CS) C. Cobb (ME)S. Govindjee (CEE) D. Garmire (CS)

    R. Howe (EE,ME) T. Koyama (CEE)

    K.S.J. Pister (EE) J. Nie (Math)

    C. Sequin (CS) H. Wei (CEE)

    Y. Zhang (CEE)

    CAD for

    SUGAR

    Goal: Be SPICE to the MEMS world

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    88/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Goal: Be SPICE to the MEMS world

    Fast enough for early design stagesSimple enough to attract users

    Support design, analysis, optimization, synthesis

    Verify models by comparison to measurement

    System assembly

    Models

    Solvers

    Matlab Web Library

    Sensitivity analysis

    Static analysis

    Steadystate analysis

    Transient analysis

    Results

    Netlist

    Interfaces

    CAD for

    SUGAR: Analysis of a micromirror

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    89/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation (Mirror design by M. Last)

    CAD for

    SUGAR: Design synthesis

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    90/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    CAD forMEMS

    SUGAR: Comparison to measurement

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    91/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    CAD forMEMS

    Elastic PMLs

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    92/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    (w) :C : (u) d 2

    w u d =

    w tnd

    (u) =uxs

    Start from standard weak form

    Introduce transformed xwith xx =

    Map back to reference system (J

    =det())

    All terms are symmetric inwandu

    CAD forMEMS

    Elastic PMLs

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    93/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    (w) :C : (u) d 2

    w u d =

    w tnd

    (u) =uxs

    =ux

    1s

    Start from standard weak form

    Introduce transformed xwith xx =

    Map back to reference system (J

    =det())

    All terms are symmetric inwandu

    CAD forMEMS

    Elastic PMLs

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    94/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    (w) :C: (u) J d

    2

    w u J d =

    w tnd

    (u) =uxs

    =ux

    1s

    Start from standard weak form

    Introduce transformed xwith xx =

    Map back to reference system (J

    =det())

    All terms are symmetric inwandu

    CAD forMEMS

    Elastic PMLs

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    95/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    (w) :C: (u) J d

    2

    w u J d =

    w tnd

    (u) =uxs

    =ux

    1s

    Start from standard weak form

    Introduce transformed xwith xx =

    Map back to reference system (J

    =det())

    All terms are symmetric inwandu

    CAD forMEMS

    Continuum 2D model problem

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    96/115

    MEMS

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    k

    L

    (x) =

    1 i|x L|p, x>L1 x L.

    1

    x

    1

    u

    x

    +

    2u

    y2+ k2u=0

    CAD forMEMS

    Continuum 2D model problem

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    97/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    k

    L

    (x) =

    1 i|x L|p, x>L1 x L.

    1

    x

    1

    u

    x

    k2yu+ k

    2u=0

    CAD forMEMS

    Continuum 2D model problem

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    98/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    k

    L

    (x) =

    1 i|x L|p, x>L1 x L.

    1

    x

    1ux

    + k2xu=0

    1D problem, reflection ofO(ekx)

    CAD forMEMS

    Discrete 2D model problem

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    99/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    k

    L

    Discrete Fourier transform iny

    Solve numerically inx

    Project solution onto infinite space traveling modes

    Extension of Collino and Monk (1998)

    CAD forMEMS

    Nondimensionalization

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    100/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    k

    L

    (x) =

    1 i|x L|p, x>L1 x L.

    Rate of stretching: hp

    Elements per wave: (kxh)1 and(kyh)

    1

    Elements through the PML: N

    CAD forMEMS

    Nondimensionalization

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    101/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    k

    L

    (x) =

    1 i|x L|p, x>L1 x L.

    Rate of stretching: hp

    Elements per wave: (kxh)1 and(kyh)

    1

    Elements through the PML: N

    CAD forMEMS

    Discrete reflection behavior

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    102/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Number of PML elements

    log10

    (h)

    log10

    (r) at (kh) = 10

    1

    1

    1

    2

    2

    2

    22 2 2

    333

    3

    3

    3

    3

    444

    4

    4

    5 10 15 20 25 30

    -1.5

    -1

    -0.5

    0

    0.5

    1

    Quadratic elements,p=1,(kxh)1 =10

    CAD forMEMS

    Discrete reflection decomposition

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    103/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Model discrete reflection as two parts:

    Far-end reflection (clamping reflection)

    Approximated well by continuum calculation

    Grows as(kxh)1

    growsInterface reflection

    Discrete effect: mesh does not resolve decayDoes not depend onNGrows as(kxh)

    1 shrinks

    CAD forMEMS

    Discrete reflection behavior

    log10

    (r) at (kh) = 10

    1 log10(rinterface+ rnominal) at (kh)

    = 10

    1

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    104/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Number of PML elements

    log10

    (h)

    1

    1

    1

    2

    2

    2

    22 2 2

    333

    3

    3

    3

    3

    444

    4

    4

    5 10 15 20 25 30

    -1.5

    -1

    -0.5

    0

    0.5

    1

    Number of PML elements

    log10

    (h)

    1

    1

    1

    2

    2

    2

    2 2 2 2

    333

    3

    3

    3

    444

    4

    4

    5 10 15 20 25 30

    -1.5

    -1

    -0.5

    0

    0.5

    1

    Quadratic elements,p=1,(kxh)1 =10

    Model does well at predicting actual reflection

    Similar picture for other wavelengths, element types,

    stretch functions

    CAD forMEMS

    Choosing PML parameters

    http://goforward/http://find/http://goback/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    105/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    DiskResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Discrete reflection dominated by

    Interface reflection whenkx largeFar-end reflection whenkxsmall

    Heuristic for PML parameter choice

    Choose an acceptable reflection levelChoosebased on interface reflection atkmaxxChoose length based on far-end reflection at kminx

    CAD forMEMS

    Thermoelastic damping (TED)

    u is displacement and T = T0 + is temperature

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    106/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    u is displacement andT T0+ is temperature

    = C 1

    utt =

    cvt = () T0 tr(t)

    Volumetric strain rate drives energy transfer frommechanical to thermal domain

    Irreversible diffusion = mechanical dampingNot often an important factor at the macro scale

    Recognized source of damping in microresonatorsZener: semi-analytical approximation for TED in beams

    We consider the fully coupled system

    CAD forMEMS

    Nondimensionalization

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    107/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    = C 1utt =

    t = 2 tr(t)

    :=

    c

    2 T0

    cvand :=

    cvcL

    Length L

    Time L/c, wherec=

    E/

    Temperature T0

    cv

    CAD forMEMS

    Scaling analysis

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    108/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    = C 1

    utt =

    t = 2 tr(t)

    :=

    c

    2 T0cv

    and :=

    cvcL

    Micron-scale poly-Si devices: and are 104

    .Smallleads to thermal boundary layers

    Linearize about=0

    CAD forMEMS

    Discrete mode equations

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    109/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    = C 1utt =

    t = 2 tr(t)

    = C 1

    2u =

    i = 2 i tr()

    2Muuu+ Kuuu+ Kut = 0

    iDtt+ Ktt+ iDtuu = 0

    CAD forMEMS

    Perturbation computation

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    110/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    2Muuu+ Kuuu+ Kut = 0

    iDtt+ Ktt+ iDtuu = 0

    Approximateby perturbation aboutKut=0:

    20Muuu0+ Kuuu0 = 0

    i0Dtt0+ Ktt0+ i0Dtuu0 = 0

    Choosev :vTu0 =0 and compute

    (20Muu+ Kuu) 20Muuu0

    vT 0

    u

    =

    Kut0

    0

    CAD forMEMS

    Comparison to Zeners model

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    111/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    DampingMEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    105

    106

    107

    108

    109

    1010

    107

    106

    105

    104

    Thermo

    elasticDampingQ

    1

    Frequency f(Hz)

    Zeners Formula

    HiQlab Results

    Comparison of fully coupled simulation to Zener

    approximation over a range of frequencies

    Real and imaginary parts after first-order correction

    agree to about three digits withArnoldi

    CAD forMEMS

    Thermoelastic boundary layer

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    112/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    0 20 40 60 80 100 1200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 20 40 60 80 100 1200

    0.5

    1x 10

    4

    One-dimensional test problem (longitudinal mode in a

    bar)

    Fixed temperature and displacement at left

    Free at right

    CAD forMEMS

    Shear ring resonator

    0.9

    hw = 5.000000e05

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    113/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    Value = 2.66E+07 Hz.

    Ring is driven in a shearing motion

    Can couple ring to other resonators

    How do we track the desired mode?

    CAD forMEMS

    Mode tracking

    Find a continuous solution to

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    114/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    Find a continuous solution toK(s) (s)2M(s)

    u(s) =0.

    K andMare symmetric andM>0Eigenvectors areM-orthogonal

    Perturbation theory gives good shifts

    Look ifu(s+ h)andu(s)are on the same path by

    looking atu(s+ h)

    T

    M(s+ h)u(s)Many more subtleties in the nonsymmetric case

    Focus of theCIS algorithm

    CAD forMEMS

    Mode tracking in a shear resonator

    5 5x 10

    7

    http://find/
  • 8/21/2019 Computer-Aided Design for Micro-Electro-Mechanical Systems

    115/115

    ResonantMEMS

    HiQLab

    AnchorLosses

    Disk

    ResonatorAnalysis

    Conclusions

    Backup SlidesNetwork tomography

    PML model problem

    Complex Symmetry

    Damping

    MEMS Fabrication

    SUGAR and HiQLab

    Elastic PMLs

    Reflection Analysis

    TED

    Subspace

    Continuation

    2 2.5 3 3.5 4 4.5 5 5.5 6

    x 105

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    Halfwidthof annulus

    Frequency(Hz)

    Finite elementAnalytic result

    http://goforward/http://find/http://goback/