153
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Computation of Geomagnetic Transfer Functions Using the HP9640A by David V. Fitterman Open-File Report 81-361 1981 This report is preliminary and has not been reviewed for conformity with the U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Embed Size (px)

Citation preview

Page 1: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Computation of Geomagnetic Transfer Functions

Using the HP9640A

by

David V. Fitterman

Open-File Report 81-361

1981

This report is preliminary and has not been reviewed for conformity with the U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

Page 2: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Contents

Page

1. Introduction 1

2. Computation of Transfer Functions 3

3. Program AUTRN 10

4. Program STACK 23

5. Program LSTRF 28

6. Program PLTRF 29

7. Appendix A - Data Formats 33

8. Appendix B - User's Guide 39

9- Appendix C - Program Listings 57

Page 3: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Figures

Page

Figure 2.1 Linear system representation of transfer functions 4

3.1 Flow diagram of program AUTRN 12

3.2 Amplitude and phase response of low-pass filter used by AUTR7 18

3.3 Command sequence to load program AUTRN 20

3.4 Command sequences contained in files /AUTRN and \AUTRN 21

4.1 Command sequence to load program STACK 25

4.2 Command sequences contained in files /STACK and \STACK 26

6.1 Command sequences contained in files /PLTRF and \PLTRF 32

8.1 Terminal output for program AUTRN 40

8.2 Example of input data plotting by AUTRN 41

8.3 Example of summary printed by AUTRN 43

8.4 Example of input to AUTRN showing user selected frequency

bands 45

8.5 Example of block and stack summaries 46

8.6 Commands to terminate AUTRN and run STACK 49

8.7 Summary of program STACK input files 50

8.8 Example of input of stacking parameters 51

8.9 Use of programs LSTRF and PLTRF 53

8.10 Example of summary printed by program LSTRF 54

8.11 Example of an induction arrow plot 55

ii

Page 4: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Tables

Page

Table. 1.1 Logical unit assignments 2

7.1 Integer format file header record format 34

7.2 Transfer function record format 37

iii

Page 5: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

1. Introduction

This report describes a collection of programs used in the calculation,

stacking, and display of geomagnetic transfer functions. A description of the

procedure used to estimate the transfer functions is given along with a

detailed explanation of how the programs work. The programs and their

functions are: (1) AUTRN - computation of spectra and transfer function of a

data segment, (2) STACK - stacking of spectra from different data segments

and computing resulting transfer function, (3) LSTRF - listing of transfer

function files, and (4) PLTRF - plotting of induction arrows and error

estimates from transfer function files.

Software and Hardware Requirements

Most of the software is written in HP (Hewlett-Packard) FORTRAN IV with

some subroutines written in HP Assembly Language.

Some of the assembly-language routines make use of special instructions

which are not found on the older HP-2100 CPU. These instructions will have to

be simulated if the routines are not run on an HP-21MX or new CPU.

The software was designed to run on an HP-9640A Multiprogramming System,

which has been superseded by the newer HP-1000. The essential hardware are a

CPU, a disk drive, a terminal, and a printer/plotter. The plotter that was

used in the design of the system was a Varian Statos 33; it is used by

programs AUTRN and PLTRF. Plotter commands can be removed from AUTRN for

installations not having the proper hardware without affecting the rest of the

program's operation.

The logical-unit assignments used in all of the programs are shown in

Table 1.1.

Page 6: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Introduction

Table 1.1 Logical unit assignments

LU Name Device

1 LUTTY terminal

6 LUPRT line printer/plotter

Access to data files is done by means of the Spool Monitor Package (SMP),

which is also referred to as the File Manager. Consult the HP Batch - Spool

Monitor Reference Manual for more details.

Page 7: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

2. Computation of Transfer Functions

Geomagnetic transfer functions are used to describe the linear

relationship between the vertical and horizontal components of magnetic field

variations at a particular frequency or frequency band. We begin with the

northward (X), eastward (Y), and downward (Z) magnetic-field components and

transform them into the frequency domain. The various power and cross power

spectra are estimated for different frequency bands. Then the linear system

of equations which relates the input and output power spectra are solved. A

detailed derivation of this analysis can be found in Bendat and Piersol

(Random Data: Analysis and Measurement Procedures, Wiley-Tnterscience, 407 p.,

1971).

The following description uses notation similar to that of Bendat and

Piersol. The three components of magnetic field are usually referred to as X,

Y, and Z corresponding to the northward, eastward, and downward directions.

For ease of notation we consider the inputs of the system as channels 1 and 2,

which correspond to components X and Y, while the system output (Z field) is

channel y (see Figure 2.1). All inputs as a group are referred to as x. We

use the symbol X^ to refer to the Fourier transform of channel x^. Thus X^

and X2 refer to the Fourier transform of the two inputs, while Xy is the

Fourier transform of the system output. The following paragraphs outline the

steps in computing the transfer functions, coherency functions, and error

estimates.

We define the cross power spectra as

su - < Y 2- !where the angle brackets represent averaging over frequency bands, and the

* asterisk denotes complex conjugate. Notice that S . = S. .

Page 8: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Transfer Functions

Figure 2.1 Linear system representation of transfer functions. The magnetic

field components are X, Y, and Z. For notation purposes in

section 2, inputs are designated by numbers, the output by y and

all of the inputs together by x.

X(north)

channel 1

Z (down) »channel y

Y(east)

channel 2

H9 (f)

Page 9: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Transfer Functions

The augmented spectral matrix [S,,____] is computedV XX

yy yi y2S ly S ll S 12

S2v S 21 S 22

2-2

from which one can form the output cross spectral vector

[S ly S 2y]

and the spectral matrix

2-3

12

S 21 S 22

2-4

The set of equations describing the linear system are then given by

where

[H] = [H! H2 ]

is the desired transfer function.

Solving (2-5) one obtains

[HI* = [S]-lxx

More specifically

H,S 22S ly " S 12 S 2y

ISxx

S ll S 2y " S 21 S ly

2-5

2-6

2-7

2-8a

2-8bxx

Page 10: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Transfer Functions

This expression is the same as would be obtained by using a least-squares

technique to reduce the residual vertical field for a two input system.

For purposes of determining how good the transfer function estimates are,

coherence functions are computed. The value of the coherency varies between

zero and unity. A large coherence between two signals indicates that one of

the signals can be used along with the appropriate transfer function to obtain

a good prediction of the other function. The following coherence functions

are computed.2 |S 12'G 2-9a

ll > 22

2 |Syl |2

8Syy

To easily compute the partial and multiple coherence, it is useful to

first calculate the residual cross spectra. Consider for the moment the

residual cross spectra, S^y> 2* This is the cross spectra between the residual

of input channel 1 and the output y, and their respective linear least-squares

predicted values using channel 2 as the predictor. The six residual cross

spectra computed are:

S 11.2 ' S ll (1 - G 12>

S22.1 ' S22 (1 - G 12 )

S . = S (1 - G2 ) 2-10c yy.l yy yl'

Page 11: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Transfer Functions

V2 = syy

<; = <? c\ - - ^ ?-i Of S2y-l S2y (1 Su S2y) 2 10f

The partial coherencies, which is the coherence between one input and the

output when the effect of all other inputs is removed, are given by

G2

|q |2G2 . Is 2y-i 2_ llb** * S22.1Syyl

Finally the multiple coherence, which is the coherence between all the inputs

and the outputs, is9 IS I

G = 1 - , ^X , 2-12y.x S SJ yy xxThe partial and multiple coherency functions give a measure of how well

the output can be predicted by the various inputs. I have defined a quality

factor, QF, which can sometimes be used as a measure of how reliable the

transfer function estimate is, as the geometric mean of the two partial and

the multiple coherencies.

QF = (G2 . 0 G2 .G2 ) 1/3 2-13 x ly.2 2y.l y.x

This variable ranges between 0 and 1. Whenever the two horizontal components

of magnetic field are linearly polarized, there are not enough degrees of

freedom in the data to estimate both H^ and I^- In this case, the transfer

function can then be represented by a single complex number, and the quality

Page 12: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Transfer Functions

factor QF can be shown to equal zero. Thus the quality factor would warn

against using this data to estimate the transfer function of a two-input, one-

output system.

The last quantity computed is the formal random error of the transfer

function estimates. The squared random error for the two transfer functions

H^ and H£ are given by

r2 = K E Sit ,i - 1,2 2-14

whereS UC __ 13 O n,o 1 "~ n^o np. _ yy 1 yl 2 y2 9 .

X* "~ 00 £.-LJb !2 b21

and

V as 4 -ri 9 1 fiK n-4 F4, n-4; 0.95 2 16

The function F is the F distribution for the 95% confidence level and n is the

number of degrees of freedom used in the estimate. If m harmonics are

combined to form the spectral estimates, then there are 2m degrees of freedom.

Three techniques are employed by program AIJTRN to obtain stable spectral

estimates. First, the individual 128-word long data blocks are multiplied by

a Banning (cosine bell) function in the time domain. Second, the spectral

values at adjacent frequencies are averaged together to obtain the spectral

estimates. Third, the spectral estimates from independent blocks of data are

added together.

In geomagnetic variation studies, the usual quantity displayed is not the

transfer functions, but the in-phase and out-of-phase induction arrows which

are derived from them. Let the two transfer functions be given by

H. = hr.+ j hi. 2-17a

and

H2 " hr 2 + j hi 2 2"17b

where j is the square root of -1.

8

Page 13: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Transfer Functions

The magnitude of the in-phase and out-of-phase induction arrows are

2 2 1 /? Ai = (hr l + hr 2' 2~ 18a

and

A = (hi? + hi.) 1/2 2-18bO 1 L

respectively. The azimuths of these arrows with respect to the channel 1 (X)

direction are

6 i = tan~ 1 (hr 2/hr 1 ) 2-19a

and

00 = tan~ 1 (hi2 /hi 1 ) 2-19b

These quantities are also computed by program AUTRN. When induction arrows

are plotted, 180° is normally added to 0^ so that the in-phase arrows point in

the direction of current concentrations. This convention is used by program

PLTRF.

Page 14: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

3. Program AUTRN

Purpose

Program AIJTRN is used to automatically compute geomagnetic transfer

functions. It uses a scheme similar to one developed by W. D. Stanley (oral

communication, 1979) to compute the transfer function over a wide range of

frequencies. The data set is divided into 128-point blocks, which are

analyzed. The data are then low-pass filtered and decimated, saving every

other data point. The new data sequence is now analyzed to obtain transfer

functions at periods twice as great as the previous analysis. This procedure

is called cascading, and is repeated up to seven times to obtain a maximum of

eight analysis-frequency sets. The longest input data set which can be

handled is 32,767 words. The advantage of this technique is that only short

data segments need to be handled.

Output from AIJTRN includes the stacked spectral matrix, the transfer

function, induction vectors, and error estimates. These data are stored in a

file and printed. Intermediate results, including plots of the original time

sequence, power spectra plots, the results of the analysis of individual data

blocks, and the stacked results every time they are updated, can be obtained

at the discretion of the user. Detailed descriptions of the user-supplied

input parameters are given in Appendix B.

Description

The program consists of a very short main program and eight segments

which are scheduled by the main program as needed via system EXEC calls. The

main program allocates most of the storage used by the segments. This storage

resides in a large common block. Control is returned to the main program by

means of GO TO statements that branch to labels which are in the common

block. In the main program these labels are assigned to statement numbers.

10

Page 15: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AUTRN

The labels are all named LOOPi where i is an integer between 1 and 8.

Figure 3.1 shows a flow diagram for AUTRN, which should be referred to

during the following discussion of the functioning of the main program. AUTRN

starts by initializing some parameters in the common block and then schedules

segment AUTR1. AUTR1 inputs the X, Y, and Z field data and creates work files

into which it places the data. The user provides some processing parameters

at this point. If any errors occur in AUTR1, flag ISTOP is set. Upon exiting

from AIJTR1, the main program checks to see if there were any errors. If there

were none, processing continues. If an error occurred the user is asked if

anymore data are to be processed.

AUTRN now enters a main processing loop and schedules AIJTR2. This

segment initializes some work buffers on all passes, and inputs some more

processing parameters only on the first time it is called. The next segment

scheduled, AUTR3, computes the Fourier transforms, spectral matrix, and the

quality factor for one block of data. The results of the individual block

analyses can be printed if desired. Stacking of the data takes place in

AUTR4. If the intermediate stacked data are to be printed and plotted, AUTR5

is scheduled, otherwise control transfers to LOOP5 in AUTRN and the next block

is processed.

When the last block has been processed, AIJTR6 is called to output the

results to a disk file. If stacking was based on the quality factor, and no

data were stacked and quality factor lowering is allowed, AUTR6 exits to LOOP2

and reprocesses the data for this decimation level with a lower quality factor

threshold for stacking results. The number of threshold lowerings allowed at

all decimation level are set by the user.

If the data are to be decimated, AIJTR7 is scheduled, which low-pass

filters and saves every other data point. Plots of the resulting time

11

Page 16: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AUTRN

Figure 3.1 Flow diagram of program AUTRN. The large circles refer to labels

in the main program. The double wide arrows indicate transfer

control to or from a program segment.

12

Page 17: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Figure 3-1 Continued

Program ADTRN

Caff y^ur ^rfec*

call /VT«5

blocks

^/^/HJTK?Wo-ftosj, <fee,lu»fe; />/«f- c/»// Aimes

13

Page 18: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program ACTTRN

sequences can be obtained if desired. The data are then processed to obtain

analyses at lower frequencies. When the last decimation level has been

reached, AUTR8 is scheduled. This segment writes a summary of the results on

the line printer, closes the result file, and purges the temporary work

files. AUTRN then asks if any more data are to be processed.

This completes the description of the overall functioning of AUTRN. Each

segment will now be discussed in detail.

AUTR1 opens files containing the X, Y, and Z components of the magnetic

field. These files are in Integer Format (see Appendix A). The data are

converted to floating point format and stored in Temporary Real Format files

named "..XX..", "..YY..", and "..ZZ.." respectively. If any of the input

files can not be opened or if the temporary work files cannot be created, all

open files are closed and any temporary work files are purged. The three

input files are checked to insure that they contain the same number of data

points, and have the same effective sample interval.

After all the temporary work files have been created, several parameters

that control processing are input. These include the number of decimation

levels the processing is to be carried through, and whether or not overlapping

of the input data sequence is to be used. If the former option is selected,

each analysis contains the last 64 data points of the previous data block plus

64 new data points. When this type of processing is used, the number of

degrees of freedom cannot be easily determined, but will be less than the

indicated value since some of the data are used twice. In the case of all

data being stacked, the degrees of freedom will be large by a factor of 2. A

consequence of this is that the transfer function error estimates will be

biased downward. After the question about overlapping is answered, control

transfers back to AUTRN.

14

Page 19: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AIJTRN

The next segment, AUTR2, requests more information from the user which

controls the processing. The user begins by supplying the name of the result

file. If the file cannot be created, the user is asked for another file name.

The transfer function analysis is carried out in 4 frequency bands at

each decimation level. Since there are 128 points used in the Fourier

analysis, there are 64 harmonics which can be used in the spectral

computations. Experience has shown that the harmonics above number 32 are

quite noisy and not well suited for analysis. AUTR2 displays the default

frequency averaging bands that are used unless a different set of harmonics is

selected.

The spectra from each block are considered for stacking only if the

quality factor (QF) exceeds a user-specified quality-factor cutoff (QFCUT).

Notice that a value of zero will result in all data being stacked. Simply

because a block's QF exceeds the cutoff value does not mean the data will be

stacked, but rather the process depends on the type of stack specified to

AUTR2. There are three types of stacks: (1) straight, (2) non-degrading, and

(3) non-degrading with QF lowering. For a straight stack, the data are

stacked if QF exceeds QFCUT. A non-degrading stack requires that the QF

exceed QFCUT, and that adding the data to the previously stacked data does not

lower the QF of the stacked data (QFSTK) below QFCUT-0.1. It is possible to

set QFCUT high enough that no data are stacked in any of the 4 frequency bands

at a given decimation level. If this occurs and a non-degrading with QF

lowering stack has been specified, QFCUT is lowered by 0.10 and the analysis

for this decimation level repeated. When this option is selected, the user

can specify how many lower ings of QFCUT are to be performed. When processing

of the current decimation level is completed, QFCUT is returned to its

original value.

15

Page 20: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AIJTRN

The user can also specify when the results of the individual block

analyses are reported. There are three choices: (1) report all results,

(2) report only results when data have been stacked, and (3) do not report any

results. Finally the user furnishes a parameter that determines when the

original data sequences are plotted. When the data sequence length is less

than or equal to the specified number of blocks, the X, Y, and Z time series

are plotted.

The input of processing control parameters by AUTR2 is done only before

the first cascade level is started. A second function of AUTR2 is to

initialize storage buffers. This function is performed at all cascade levels.

The "work horse" segment is AUTR3 which performs the spectral

computations. The three field components are read and a linear trend and mean

are removed. A cosine bell is applied to the data before the discrete Fourier

transform is computed. The spectral matrix is formed for the four harmonic

bands specified. From these quantities the ordinary coherence, residual cross

spectra, multiple coherence, partial coherencies, transfer functions, and

quality factor are computed. If the quality factor exceeds the threshold

value, the spectra are saved for possible stacking. These intermediate

results, called "BLOCK RESULTS" are printed if the "ALL DATA" print mode was

selected, or if the "STACK DATA" print mode was selected and QF exceeds

QFCUT. Control then returns to the main program.

Segment AUTR4 determines if the spectral matrix computed by AUTR3 should

be added to the stack. If the QF for a given frequency band exceeds the

threshold value, it is stacked. After a value is stacked, the QF of the stack

is computed. If a non-degrading stack has been called for, and the last

addition to the stack lowered QFSTK below QFCUT-0.1, the last addition is

removed. If the spectral values are removed, the coherencies, residual

16

Page 21: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AUTRN

spectra, and quality factor are recomputed.

The transfer function and error estimates of the stacked spectra are

computed. If additions were made to the spectral stack, and the "ALL DATA" or

"STACKED DATA" print modes were selected, then the "STACK RESULTS" are

printed. When stack results are printed, AUTR5 is also scheduled to plot the

X, Y, and Z data for this block as well as their power spectra.

When there are no more data blocks at this decimation level to process,

AUTR6 is scheduled. This segment checks to see if QF lowering is being

used. When it is, data must have been stacked in at least one of the four

frequency bands. If it wasn't, and the QF can still be lowered (by 0.1), it

is and the processing of this decimation level starts again. When QF lowering

is not being used or if some data were stacked, the results are written to the

output file for future use.

If more decimation levels are to be processed the data are now low-pass

filtered and decimated by segment AUTR7. This segment uses a 16-point filter,

which is convolved with the three input channels. The amplitude and phase

response of the filter are shown in Figure 3.2. The phase introduced by this

filter does not affect the calculations since we are only concerned about the

relative phase of the different channels.

AUTR7 also has a facility for plotting the input data sequences after

they have been low-pass filtered. The data are plotted whenever the total

number of blocks is less than or equal to the value specified by the user.

When the last decimation level has been processed, segment AUTR8 prints a

summary of the results including the stacked spectral matrix and the transfer

function.

17

Page 22: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AIJTRN

Figure 3.2 Amplitude and phase response if low-pass filter used by AUTR7.

F RE Q U E N C Y D 0 M HIN D R T R < P H R S E > 1 a tfr

120 -

8

I H

Ti.

H | | j.

1 5 9 13F R E Q . I H T E R'.,' R L = .83125c R E Q . WIH D U W = 8 TO .5

F R E Q U c. M C Y D U M R I N D fl T R < M R G >

^ ^ p- i-4 1

F F: L i ' I N T E R '.-' R L = .931 M R X ',' RLUE - 6.38642E

18

Page 23: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AIJTRN

Special Requirements

Program AUTRN creates three temporary work files named "..XX..",

"..YY..", and "..ZZ..". Files with these names must not exist when AUTRN is

run or processing will be halted. Under normal operating conditions, AUTRN

purges these files when it is done using them. If AUTRN is abnormally

terminated with an "OFF" command, these files should be purged by the user

before the program is rerun.

Program Loading

The loading of program AUTRN can be accomplished by issuing the commands

shown in Figure 3.3. The first module, named %REPLC, is used to replace any

calls to software routines .LET and .SET with the corresponding hardware

commands. The percent signs in front of the module names indicate that they

are relocatable modules. The loader is called to do a temporary, background

program load with segments.

Program Operation

Before AUTRN can be run, temporary ID segments must be assigned to it and

its eight segments. This is easily accomplished by issuing the command

:TR,/AUTRN

which restores AUTRN and its segments by executing the commands in Figure

3.4. The program is then executed with the command

:RU,AUTRN

After execution of AUTRN is completed, the temporary ID segments can be

returned to the system with the command

:TR,\AUTRN

which executes the commands in file \AUTRN shown in Figure 3.4.

19

Page 24: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AIJTRN

Figure 3.3 Command sequence to load program AUTRN.

LDAUTR T-00003 IS ON CR00300 USING 00003 BLKS R»0000

0001

0003

0003

0004

0005

0006

0007

000S

0009

0010

0011

0013

0013

0014

0015

00160017.001S

0019

0030

0031003300330034003500360037003800390030

'LG, 10MR,&REPLCMR,&AUTRNMR,?sDSPLAMR, &AUTR1MR, SAUTR3MR , %AUTR3MR, &FOUR1MR , & A U T P 4MR,s:AUTRSM R % M 0 V EMR,?s2EROMR , ! I NDOTMR , %AUTR6MR,%AUTR7MR,?i2EROMR,?sIND-OTMR,&MOVEMR , ^sAUTRSRU , LOADR , SSP! AUTRN'SP. AUTR1SP', AUTR2SP, AUTR3SP, AUTR4SP, AUTR5SP . AUTR6SPi AUTR7SP, AUTRSTR

20

Page 25: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program ADTRN

Figure 3.4 Command sequence contained in files /AUTBN and \AUTRN. File

/AUTRN is used to restore program AUTRN, and file \AUTRN is used

to off it.

/AUTRN 1-00003 is ON 0800300 USING 00001 BLKS R-00000001000200030004

0005

0006

0007

0008

0009

0010

RP,AUTRN RP.AUTR1 RP;AUTR2 RP.AUTR3 RP;AUTR4 RP,AUTRS RP . AUTR6 RP;AUTR7 RP,AUTR3 TR

\AUTRN T-00003 IS ON CR0'£300 USING 00001 BLKS R-0000

0001

0002

00030004

0005

©006

0007

000S

0009

0010

OF, AUTRNOF, AUTR1OF. AUTR2OF; AUTR3OF, AUTR4OF, AUTRSOF. AUTR-6OF'. AUTR7OF', AUTRSTR

21

Page 26: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program AQTRN

Input to the program Is provided at the system console. AUTRN makes use

of the CPU display register to let the user know where It Is in the

computations. Bits 0-8 display the current block number being processed,

while bits 9-12 display the current decimation level.

22

Page 27: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

4. Program STACK

Purpose

Program STACK is used to stack spectral matrices computed by program

AUTRN and compute the resulting transfer functions, error estimates, and

induction arrows. The stacked spectral matrix is formed by simply adding

together all of the spectra selected by the program.

Description

This program consists of a main program plus three segments which are

scheduled by STACK. Control is transferred back to the main program by the

same mechanism used in AIJTRN, _i .e_. , a branch to a label variable in a common

block that has been assigned to a numeric label in the main program. The main

program's function is to: (1) allocate a common storage block, (2) initialize

parameters, and (3) schedule the three segments.

The first segment, STAC1, is used to input the names of the transfer

function files to be stacked. Up to 16 files can be specified. The input

files are opened and read, and the frequency averaging bands and sample

intervals of the different decimation levels printed. After the last input

file is read, control returns to the main program which schedules segment

STAG2.

The user, after looking at the printer output, specifies the frequency

averaging bands to be used. The standard frequency bands used by program

AUTRN are used as default values if no changes are made. The user also

specifies the sample intervals to be used for stacking. There is one sample

interval for each decimation level computed by program AUTRN. Up to eight

values can be specified. In situations where more than eight sample intervals

are wanted, STACK must be used twice, producing two output files.

23

Page 28: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program STACK

Once the stacking frequency bands and sample intervals have been

specified, stacking is performed by summing the selected spectral matrices.

When the stacking is complete, the quality factor, transfer function, error

estimates, and induction arrows are computed.

Control is now passed on to segment STAC3 by the main program. The user

specifies the name of the output file the results will be written to, and the

file is created. Any creation errors result in an error message and the user

is asked to again specify an output file name. The results are written to the

disk file and it is closed. A summary of the stacked data are printed. This

is similar to the summary given by program AUTRN including the stacked

spectral matrices, transfer function, error estimates, and induction arrows.

Additionally the names of the input files used in the stack are reported.

The user then specifies if any more files are to be stacked. A negative

response terminates the program, while a positive response starts execution of

segment STAC1 again.

Special Requirements

Program STACK has no special requirements.

Program Loading

Program STACK and its three segments are loaded by executing the command

sequence shown in Figure 4-1. Binary relocatable modules are indicated by a

percent sign in front of their names. Module %REPLC serves the same function

as described in the section on the loading of program AUTRN.

Program Operation

Temporary ID segments are assigned to STACK and its three segments by

issuing the command

:TR,\STACK

which executes the commands contained in file \STACK shown in Figure 4.2. The

program is then run using the command

24

Page 29: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program STACK

Figure 4.1 Command sequence to load program STACK.

LDSTAC T-00004 IS ON CR&0300 USING 00002 BLKS R-0012

000100020003000400050006

0009

00110012

<LG,10 'MR,XREPt.C

MR.XSTACi MR>STAC2

RU,LO^D'R.99,3,0, '

SP.STAC2

'TR

25

Page 30: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program STACK

Figure 4.2 Command sequence contained in files /STACK and \STACK. File

\STACK is used to restore program STACK, and file \STACK Is used

to off it.

/STACK T-00004 IS ON CR-0>0300 USING 00001 BLKS R-000S

0001

0003 0003 0004 0005

RP, STACK RP,STAC1 .

RP^STACS TR

\STACK T-00004 IS ON CR0<0300 USING 00001 BLKS R-000S

0001 'OF,STACK0003 «OF,STA<C10003 'OF,STAC20004 »OF0005 <TR

26

Page 31: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program STACK

:RU,STACK

After STACK has been run, and no more use is anticipated, the command

:TR,\STACK

is given to execute the commands shown in Figure 4.2, which returns the

temporary ID segments to the system.

27

Page 32: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

5. Program LSTRF

Purpose

Program LSTRF is used to list the contents of transfer function files

created by programs AUTRN and STACK.

Program Description

This program is very straight forward in operation. The user is asked

for the name of the transfer function file to be listed. If the file exists,

a copy of the standard transfer function file summary like those printed by

programs AUTRN or STACK is printed. The files are then closed. If the

specified file cannot be opened, an error message is written. After either of

these actions, the user is asked if any more files are to be listed. An

affirmative response starts the whole process over, while a negative response

stops the program.

Special Requirements

Program LSTRF has no special requirements.

Program Loading

This program is quite simple to load. The following commands are used:

:LG,2

:MR,%LSTRF

:RU,LOADR,99,6,0,0,2

:SP,LSTRF

Program Operation

Since LSTRF has no segments, it does not need an ID segment assigned to

it if it is run using a File Manager :RU command. The following command is

used to run the program:

:RU,LSTRF

No commands are necessary when the program completes execution.

28

Page 33: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

6. Program PLTRF

Purpose

Program PLTRF is used to plot the induction arrows computed by programs

AUTRN and STACK. This provides an easy way to look at the results of the

transfer function analysis.

Description

The user supplies to PLTRF the name of the transfer file to be plotted.

If the file can be opened, processing continues, otherwise an error message is

displayed and the user asked if another file should be plotted. Once the

input field is opened, the user indicates the scaling factor for the plots,

the max imum-length induction arrow to plot, and the comment field that will

appear on the plot. The user can also indicate if more than one copy of the

plot is desired. The actual plotting procedure then begins.

The generation of a plot consists of three steps: (1) generation and

sorting (in blocks of 64) of plot vectors, (2) merging of the sorted plot

vectors, and (3) rasterizing and plotting of the sorted vectors. The first

function is carried out by PLTRF, while the last two functions are performed

by programs MERGE and PLOT respectively. The last two programs are described

in greater detail in D. V. Fitterman, Geomagnetic data utility programs for

the HP9640A, USGS Open-File Report 81-360, 1981.

PLTRF begins the plotting procedure by creating a file named "VECTRS" to

put the plot vectors into. Data from the first decimation level is read and

used in annotation of the plot. Dashed border lines to aid in trimming the

plots are drawn, as well as indicating the limits of the plotting area. Any

vectors which have an end point outside of this area are not plotted.

Subroutine ARROW is used to plot the data from each decimation level, one

frequency band at a time. When the last decimation level has been plotted,

29

Page 34: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

the input transfer function file and the vector file are closed. Program

MERGE is scheduled to merge the sorted vectors, and when it is done program

PLOT is scheduled to draw the plot. If more than one copy of the plot is

required, the sorted vectors are saved and PLOT outputs the plot again. When

the last copy of the plot has been made, file VECTRS is purged, control passed

back to PLTRF, and the user asked if another file is to be plotted.

We will now discuss the operation of subroutine ARROW. This routine

plots the in-phase and out-of-phase induction arrows. The sense of the in-

phase arrows is reversed 180 degrees, while the out-of-phase arrows are not.

The out-of-phase arrows are plotted with dashed lines and the in-phase arrows

are plotted with solid lines. If the X and Y component error estimates are

smaller than the maximum of the in-phase and out-of-phase induction arrows,

rectangular boxes centered on the ends of the induction arrows are plotted.

The period, quality factor, and number of data blocks in the stack are printed

beside the induction arrows.

The induction arrows and their error boxes are not plotted if either

arrow is greater than a user-specified maximum value. If no data were stacked

for a particular frequency band, ARROW will neither plot the small cross at

the arrow origin nor the values of T, QF, and NSTK.

Special Requirements

The vectors generated by this program are written into a file called

"VECTRS". The user must be sure that another file by this name does not

exist. If it does, a creation error will result when PLTRF is run. Any other

programs that use the plotting programs MERGE and PLOT should not be run

concurrently with PLTRF as this will cause problems. Finally, programs MERGE

and PLOT should be restored before PLTRF is run. This procedure is described

in the Program Operation section below.

30

Page 35: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program PLTRF

Program Loading

Program PLTRF uses some of the routines in the plotting library. These

routines are supplied after the loader pauses with undefined externals

specifying the needed routines. The procedure to use is as follows:

:LG,2

:MR,%PLTRF

:SYRU,LOADR,99,6,0,0,2

At this point the loader will print a list of the undefined externals and

suspend. Continue loading by issuing the command sequence below:

:MR,%PLTLB

:SYGO,LOADER,2,0,1

:SP,PLTRF

Program Operation

Before PLTRF is run, temporary ID segments must be assigned to program

MERGE and PLOT to prevent SC05 scheduling errors from occurring. This is

accomplished by issuing the command

:TR,\PLTRF

31

Page 36: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Program PLTRF

Figure 6.1 Command sequences contained in files /PLTRF and \PLTRF. File

/PLTRF is used to restore programs PLTRF, MERGE, and PLOT, and

file \PLTRF is used to off them.

/PLTRF T-00004 IS ON CR&0300 USING 00001 BLKS R-0004

0001 »RP,PLTRF0002 «RP,,MERGE0003 !RP,PLOT0004 . :TR

\PLTRF T-00004 IS ON CR33300 USING 00001 BLKS R-0004

0001

00030003

0004

'OF,PLTRF 'OF,MERGE OF, PLOT TR

32

Page 37: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

7. Appendix A - Data Formats

There are three file formats used by the programs discussed in this

report that are described below. They are:

1. Integer Format - the form of input files for program AUTRN.

2. Temporary Real Format - used by program AIJTRN to store input

data during processing

3. Transfer Function Format - the form of output files from AUTRN

and STACK, and the form of input

files for STACK, LSTRF, and PLTRF.

Integer Format

Integer format files are created by program SLECT, which is described in

D. V. Fitterman, Geomagnetic data utility programs for the HP9640A, USGS Open-

File Report 81-360, 1981. These files consist of a 128-word header record,

followed 128-word data records. The data records contain 128, 16-bit integer

data words. The values of these data words should lie in the range of 0 to

4095. The units of the data are counts. Any unused data words at the end of

the last record are set to zero.

The header record has essentially the same format as Source Tape Files

produced by program TRANZ for the first 60 words. Additional information is

added to the remaining portion of the record by other processing programs (see

USGS Open-File Report 81-360). The header-record format is described in Table

7.1. Some of the parameters are not used by any of the programs described in

this report, but have been included for completeness.

33

Page 38: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix A - Data Formats

Table 7.1 Integer Format file header record format

Word Contents

1 Transcription version number

2 Day of year of transcription

3 Year of transcription

4 Tape file number (0-32767)

5 1st and 2nd character of location code (ASCII)

6 3rd and 4th character of location code (ASCII)

7 Cassette ID number (0-99)

8 Instrument number (1-31)

9 Scanrate (0-7), NRATE (Original sample interval = 2** (NRATE-1)

seconds)

10 Channels per scan (1-7), NCHAN

11 Clock reset time, hours

12 Clock reset time, minutes

13 Clock reset time, day

14 Clock reset time, month

15 Clock reset time, year

16 Clock off time, hour

17 Clock off time, minute

18 Clock off time, day

19 Clock off time, month

20 Clock off time, year

21 Stop watch time, minute

22 Stop watch time, second

23 Stop watch time, tenths of second

24 Number of words per cassette record

25 Number of cassette records per disk record (always 32)

26 Number of words per tape record, NBUFL

27-51 Comment field (50 ASCII characters)

52 Number of words per subrecord, NWORD

(NWORD = NSCAN*NCHAN + 8)

53 Number of scans per subrecord, NSCAN (NSCAN = integer (24/NCHAN))

34

Page 39: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix A - Data Formats

Table 7.1 Continued

Word Contents

54 Hx gain in nT/2048 counts (Value of 0 indicates a default value of

1000 nT/2048 counts.)

55 Hy gain

56 Hz gain

57 Ex gain, >0 north end (+), <0 south end (+)

58 Ey gain, >0 east end (+), <0 west end (+)

59 Ex line length in meters

60 Ey line length in meters

61 NHOUR (Starting time of data segment)

62 NMIN (Starting time of data segment)

63 NSEC (Starting time of data segment)

64 NDAY (Starting time of data segment)

65 NYEAR (Starting time of data segment)

66 Number of data points in data segment, (0-32767) Set to -1 when

greater than 32767. Then use FNPT in word 127 and 128.

67 Decimation number, NDEC. Equals 1 for no decimation.

68 Original sample interval in ticks (1 tick - 1/2 second)

69-71 Reserved

72-126 Not used.

127-128 Number of data points in floating point format.

35

Page 40: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix A - Data Formats

Temporary Real Format

Program AUTRN creates three work files named "..XX..", "..YY..", and

"..ZZ.." that have Temporary Real format. The file contains only real data

records which are 128 words long. In each record there are 64 real data words

corresponding to the magnetic field component in nanoteslas (nT). Conversion

from the integer count data in an Integer Format file to the Temporary Real

Format is accomplished by using the formula

ngt -f «

H (nT) = |~| * (counts - 2048)

where the gain term is obtained from the Integer Format file header record.

Transfer Function Format

Files using the Transfer Function Format are created by programs AUTRN

and STACK. This type of file serves as input for programs STACK, LSTRF, and

PLTRF. The files contain 256-word records and no header record. The results

of one decimation level are stored in a record, and each record contains the

results of four frequency band averages. Table 7.2 gives the names,

descriptions, type, and address of the various data stored in the file. The

addresses are given for accessing the data in integer, read, and complex

mode. The addresses are those of data in the first frequency-averaging bin.

To access data in the next frequency bin add 64, 32, or 16 to the integer,

real, and complex data type addresses respectively.

36

Page 41: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix A - Data Formats

Table 7.2 Transfer Function record format. The addresses are for the first

frequency-averaging band of a decimation level.

Variable

FREQ

DT

IDEC

NSTK

SXX

SYY

SZZ

SXY

SXZ

SYZ

HI

H2

El

E2

QFSTK

QFCUT

Al

ANGI

AO

ANGO

IFLO

IFH1

NDEGR

Type

r

r

i

i

r

r

r

c

c

c

c

c

r

r

r

r

r

r

r

r

i

i

i

iadr

1

3

5

6

7

9

11

13

17

21

25

29

33

35

37

39

41

43

44

47

48

49

50

radr

1

2

3

-

4

5

6

7

9

11

13

15

17

18

19

20

21

22

23

24

-

25

_

cadr

1

-

2

-

-

3

-

4

5

6

7

8

9

-

10

-

11

-

12

-

13

-

_

Description

frequency (hz)

sample interval (sec)

decimation level

# of blocks stacked

X power spectra

Y power spectra

Z power spectra

X, Y cross power spectra

X, Z cross power spectra

Y, Z cross power spectra

X, Z transfer function

Y, Z transfer function

X error estimate

Y error estimate

stacked spectra QF

cutoff QF

in-phase induction arrow

in-phase arrow azimuth

out-of-phase induction arrow

out-of-phase azimuth

low harmonic number of stack

high harmonic number of stack

number of degrees of freedom

per stacked block

37

Page 42: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix A - Data Formats

Table 7.2 Continued

Locations 51-64 are not presently used, and are set to zero.

Type code: i - integer, r - real, c = complex

The data are stored in an integer array IBUF which is equivalent to a real

array RBUF and a complex array CBUF.

DIMENSION IBUF(64), RBUF(32), CBUF(16)k

COMPLEX CBUF

EQUIVALENCE (IBUF(l), RBUF(l), CBUF(l))

The data are then accessed by using the value of iadr, radr, or cadr

corresponding to the data type.

For example: IDEC = IBUF(5)

SXX = RBUF (4)

HI = CBUF(7)

38

Page 43: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

8. Appendix B - User's Guide

This appendix gives examples of the terminal input and output, and

printer/plotter output for the operation of the programs described in this

report. The output are presented in figures. On the figures you will notice

circled numbers, which correspond to the description in the text.

Refer to Figure 8.1 for the following discussion.

1. This command transfers control to file /AUTRN which restores program AUTRN

and its eight segments.

2. Program AUTRN is run.

3. The three input files are specified. They each contain 2048 data points

or 16 blocks, the sample interval is 8 seconds, and a total of five levels

of output can be obtained.

4. Five levels of output are selected, no input data overlapping is desired,

and the output file is called "NRTEST". The list of standard spectral

harmonic averaging bands is chosen.

5. The stacking quality factor is set at 0.0, which will cause all blocks to

be used in the stack. The stack is to be a "straight" stack meaning all

data that exceeds the quality factor cutoff will be used. No reporting of

BLOCK or STACKED results will be printed, but plots of the original data

will be made whenever 16 or less blocks of data remain. One block of data

produces a plot 1.28" long.

Figure 8.2 shows an example of some of the data plotted by the running of

AUTRN. Shown as the X, Y, and Z fields which will be used as input to the

third (IDEC=3) analysis level. The data have been low-pass filtered and

decimated twice. The new sample interval is 32 seconds. The scales are

always 50 nT/inch for Z and 100 nT/inch for Y and X. If the data exceeds the

plotting limits it folds over. An example of this can be seen on the Y

39

Page 44: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.1 Terminal output for program AUTRN.

iTS./AUTRN

|RP,AUFR1:RP,AUTR2JRP,AUFR3 »RP,AUTR4 |RP,AUTR5 :RP,AUTR6 iRP,AUTR7 :RP,AUTR3 :TR :RU,AUTRM

42

X-COMPONENT FILE?-.N? RF20X Y-COMPOMENT FILE? MRF20Y Z-COMPOMEMT FILE? MRF20Z NPT= 2048 N3LK= 16 DT= 8.0 _J MAXIMUM NDEC= 5 DESIRED HD=C? 5 50% OVERLAPPING? (YE OR NO)

-NAME OF RESULT FILE? MRTEST SPECTRAL 3A/ID HARMONIC NUMBERS

BAND LO HI N 1 3 10

2 " 9 163 15 224 21 28

ANY CHANGES? (YE OR MO) NOQUALITY FACTOR CUTOFF? (3-1) 0STACK TYPE? (0=ST2AIGHT, 1=NCN-DEGRADIMG, 2=MDSPECTRAL REPORTING? (0«ALL, 1 =5T'\C;<ED, 2=NOME)DATA PLOTTING THRESHOLD? (<=3LOC^5) 16CONTINUE PROCESSING? (YE OR NO) YE

WITH 2

OF LOWERING) 0

40

Page 45: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.2 Example of input data plotting by AUTRN.

NRTESTs IDEO3 DT- 32.0 (100*DT SEC/INCH) SCALECNT/INCH) 2« 50.00 Y-100.00 X-100.00

11111 M IT n i n 11111111 rn"i i rnrni \'\

I 1 M i I I I t I I II I I I I I I { I I III I I i I I I I I

41

Page 46: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

channel. The name of the output transfer function file is printed for

identification.

While AUTRN is running, the user will notice that the CPU display

register lights are changing. The display contains the current decimation

level number in bits 9 through 12, and the current data block being processed

is shown by bits 0 through 8. Notice that the number of blocks processed at

each decimation level decreases by a factor of two from the previous level.

Figure 8.3 shows the summary printed by AUTRN when all of the input data have

been processed. It is the same data written into output file NRTEST. The

summary is divided into two parts: the first part contains the spectral

matrix, and the second part contains information about the transfer function.

1. Each section has a header which tells the name of the output file

(NRTEST), the cutoff quality factor value used (0.000), the percent

overlapping of the input data (0%), and the harmonic numbers of the four

frequency averaging bands (Bandl=3-10, etc.).

2. Each decimation level contains four lines of output, one for each

frequency band. Both parts of the summary contain the arithmetic average

frequency in hertz of the band (FREQ), the sample interval in seconds

(DT), the number of blocks stacked (NST), and the quality factor (QF) of

the stacked data. The number of degrees of freedom for the spectral

estimates is twice the number of harmonics in the stack multiplied by

NST. For example, for the first band of the first decimation level, this

is 2 * (10-3+1) * 16 = 256.

3. The marked columns contain the power spectral estimates (SXX, SYY, and

SZZ) and the cross power spectral estimates (SXY, SXZ, and SYZ). These

numbers have not been normalized by the length of the input data

sequences, the sample interval, or the number of data values in the stack

42

Page 47: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.3 Example of summary printed by AUTRN.

SUMMARY OF RESULTS' FILE»NRTEST QFCUT-0.000 OVERLAP- 0* BAND1» 3-19 BAND2" 9-16 BAND3-15-22 BAN04-21-2S

FREQ(-306348

xCXl. 312207( 2>J,01S066^ 'I- 023926

.303174

.036104. 009033.011963

.001537

.003053

.004517. 00S9S1

.000793

.001526

'. 033991

. 900397,000763.001129. 001495

DT3.S.S,S.

16.16.16 .16 .

32.32.32.32.

64.64.64.64.

123.133.128,123,

0000

0

0

0

000

0

0

0

0

3

30

, 0

0

NST16161616

33S2

4444

223

2

1111

QF.53. 11.04.03

.56

.09

. 0a

. 11

.32

.30

. 12

.06

.64

.92

.60

.09

3789.'96

.65 \

SXX.305E+05.696E+04.439E+04. 151E+04

. 136E+0S

. 131E+04

. 123E+94

. 149E-I-04

. 102E+07

.383E+04

. S77E+03

.405E+03

.653E+06

.734E+04

.245E+04

. 146E+04

.672E+06

.952E+0S, 646E+04. 1S6E+04

SVY SZZ SXV. 303E+06 . 53SE+04 . 166E+0S .. S33E+04 . 366E+03 . 131E+04 .. 40SE+04 . 377E+03 . 199E+04 .. 149E+04 . d03E+03 . 686E+03 .

. 462E+06 . 1S1E + 05-. 136E+0S .

. 345E+04 . 97SE+02- . 258E+03- .1£ I7E + -'* 671E j*> ^2 . 243E + 02 .173E+04 .774E+02 . 537E+03 .

.247E+07 . 344E+0S- . 353E+06

.343E+04 . 106E+03-, 10SE+04. 103E+04 . 27SE+02-. 101E+03-.401E + 03 .351E-H33-. 131E+03-.

. 1S1E+07 . 901E+0S-, 246E+06 .

. 107E+05 . 400E+03-. S73E+03 .

.179E+04 . 694E-f02-. 437E + 03 .

.406E+03 , 263E+-02-. 107E+32-,

.166E+07 . 3S4E+05 . 740E+04 ,

.306E-I-06 . 110E + 05-.303E-I-05

.249E+05 .622E+03 . 233E+04

.251E+04 .S47E+02 . S43E+03

62SE+0S .301E+04 .367E+04-.623E+03-.

213E+06 .109E+04 .670E+03 .623E+03-.

133E+07 .793E+03 .37SE+-03 .207E+02 .

.740E+06 ,367E+04 .1S4E+03 ,513E+03 ,

.763E+06159E-I-06-333E+04, 11 1E+04

SXZ774E+04-S61E+01-130E+03-9S6E4-03-

3"33E-»-0S-131E+03436E *' 1?Sis0E+0a-2S4E+06-725E+03-160E+02-170E+02-

177E+063.89E+03-209E+03-,702E+0a-

133E+06246E+0S-.S13E+03-, 352E+03-

®

SUMMARY or RESULTS! FILE-NRTEST QFcuT-a.aoe OVERLAP" <&?.BANDl- 3-10 RAND2" 9-16 BAND3»lS-33 BAND4-21-23

FPEQT006343

fe. .012207(2V4.013066V> ' [_. 023926

.003174, 006104, 009033. 011963

.001537

. 003052

. 004517

.005931

. 000793

.001526. 003253. 003991

, 000397.000763. 001129001495

DTS,323

16 -161616

32323232

64646464

128133138133

,0

. 0

.0

.0

.3

.0

. 0

. 0

.0

.0

.0

. 0

.0

. 0

.0

.0

.0

.0

.0

,3

NSTIS161616

333g

4444

a3

22

1111

GIF.52. 11.04.03

.56

. 09 '

.02

. 1 1

.82

.30

. 12

.06

.64

.92

.60

.09

37!39. 96.65

HXR. 1065 -. 0344 -

- . 035.0 --.0714 -

. 1514

.0849

.0349 -

.0019 -

. 1773

. 0056 -

.0307 -,0303 -

. 1576, 1375 -.0738 -.0547 -

. 1413. 3065. 1327 -

. .0533 -

HXI HYP HVI EPX.0995 -.0904 -.0106 .0475.0564 -.0349 .0035 .0707.1239 -.0155 -.0016 .0519.0796 -.0145 -,0304 .1094

.0146 - 1332 .0059 ,0493

.0196 -.0309 -.0363 .1131

.0122 -.0247 .0017 ,1307

.0333 -,0901 -.0487 .1033

,0303 -.1359 -.0315 .0281.0759 -.0-657 .0226 .1370,0422 -,0669 -.0309 .2140.0993 -.0360 .0003 .3403

.3331 -.1699 -.0430 .1374

.0377 -.1139 .0333 .0649

.1049 -,0636 -.0-007 .3936

.0437 0273 -.0176 .1055

.0643 -.0374 -.0366 .1790

.1050 -.1773 .0023 .0405

.0953 -.1164 ,0033 ,0479

.1335 -.0493 .0040 .0834

EPV.0395. 3773. 9539. 1100

, 0313. 0964.1133.0959

. 0130

, 1446.1601. 3420

, 02410537.2439.2004

, 1139. 0226. 0344. 0657

M!. 1397. 0334. 0333 -.0723 -

.3016, 0904.04230901

. 2173,0659. 0736.0471

.2313

. 1703

. 1001

,0613

, 14673725

. 1765

. 0729

. 131E+05-

.643E+-03-

.S3SE+03-, 1S0E+03-

.257E+05-

.7SSE+02-, 157E+01-. 131E+03-

. 720E+05-

.370E+03-

.383E+01-

. 397E+03-

.705E+05-, 10SE+04-.369E+03-. 763E+02

. 143E+05-

. 133E+05-

. 163E+04-

. 367E+03-

<DANGI

-40 . 3-73.9156.116S.S

-41 . 3-20 . 0-35.2-3:3 . 3

-35.3-8.5 . 2-65 . 3-49 . 9

-47,3-41 . S-43.327.0

-14.3-40.7-41 . 3-43.4

SYZ.227E+05-..630E+03-.. 461E+03-. 120E + 03- .

.612E+05-.

. 119E+03-,, i3'2*$E'* |92 ,. 17SE + 03-.

.249E+06-.

.295E+03 .

.6-05E+02-.

.163E+03 .

,3fi4E-t-05-.. 160E+04-., 174E + 03 .. 326E+02 .

. HSE-t-05-.

. 440E+05- ., 344E+04- ,.231E+03-.

104E+05156E+03153E+0355SE+03

298E+0S330E+01asaE+oa103E+03

33SE+0-6154E+03191E+02140E+02

351E+06943E+02313E+03213E+0.3

169E+0>63 5 1 E * 0'5120E+04166E+03

AO ANGO0901 -173.0565 176.1330 -179,0852 -159,

0157 33.0417 -61.0123 172,0537 -133,

0363 -310793 1630S23 -143,0998 179.

2354 -3,0923 1611049 -1790462 -157,

0740 -391050 10961 1751336 173

2531

0g29

. 4, 435

. 7,0

6, 6

!s, i. 3

43

Page 48: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

since we are only concerned with ratios of the numbers for transfer

function analysis. Notice that the cross spectra are complex numbers.

4. The second part of the summary contains the real and imaginary parts of

the X and Y transfer functions (HXR, HXI, HYR, and HYI). The columns

labelled ERX and ERY are the 95% confidence limits on HXR and HXI, and HYR

and HYZ respectively. The quantities AI and ANGI give the magnitude and

phase of the vector made of HXR and HYR. It is the in-phase induction

arrow. When plotted by program PLTRF, its direction is changed by 180°.

The quantities AO and ANGO are the out-of-phase induction arrows magnitude

and phase derived from HXI and HYI. PLTRF does not change its direction

when it is plotted.

Figure 8.4 shows the input for another run of AUTRN.

1. This time the user has selected a different set of frequency averaging

bands.

2. The quality for accepting data has been set at 0.33. Also a non-degrading

stacking has been selected. This means that the analysis of any data

block must equal or exceed 0.33 before it is considered for stacking, and

the addition of this data to the previously stacked data cannot lower the

stacks of QF below 0.23 (0.33-0.10).

3. Only stacked results have been selected for reporting. This means that a

"BLOCK" and "STACK" summary will be printed whenever some data are

stacked.

Refer to Figure 8.5 for an example of a block and stack summary.

1. The first line of the block summary gives the decimation level (1), the

current block number (9), the cutoff quality factor (0.330), and the

sample interval (8.0).

44

Page 49: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.4 Example of input to AUTBN showing user selected frequency bands.

CONTINUE PROCESSING? (YE OR MO) YE

X-COMPONENT FILE? MRF29X Y-COMPONENT FILE? NRF20Yz-COMPONENT FILE? NRF23ZNPT= 2,1548 N3LK= 16 DT= 8.0MAXIMUM NDEC= 5DESIRED NDEC? 450% OVERLAPPING? (YE 03 NO)NAME OF RESULT FILE? NRFTR2SPECTRAL BAND HARMONIC NUMBERS

NO

BANDI

234

LO39

1521

HI10162223

ANY CHANGES?BAND

1?2?3?4?

LO36

1320

? (YE OR HI (>l f

7 14 21 23

NO) YE <=64)

v_>

QUALITY FACTOR CUTOFF? (0-1) .33 STAC.K TYPE? (3=STRAIGHT, 1=MON-D5Q!UDING f 2=ND SPECTRAL REPORTING? C^ALL, 1=3TAC!<ED, 2=NONE) DATA PLOTTING THRESHOLD? (< = BLOC!<S) 'A CONTIMflF PROCESSING? (YF OR NO) YF

171 TH OF LOWERING) "3

45

Page 50: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

oCOa) g

00

0)M

<3>

COt- Qro rot- 1

G1 G

1 G' G

' G> G'

G* G

" G

* G*

1 +

+

-f +

+

-f

-f +

1

UIU

IUIU

IUIU

I U

IUI

UIU

Ico G' e> oj T

in <D >7i

1-1 eo(fl G> G

' U1 OJ T

iD

01 ^1 CO

fv. G' G

- Ul o

j CO (D

CT *-t G

' T

G> G- 1-1 1-1 1-<

<D 01 OJ T

III

1

,-t PI P

i i-i ro o

j nj O

J OJ i-t 1-1 TH i-i G> G

- G1 iS- G

- G- G

' -» G P

I G' 01 G

' G

* G' G

1 G" G

' G" G

* G* G

1 G1 G

* G* G

1 G1 G

* G* G

1 G* G

1 G1 G

i G" G

" G' G

* G*

UIU

IUIU

IUJU

IUIU

IUIU

IUIU

IUIU

IUIU

JU

IUIU

IUIU

IUIU

IUJU

IUI

T G' ui oj t

T G1 r<- T

T G- PI 01 in D- 1-1 M

co nj in PI 01 01 ^ G1 1-1

t T

G- CT U

l Ul T

Ul P

I rH O

J 1-1 CO r- i-f 01 OJ T

m O3 1-1 ^

i -H U

l CT U1 01 (D

G' T

G' -< O

J ,-t (D U

l OJ T

iD G

' OJ G

' PI >'D OJ iD

G- CO (D

* ID CT

oj T-I ui co oj oi-r 01 IT) i-< T

co co co co ui CT eo us oj CT 01 ^nj-^-t r-

iii

i

G- G

' G- T

171 OJ

-^ -^ O

J 1-1 G

1 G> G1 G> G

' G1

G1 G

' G

1 G>

UIU

IUIU

IUIU

I U

IUI

UIU

I<S <Z' G

- CO (D 01

G' O

J CO **

G-iJ

'G'T

PIU

I U

1M

U

I'H

® G> G

- OJ O

J OJ

CO CT <D U

l

III

1

1-1 T T

OJ 01 O

J 01 01 01 OJ O

J OJ OJ G' G

' G' G

- in G

' i-< *-t G' O

J i-» OJ S>

G' G

* G' G

' G* G

* G G

1 G( G

1 G' G

' G* G

1 G' G

( G* G

1 G* G

1 G' G« G

* G' G

" G1

UIU

IUIU

IUI U

IUI U

IUIU

IUIU

IUIU

IUIU

I UIU

IUIU

IUIU

I UIU

IUIU

IG- in IH CT f - CT ui oj 01 <D T

>ij »- ui co co G- oj <D 01 r-- PI i-< ui CT >DID

G' (D

G- f-- T-- -< N

i-< 17) Oj CT G> *- 01 O

J CT r-- UU

D f ©

f O

I d) CO

ID CT G> U

l G' P

I G- CT O

J <fl Ul CT OJ CT OJ CT O

J CT Ul r-- CT -» T

Ul U

l Ul

,_! _t ,-t o

j OJ ,-» i-< 171 O

J 1-1 1-1 TH OJ T-- PI P

I T U

l 1-1 T CT i-< iD

T CT 1-1

1 1

II

O ip

G1 01 O

J OJ

OJ OJ

1-1 1-1G

' G* G

1 G* G

1 G*

G' G

' ©

G*

UIU

IUIU

IUIU

I U

IUI

UIU

I <S CO G

- CT CT ru

G- G

- U

) T-

G> T- <S> G

1 1-< CT ©

CO G

- IS

<3> T G

1 fD T

- T

TO

! -f CT

III

II

II

OJ f 01 O

J OJ OJ O

J ro 01 O

J OJ O

J i-< « G

' © G

G- <5- 1-1 1-1 1-< 01 1-< 01 G

- ©

G' G

1 G1 G

" fij G" G

" G" G

" G* IS* G

' G* G

" G* G

1 *S G

" G« G" G

1 G' G

* G' G

*

<g. G'

+

1 U

IUI

oj?

\J

*

i

i-» G"-i -^ *-« G

1 01 G1 P

I G'

G' G

' G1 G

' G' G

1 G G

' G- G

1 1

-f 1

1 1

+

-f -f 4

4

UIU

IUIU

IUIU

IUIU

IUIU

I f U

l PI CO I" O

I 01 ,-f G"-<

T

(D 1-1 G> U

l i-i '-i Ul CT U

l 01 ID

G >1J U

l CO ID i-< (D

CT OJ O

J CT <D PI O

J ,-t OJ .-t r--

1 '

G'G

' G

-G'

, ,- v

44

" fT

l) U

IUI

^ilX

O

J01 I

tDH

1

CT

G'

i-t G- 1-1 G

' G1 G

OJ 1-1 O

J G1

i-< G' G

' G1 G

' G* G1 G

1 G G

' G1

1 4

1 4

4 4

4

1 4

4

UIIV

UJU

IUIU

IUIU

IUIU

Js> T

oit r- 01 1-1 in CT ui

t iD U

l m iD

(D G

- T P

I CO VD iD

01 CT G1 G

' i-< T U

l Ul O

J

CT 1

1

n G

-G'

^

1 1

f- U

IUI

01 O

JT

21

OJO

Jr-cn

G-

OJ OJ

CO 1

1

-J©iniilxUl

\

0u.Ul1

OU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

JUIU

IUIU

IUI

E-U

IUIU

IUIU

IUIU

IUIU

IUI

u. <D ui oj t-- r-- G- ui ui UIT --I co oj oj -r co * 01 to G- * co G< oj * co Q ID oj ui 01coc<) 19 oj T-I { -

O <D T

CO * 1-1 T N 1-1 OJ T

(D i-t (D CO >7) G' OJ G- CO PI OJ U1 T OT* U1

(D OJ <3> -» OJ Ul -T 01 -T 01r- ui ui oj 0101 [ - CT oj co «D T

CT in r- (D * <-* CT -r »-«in oj «T» --i m

CT r-- ro < : -» oj ui oj CT -< ojCT i7i -M

(D OJ -r 010117) f

-» -» in CO 011-1 n

j 011-1 ^-t ^i O

J oj 1-117,1-1 in

<?i U

l -H in

-H O

J -» CT 1-101

II

CO G

" G" G

1 *2* *S G

" G

" fl^

UIU

IUIU

IUIU

I U

IUI

i-t ®

G- G

- 1- r- Ul

T 'D

©

G- G

/ CT Oi f

Ul f

<$ <S* G' fD

*D CT

0) 01

G

* G' G

1 OJ i-* 01

,-t f1-

©§4 -4

UIU

I U

10JT

in

r--oj /*

1-11-1

(f\

Ul

II

II

II

Mru ro f

01 01 oj 01 01 ro PJ oj oj oj G- G- <$ G- G- G- G- G1 G- oj o

n G>

-- <S* *S Q

G1 G

' G' G

* O G« ©

G* G

" *S ii' *S

G* G

1 G* G

( G1 <& G

* C^ G1 G

1 G'

Oil

-4

44

-4

44

4-4

44

-4

44

44

44

44

44

44

44

E

-UIU

IUIU

IUIU

)U1U

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

IUIU

Ij 01 f - oj t-t ui f

r-- ro ui ui oj i ro «) ui G

' oj <D i-< CT oj r- oj co 01 roZ

) CO 01 T O

J CO CT -r< <D (D (D

<D n O

J i-< T O

lf OJ (D

ID <S iD

f-- T f U

l U

l CO 01 d) O

J CO iD t-- G

- M 01 t-i T

OJ CO O

J OJ 17) G

' 1-1 OJ T

iD i-< i-< T

G>uj T

01 ,-» 1-1 ui oj -r< 1-1 in 01 oj oj co VB r>- co co * ID oj -^ ru n oj -H ID

i i

o_I IJJ X

> M

> M

M *-t O

J > >

> >

OJ inin QL x

> r-.| :< x

> -< nj >

> »-i 'U

^ >

OJ X

>

1 1

1

,-. >-i

O>

*

>

0

CJ5oj r-.i r-j M

z: o z: u,

(.7 i r :t ;r -T a: o

CD G

-G1

n

i i

UIU

I1-1

co-r

^

OJ<Sllit

CO 01ro

U

l 1

1 Q

oj G" G' <-< 1-1 G

' ry 1-1 ro o G

" G' G

' <S> G* G

1 G1 <$ G

' G*

01 1

4

-f 1

1 4 4

1 -f

4

t-UIU

IUIU

IUIU

IUIU

IUIU

I_j 01 1-1 r-- r- in CT * 01 CT CT3

CO <S CO { - G- -rt T-< ID

17) Ul

ui co 1-1 ,-) r- ID ID t-- r-- ui CT

i i

o

<r o

x >

>-

i- ui x >

ct a. e?

01 Cf N

C-.I Q-. Ct n

z:u. x

ruuj^

r ior u.

.T. a o

Page 51: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

2. The rest of the summary has two columns for each frequency-averaging

band. Numbers in the second column are the imaginary part of

complex quantities. The quantities displayed include: frequency, power

spectra, cross power spectra, residual cross spectra, various coherencies,

transfer functions, induction arrow estimates, and the quality factor.

The remaining portion of Figure 8.5 is called the stack summary and is

described below.

3. The first line gives the decimation level, block number, sample interval,

and number of blocks which have been stacked in each of the four bands

(band 1=9, band 2 = 4, band 3=1, and band 4=1).

4. As before, the results of each frequency band are given in two columns.

The results include: frequency, transfer function, error estimates,

induction arrow estimates, and the stack quality factor.

The last part of the stack summary contains plots of the data from the block

just stacked and their power spectra.

5. The first line gives the minimum (RMIN) and maximum (RMAX) value for all

three power spectra plots. Also printed are the full scale values of the

original data plots. In this example the end points of the scales go

between +5nT and -5nT on all three plots.

6. The power spectra plots are logarithmic in power (left to right) and

linear in harmonic number (top to bottom). Viewed from left to right the

spectra are of the Z, Y, and X channels. Along the harmonic number axis

are four vertical bars which show the limits of the four frequency

averaging bands. The harmonics run from one to 64.

7. The three plots to the right are the Z, Y, and X time series (going from

left to right). There are 128 points in on each plot. The scales are

automatically adjusted to keep the plot within the 1" allotted. The data

plotted have had a linear trend and average removed.

47

Page 52: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Refer to Figure 8.6 for an example of terminating AUTRN and starting STACK.

1. When the last data sequence has been processed the user types "NO" to the

query about continuing.

2. Program AIJTRN is shut down by issuing this command which automatically

causes the following 10 commands to be performed.

3. The stacking program is initialized with this command.

4. Program STACK is started running with this command.

5. The user specifies two files (NRTEST and NRFTR3) to be stacked.

At this point STACK prints the frequency bands and sample intervals of the

input transfer files (see Figure 8.7). The user needs this information to

decide on the harmonic bands and sample intervals to be selected for stacking.

Refer to Figure 8.8 for an example of inputting of stacking parameters.

1. The standard spectral harmonic bands are displayed.

2. The user decides not to use other spectral bands. The user can select

harmonic bands which do not exist in the input files, but no data will be

stacked.

3. Five sample intervals are selected for stacking. Each sample interval

corresponds to a decimation level.

4. An output file name of "NRFSTK" is selected, but the file already

exists. This causes a creation error. The user then selects an output

file name of "A".

5. No more data are to be stacked, so the program is stopped.

6. The user has decided that file NRFSTK should be purged, and file A renamed

to NRFSTK.

7. Program STACK is no longer needed so the command :TR, \STACK is given to

return its ID segments to the system. This causes the next five commands

to be executed.

48

Page 53: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.6 Commands to terminate AUTRN and run STACK.

CONTINUE PROCESSING? (YE OR NO) NO AUTRN : STOP 3-303

:~TR, \AUTRN -'- OF, AUTRN Y<J

AULRN ABORTED :OF,AUfRl:OF,AUTH2 tOF,AUTR3:OF,AUTR4 «OF f AUTR5sOF,AUTR6 :OF,AUTR7:QF,AUTR8

:TR,/STACK sRP,STACK:RP,STAC1 tRP,STAC2*RP,STAC3

:RU, STACK

INPUT MAM55 OF FILES TO MAXIMUM NUMBER OF INPUT

3E STACKED FILES IS 16

TYPE 'STOP' TO TERMINATE INPUT

NFL123

NAME MRTESTNRFTR3 STOP

SEE SUMMARY ON LINE PRINTER

49

Page 54: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.7 Summary of program STACK input files.

1 NRTEST BAND!* 3-10 BA;N.D2« 9-16 BAtfD3« 15-22 BANtr4«21-2:3DT« 3.0 16.0 32.@ 64,0 123.0

2 NRFTR3 BAND!" 3-10 BAMD2- 9-16 BANES-15-22DT- 8.0 16.0 32.0

50

Page 55: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.8 Example of input of stacking parameters

SEE SUMMARY ON LIME PRINTER

SPECTRAL 3AMD HARMONIC MU'HERS3AMD LO HI

1 3132 9 163 15 224 21 2S

AMY CHANGES? (YE OR MO) MO

INPUT 1-8 DT VALUES TO STAC r< VALJcS '{J/ST LJ ." 1:1 ASCENDIMS OR3E3 USE MOM-POSITIVE VALUE TO STOP

DT 8

16 32 54 123

I123456 VOUTPUT FILE NAME? MRFSTFCCREATIOU ERROR: FILE-M-7F3TK IE.OUTPUT FILE MAME? ASTACK MORE FILES? CYE OR NO) NO

STACK s STOP :PU,MRFST[< :RM, <\ t N2FS' :TR,\5TAC;-C

:OF,ST\C;< STACK A-30RTED

sOF,5TACl«OF,3TAC2

-2(1

:TR :TR./PLTRF\

51

Page 56: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

When program STACK finishes the stacking procedure, it prints a summary

similar to the one shown in Figure 8.3. The only difference is that at the

top of the summary a list of the input files is included.

The user now wants to print summaries and plots of some transfer function

files (see Figure 8.9).

1. Program LSTRF is run to list a file.

2. Files named NRFSTK and NRFTR2 are listed. The output for file NRFSTK is

shown in Figure 8.10. The output is similar in format to that of program

AUTRN described in Figure 8.3. After the last file to be listed is

printed, the user responds "NO" to the question "LIST ANOTHER FILE?" and

the program terminates.

3. Before program PLTRF can be run, it and programs MERGE and PLOT must be

restored by transferring to file \PLTRF.

4. Program PLTRF is run.

5. Transfer file NRFSTK is selected to have its induction arrows plotted. A

scale of 0.25 units/inch is chosen, and the maximum arrow length to be

plotted is 0.75 units, corresponding to a length of three inches. A

comment field which will appear near the top of the plot is input. The

user does not want multiple copies of the plot. The plot is now created

and printed.

6. The user does not want to plot any other files so an answer of "NO" is

given.

7. The ID segments of the three plotting programs are returned to the system

by transferring to file \PLTRF.

An example of part of an induction arrow plot made by program PLTRF is shown

in Figure 8.11. This figure has been reduced to fit onto a page.

1. The name of the input file and comment field are printed at the top.

52

Page 57: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.9 Use of programs LSTRF and PLTRF.

:RU, LSTRF (T)

TRANSFER FILE NAME? MRFSTKLIST ANOTHER FILE? (YE OR MO) YE

TRANSFER FILE NAME? NRFTR2LIST ANOTHER FILE? (YE OR NO) NO

LSTRF : STOP 0339 :TR,/PLTRF

JRP,PLTRFsRP, MERGE»R?,PLOTsTR

:RU, PLTRF

TRANSFER FILE NAME? NRFSTK SCALE? (UNITS/IMCH) .25 LARGEST ARROW TO PLOT? (UNITS) .75 COMMENT FIELD? « = 53 CHARACTERS)

EXAMPLE OF TRANSFER FUNCTION PLOTTING MORE THAN ONE COPY OF OF PLOT? (YE OR MOY NO

PLOT : STOP 0077 ' PLOT ANOTHER FILE? (YE OR NO) YE

TRANSFER FILE NAME? NRFTR3SCALE? (UNITS/INCH) .25LARGEST ARROW TO PLOT? (UNITS) .75COMMENT FIELD? (<= 50 CHARACTERS)

EXAMPLE OF PLOTTING WITH NO 3AT\ STACKEDMORE THAN ONE COPY OF OF PLOT? (YE OR NO) NO

PLOT : STOP 3077PLOT ANOTHER FILE? (YE OR NO) MO

PLTRF J STOP 000:3 :TR, \PLTRF

«OF, PLTRF PLTRF ABORTED

MERGE ABORTED :OF.?T.or

53

Page 58: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Ul

O .

3 .

3 "

3 3

& O

'3I-'

!-» .3

.3

A »

-* -J

Ui

ID r

u C

T> W

on ds

io --

J

ru ru

ru ru

to

to to

to.3

>3

>3 '3

a> d

co io

in

en ID

-vi

3 H

» ru

t-

in u

i -3

A

io ru

CT> i

-' to

- } o

n 03

t ©

»-"

Sio

(ii >

3 cn

to in

on *

. in

to &

u

i i

i i

«)i-'i-"3

A

i-1

-O

U<j3

m -j -

-a ro

A to

A i 3

-3

'3 '3

3

&

'3

ljA

to a

* cn

& ru

to on

'3 O

'3 i-1

fid

A A

--J

10

-O

'3 <

OA

u in

>3

0^1.

31-^

ff>

ro ro

i-'

in A

ro io

-j A

tr> '

&

3 1-

1 ru

i-'

- j -o

--j A

ru

a) r

o cn

uj

on on

--J

i i

i i

A A

A. i

-1 ru

i-1 ©

*

A u

i -o

co

- &

^ '3

lo «

j O

--J

to (J

> in

A

a> i-

1 s >

3

-o -o

ru

oci

in H

> ID

Ui-^lfl-J

.3 &

-3

-3

3

'3 >

3 '3

ro ro

i- .3

<o

ro o

n -o

» in

ro '£

> *-*

to a

> io

ff> cn

cn cr

> u

u u

-t^ 3

C>

'3 '3

ru ro

ru ro

3 0

") W

tT)

'jo -3

ru A

3 -

3 t-

» ^

on -o

ru on

A

ru --

J -o

--j to

in cn

i i

i 3

f '3

roA

& 0

5 tO

ro A

--a r

u-.

J (

O -

-J H

'

3 -

3 i

-1 1

-»ro

co H

* crj

-j to

ru '£

iOC

i tTi

'ii '£

i

1 1

1-3

>3

«3 >

3 ^

& U

l A

-.J

® .

3 u

i (J

i -J U

i 13

t-4

ru '3

t-»

3 >

3 CT

) ru

in t»c

i A -.

j <LI

CTI W

A

ru ru

>3 '

3 3

A in

to 3

lo lo

A

A (

O -

-J i-

'

3»-t-

»ru

(Ji &

-'J

10

i-"3

>3

H*

lo i-

* lo

to

1 1

1 ru

A *

. A-

J 1

0 I

-* -

O

3 io

in ru

3 H>

. .3 ru

A '3 <

ui 10

a) A

ru in

t(J i£

l CO

A

i i

in-.j

a> i

- J '£

> i-*

05

aiff)

'3-g

3 >

3 &

®

S)

-3 -

3 '3

in A

IUI-*

do

on&

ui

to i-

' in

to

* * --

J ro -j

lo io

lo lo

ru

ru ru

ru 3

>3

>3 >

3

A *

. A a

*

3 -

lo

CO

cr> ro

» f 0

O '3

*3

H*

10 1

0 O

-J

3 ©

in --

JU

<-O

CO

'i>

1 1

1

.3 »

-3 '3

&

A -

O tO

>£> ro

in to

to

ro >£

ui

i i

i i

3 &

>3

H*

10 cr

> at u

cr>

o~» o

n H*

© ij

D -

.J -

.J

3 ©

-3

-3

& lo

To

To©

-3 ru

to <&

cn in

u ru

i-1 o

A

i-1 i

o ro

3 -

fc --J

'3

Ui &

'3 '

£i

lo i-

'H"3

A

ff) A

t-»

ru -3

A A

3 i-' f

f) f

f)

3 ©

'3 ru

A

->j c

n ru

j

ui i

n H»

>^ f

fi '0

lo

i i

i i

A c

r> oc

i io

i£> in

in a

>

'£ u

ru in

© &

.3 ©

<D

in -j i

ri <a

ru 43

io

to io

ru >-

L

i-.j

A a

> i-*

'J3 I

O lo

tO

in 05

A in

© ©

» ©

i-> ©

-3

.3

>-> i

& cr

> u»

(D

© i-

» »-»

cn

io ©

-o

I j 1

0 i. -f

c

H'

H*

H*

H*

cn cn

cn CT

©©

©

fO tO

OCi

>£>

»-- &

© cn

H

-rou

ji-'

© ©

© H

*

3 t

o t

O A

H» A

-fe«

)dO

lilti i-

*

i i

© ©

© <

£>lO

H'H

'H'

ro ro

>£> ©

«i

rocr

.nci

i i

i i

© ©

© «-

" W

ro u

io

© -t

© ©

H*

^j (

O -g

1 1

© ©

© ©

A

© U

i ©KI

i-* c

n co

-.j -g

ro to

I-H

-H--

© ru

i-1 i

o ru

© ru

--j

io -g

H* *

.

© i-^

© ©

w

i-"- 'L

I ro

in to

a i ©

»

to A

*.

© ©

© I-

-ijC

l A

i l£

ru©

tot-»

tO A

10

i i

i i

to io

ru A

to in

© i-»

to ru

© ro

©©

©o

in»-»

Ai^

to

ro i-

1 ru

-g u

i -o

<o

i ru --

J a> i

oio

ru t-

» f'4:1

ru 'i

t 'is

© ©

© ©

~n

ru i-»

M- ©

^o

io to

ru cn

m

is ©

ro u>

,c>

ru cn

© A

cn

cr> -

o to

otO

tO tO

OCi

H

© ©

© S

i 2H

* ^ H

* l-» 1

0

- j cn

cn -j -

t

© ©

H*

ff) £l

ro * t-

> ui T

)

i i

© ©

© -

* i

-g u

ro ©

x

io in

A -g

:*»

u ©

*. i

ni

i i

i-"

3 ©

Ito

aiuT

jOX

* ro

cn ro

nA

i£ii.

A

i i

i i

© ©

© ©

iH

H-'tO

<O

<

ruin

A ©

33

to in

'£ on

i i

i 3

© ©

© I

H* ©

© I-' <

(-1 (

-1 U

) I-1

t-l

ru cn

on i

-1

© &

© ©

m

<o in

--J A

^Dij-

i »- ©

.3 X

ui u

j --J

ro

© ©

© ©

m

'£1 in

-g ru

;o

t-^ io

-g to

-:

in >£

> u cn

© ©

© i-

1 3>

-g io

to A

-

A to

to ©

A

io A

on

i i

H'H

' 1

1-g

in -g

A i-

©

cn io

© 2

t-i

(-1 (

£1 t-i n

© H

* ©

© 3

>0:1

ru on

(ti o

in

io cn

u

^©on

i-*

i i

i- j

-g -

g -g

j>

ru 0

3 ff>

lo 2

A io

in ru

o

CO

H

21

!02

i-*l

fl«

-n

m

H*T

c 2

O?

H2

002

ro « <

0T

| 1

1-4

cr»m « 2

CO

TO

ii-n

2lfl

UiA

in ro

ro CO

3> 2

O

A 1 ru

to

© ©

© ©

©

© ©

©H

'H'©

©A

i-' -

g ui

43 T

O Cf

> 43

in 4

3 ui -

g

H*

H*

H*

!-

ro ru

ro ro

co

to to

to©

© ©

©

cn 'f

t to

io

in cn

43 -

-J

H>- cn

43 cn

or> cn

ru ro

m

mm

©©

©

ru ru

u «-

in

A ©

cn*-

* 43

ffi C

f>m

mm

©©

©

A in

cn -o

in or

> »- u

i-g

ru ©

A

mm

mm

© ©

© ©

ro

uiin

ih

ito

ru u>

-glo

UU

l©m

mm

© ©

©

H- c

o H- -

g i-1

to in

cnH

* OC

i (O

KI

mm

mm

©©

©©

A A

CO

CO

io in

ro H

* to

H» A

ru

ru io

or ) u

< m

mm

© ©

©

ru io

ui c

n i

i i

ru »-

H* H

> cn

cn ro

A

-g u

i io

ru

mm

mm

© ©

© ©

io

A in

in

i i

i i

ru io

A H

»10 A

AH

--

mm

mm

© ©

© ©

u)

A in

in

m ru

in cn

Cfi ©

i-1

43m

mm

© ©

©

io A

m co

s> ©

© ©

©

© ©

©

ruro

t-©

43

rom

-g

43 in

ro u

i H*

wen

iu

CTI c

n CTI

cn

© ©

© ©

ro ro

ro ro

© a>

43 c

n 43

© ro

A

H' ro

-g cn

A A

10

incr>

in A

to

mm

mm

© ©

© ©

A H

* H

*H»

© -g

© in

co

43

-g H>

- m

mm

© ©

©

u A

in -g

ru cr

> A 4

3CO

43

© ©

mm

mm

© ©

© ©

ru

ro u

i in

i i

i i

H* A

in ru

©

io -g

A

-g -g

io m

m

mm

© ©

©

ru io

io cn

i in i-

io -g

H*

OCl C

Tl A

ui A

-g

©

mm

mm

© ©

© ©

IO U

l A

fT

)

-g ro

to »

- ©

© to

-g

ru 4

3 43

-g

mm

mm

© ©

© ©

ru

io io

cf i

Cf) 0

"i ©

©ro

43 to

in

mm

mm

© ©

© ©

ru

io A

in

i i

ilo

i^ »

-» (0

fo -g

CTI c

f)C

fl A

'3 A

mm

mm

© ©

© ©

ru

to -^

in

i i

i-'H

' Ain

io

ru io

i-

mm

mm

© >

3 ©

©ru

ru ru

CD

Sl ©

© ©

© ©

© ©

in

A io

HV

«j in

©in

to

H* i

n to

H

»-gr

o-g

CO 1

0 1

0 1

0ru

ro ro

ro©

© ©

©

© H

*- I

O t

Ocn

ru

© ru

© -g

to -g

in

-g to

to

mm

mm

u io

A -g

A i

-1 lo

Ui

H» io

to ru

m

mm

© ©

©

in -g

© A

i- t

o C

Ti CO

mm

mm

i i

i i

1

H*H

* C

f)

lo ©

© ©

i-*- -

in

oci

mm

mm

© ©

© ©

10 1

0 A

Cfl

ru ru

-g ru

©

-g 43

-g in

io io

m

mm

m

ru u

i io

-g

-g a

> ro

in

© ©

in 43

m

mm

© ©

©

ru ru

ru or

> i

i i

iio

ru io

H*

-g u

i © m

m

mm

m 3

© ©

©ro

H". u

i cn

i i

i i

*- cn

ru io

io in

in -g

m

mm

'3

© ©

ru ru

ui c

f > i

i

A 4

3 in U

l ©

i- A

43

mm

mm

ru ru

ui c

fi

© ©

© ©

co or

> cf .> a

t

to to

ro 43

H* ©

© f

f)H>

- ru

43

H*

A T

U CO

A43

Ui H

- -g

mm

mm

©©

A

A A

CT)

g ru

A u

©

-g in

-g

mm

mm

© ©

© ©

A A

A

m

-g a>

43 ro

-g

-g -g

ui

mm

mm

© ©

© ©

ro

ro ro

in

i i

in ru

ru in

io

A m

to

g io

05

A

mm

mm

© ©

© ©

ut

ruui

in

i i

Cfl f

f ) I-

1 10

ro -g

© in

Ui ©

43

Am

mm

© ©

©10 U

> A

ff)

i-1 A

H* A

in io

ru a

ffl H

' t-

'

mm

mm

© ©

© ©

ru

ro io

in

i i

- 1-

* -g *

u in

KI A

H*

-g co

©

mm

mm

© ©

© ©

ui

** r

u in

i

i i

i

-g h

i *- ^

ru A

43 A

m

mm

© ©

©

io ru

io a

> i

i i

H> ru

ru A

©

in ru

--J

ru ru

© K

I m

mm

© ©

©

io ru

-* i

n

© ©

© ©

-n

io TO

ru ff

> m43

© T

O U

l Oro

ff > ©

A

ff> ff>

-g w

oCO

KI

OCl t

O -

t

© ©

© ©

2

-g ff>

ff> -

g H

© ©

H

>- ff) £»

ro A

K» 1

0 -n

i- A

CO

M. 1

0cn

to 4

3 ©

xA

43

ff)

43 X

mm

mm

© ©

© ©

i-» A

ui r

o in

43©

WH

'<io

w ro

-g <

rn

mm

© ©

©A

A

A

CO

ro ru

io ff

) to

© -g

ff> io

N43

-g

ff)

i-» N

mm

mm

© ©

© ©

U1U

1U1

A

05 ^

i-»

*- 1

0in

43 oc

i oci x

-g 43

1-1 -

g <

m

mm

© ©

©

io A

A in

g ro

u -g

A 0

"i©

A-g

-g H

» io

mm

mm

© ©

© ©

io

A A

in

i i

H> H

» m *-

in

ru to

a) ©

x10

© H

» 43

Mm

mm

© ©

©

io io

H» i

n i

i i

i^ m

CTI I-

* in

to A

-o

-g in

ru ©

m

mm

© ©

©

ui io

io in

i

i i

ii-'

A ff

> ro

io

in a

j ro

A <

s

© in

i-.j

mm

mm

s ©

© ©

io

io io

in

i i

i i

43 in

in ru

ru

to ff

) M-

mm

mm

© ©

© ©

ru

io io

in

tun

02 m

i

o

02

ro

1 n

cnm 2

210

ro

ru CO 2 ro ru

ro

OQ

C oo o

(0 a

Page 59: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

Figure 8.11 Example of an induction arrow plot.

FiLE:NRFSTKEXflMPLE OF TRflNSFER FUNCTION PLOTTING

@QFCUT= .800 flRMflX= .75 ^ BflND 1 BflND £ B 1=1 N D 3 (3)3-10 .9-16 15-22

25 =

BflND 4 21-23

8

T » 158. QF* 63 NSTK« 17

T « 88. QF* .11 NSTK» 16

T = 55 QF' .04 NSTK* 16

T 42. QF= .08 NSTK« 17

I

T ' 111. QFt .08 NSTK« 3

T « QF' NSTK'

DT = 16

,. , QQF> .61 NSTK'

QF« N3TK

\

DT = 32

T * 338 QF> .30 NSTK«

T ' 231 . QF» iS NSTK =

T « QF'

167 .06

55

Page 60: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix B - User's Guide

2. The first input file used in the stack had a value of 0.8 for QFCUT,

so this value is set in the output file. The maximum arrow length which

will be plotted is 0.75. The scale at the right shows the length of an

arrow with a value of 0.25.

3. The harmonic numbers used in the various stacking bands are shown above

the columns where the data are plotted.

4. This row of data is for the data with a sample interval of eight

seconds. The solid lines are the in-phase induction arrows (reversed

180°) and the dashed lines are the out-of-phase induction arrows. The

rectangular boxes are the 95% confidence limits. Notice that the data for

band 4 does not have an error box plotted since one of the errors

estimates is greater than the longest arrow length.

5. Each set of arrows is annotated with its period (T) in seconds, the

quality factor of the stack (QF), and the number of data blocks (NSTK) in

the stack.

56

Page 61: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

9- Appendix C - Program Listings

This section contains listings of the programs described in this

report. They are presented in the order listed below. The list includes the

routine name, type of routine, and the language it is written in.

Page

1. AUTRN, main program, FORTRAN 58

a. DSPLA, subroutine, HP Assembly Language 62

2. AUTR1, segment, FORTRAN 65

a. FILLR, subroutine, FORTRAN 69

3. AUTR2, segment, FORTRAN 71

4. AUTR3, segment, FORTRAN 75

a. DTRMN, subroutine, FORTRAN 79

b. FOUR1, subroutine, FORTRAN 81

5. AUTR4, segment, FORTRAN 84

a. ADSTK, subroutine, FORTRAN 87

b. FTEST, subroutine, FORTRAN 88

6. AUTR5, segment, FORTRAN 90

a. FACTR, subroutine, FORTRAN 93

b. MOVE, subroutine, HP Assembly Language 95

c. ZERO, subroutine, HP Assembly Language 98

d. INDOT, subroutine, HP Assembly Language 101

7. AUTR6, segment, FORTRAN 104

8. AUTR7, segment, FORTRAN 108

a. IDEFL, subroutine, FORTRAN 111

9. AUTR8, segment, FORTRAN 113

10. REPLC, loader replacement module, HP Assembly Language 116

11. STACK, main program, FORTRAN 118

12. STAC1, segment, FORTRAN 120

13. STAC2, segment, FORTRAN 123

a. FTEST, subroutine, FORTRAN 128

14. STAC3, segment, FORTRAN 130

15. LSTRF, main program, FORTRAN 133

57a

Page 62: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Appendix C Program Listings

Page

16. PLTRF, main program, FORTRAN 136

a. ARROW, subroutine, FORTRAN 140

17. /AUTRN and \AUTRN transfer files 143

18. /STACK and \STACK transfer files 145

19. /PLTRF and \PLTRF transfer files 147

57b

Page 63: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ01 FJN. 10:10 AM MOM., 9 MAR., 19*1

0001 FIN,i0002 PROGPAM AUTRM,3,«00003 COQ04 C - PROGRAM TU AUTOMATICALLY COMPUTE TWO l^PI'I, OfiF OUTPUT0005 C TRANSFFR FUNCTION Fu^ GEOMAGNETIC DATA0006 C0007 C WRITTEN PY 0. V. F'TITEPMAN, n.S.G.S., FtPPUA^Y 1^7**0008 c MODIFIED ^n ^A P C M 19790009 c0010 001 1 0012001 3 *LUTTY,LUPkT,TSTZF(?),MMF(9)0014 *TDCbCl /J 4),JDCbfl44),KDCb(l440015 *mG(4),TFHIf4),MDFG p (4),0016 *F(fl) r $(6f4),STK(6 r fl),rtSTK(0)0017 *HF(4),AIf4) , Ai-jHI C4) , A OC 4) , ANGUf4) ,TDATA(?304)0018 HOMPI. EV SrST*,!-10019 niWENSTON T3FGS(?4)00?0 DATA lSEGS/2HAU,?HTRr2Hl ,?hAU,2HT°,?H? ,2HAU,PhTh\, 2H300?1 *?riAu,2HTP,?h4 ,c M A !l ,?hTR f 2H5 ,?hAU,00?2 *?h7 ,2HAM,?hTK,2H8 /00?3 C00?4 C INITIALIZE COMMON RLOC* VAPJAbLES00?5 |,UTTY = 10026 I UPRT=600?7 ISIZF(?)=1?800?6 ^l cP = 12^00?9 no 10 1=1,°0030 10 MA MLCI)=?H..0031 00^200330034 C0035 C SET UP KFT"RM AOHRFSSES0036 ASSICi\ 30 Tu L n oPl0037 ASSIGN 60 TU LOOP20038 ASSIGN 80 Tu LOOP30039 ASSIGN 90 TU L nQP40040 ASSIGN 100 yo LOOPS0041 ASSIGN 110 TO LuOP6»0042 ASSIGN l?u TO LOOP70043 ASSIGN 140 TH LOOP80044 C0045 c SCHEDULE RFAD SEGMFNT - AOTRI0046 20 ISTUP=0004? TDFC=10048 CALL EXEC(P,I3FGS(1))0049 C00^0 C---- ChFCK FOP FRDfjRs00^1 30 TFflSTOp .Fu. 0) GO TU bO0052 C0053 C PROCESS SOME MORF FH t S?00^4 40 t*'RTTF(LUTTY,!000)00^5 1000 FyPMATf" CONTINUE PROCESSING? (YF OR NO) _"j

58

Page 64: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

T-«

OC«.

QI

«. Z?2:0 r-l *

0V-

Z1

Ct

h-1)

ar\jcocLL. CD<

r n

o

fVch

eo

/--

»-

UJ

c

>~-H

T:».

<\i

>-

r~\

1-

fV.

(

<t

(3

*- Lu

_ t

*

*

<scj *z -i a.<

CC

"-

Cu

J Q

U

_ 1

Ct

LL H

- CC

c~Hc r-l

C-

so h» co o o

00000

ZI 1 H

-<c 5cUJC

.:

CCUJ>QCi_Co_J1111C

J C

«-l

0

0

C

rv r H-<r 1I'­

LLCJ>ijj CC

<-->

LL <C

fSJ

«>_/

I

CC

«

LLH

-t C

O

h- H-1 4

».

Z

CC t

-yC

JU

J U

J ' X

Z)

UJ

0C

»»

LU _j *:X

_

J _

JvJ

"^

CD

CC C

J H

-

1 0

C

'1

LO

~O11

- c,>

ur^

o- LO

3000

'XJ1f- i 2-

CO

H

-

CO vy_Jnz K

fXU

II

h-

0.

0.

CDC

C

'iC

_Jt

Z'

C.

so r- co

000

CO

<£*

LU£LL. CO<C<

ICD

LUJ

>

J3

QLC0 '1111C

J C

0

C^f

f*<"""">

c

X,

H1LLUJ

ccZ.

LU

D

UJ

X

Q

CJ

"C_;

Or

t C

.u

JQ

.COu

J_ 1

Z)

CLUXCJ

cc1111J

CJ

3 * i

3 0

-J

.£>

CJ

h-

UJ

"-"

C

CC"~*

>_D *

LUru co

LO

».«

\-/

cC1

+ -i

" '^r

_j CJ

_J X

ijU

a

a: x

*H O

'.U

ux: _j _jI

, ;

CO

<

t <L

H- L

CJ

0r«-

C

nu^ ^r u

h- h- h- h

i_O1 <

H-

CJ'*^r

UL,

x. o

LL,

oU

.

CC"*" Z

f C

. K

o:h-

CO >

c c?

Z!

Z)

<r

H-

aJ

C

D:

Z'.

i- cr-

CJ

>-

i h~ I-^o o_

i1 1 1

It.__'

Z)

Oc:

2ruJX

£1

CJ

,Dtr

LL

1I11_>

C-

CJ

nor-

« ,

^»«

^V

i,

^

C^

C^ MEOJATF

PLPTTIWG RFTURNS TP STATFMFNT 100

TSFGSUOU

X

*Lt,

oci

Z

CJ

* U

j

XO

'aJ

<e~_ i

Ct

-J;*^

"'^1

Lu C

-

C00

0

CJ

00 0

0

h- h-

oc

TTTNT, SERMFNT - AUTRS TSFGSC13))

0

^_

j a.r^

v

y

CJ

UJ

UJ

_>

X

z> uj

aUl -I

X _ I

o <

CO

C,

1 C

1 0

^11CJ

<_,

^ru

MOC

OC CC

crLLS

i t

» »

QL J>

i~> -f.

<.

Kuj a.a

c:.T

Lu »

-C

J II

Z

1

<c a.>

co a:

<

H-

1 C

1 0

1 *-

1CJ

CJ

3-

LO 0

cc oc

oc

0h-

C

> O

cc e

1 1 Q

_

Z

C

Lu _

JCO

,2

aJ

a

H

O

_J

5.

Lu X

X

_J

C

CCO

>-iV

-'

D

LL.e

HI

iiiiCJ

CJ

r- co occ

oc a

sC

ct CO

LLa:h.

uJZ)

C;

<

CDH-

1 XLL

i

''£

Z.. C

- aJ

_l

CD LL,

LU

CC

LL <

j /*^

H~

^D

(T

UJ '

s

^i cr

CJ

'J5 H

«5

LL _

J f-

CO

z; a: H-,

CO

».

LL «

i CL

X

i * '

<!.

Cw

aJ

O

uJ

_J

XZ

) O

u

JC

2:

UJ

_l

X

Oc

«i

CJ

O

<£CC

LL C

1111CJ

O

0 -

OJ

O

O"

O

H-

Z.

Z)

C

0cfCJ;jj

c, <->4-h-

C.

2^

uJ

Lu C

:2s. «

Lu< II

ce cjC

, Lu

2 0

H-

H-

1 c

1 <

-4

f 'r

~^

1

CJ

CJ

ro ^r j^o

a a

o o

o

K,

0-

DZ

H

-

OH-

C

H^

CJ

CJ

UJ

Lu> C

,O

Z

uJ

Q

. H

-C

3 -D

2

LL C

J3L

;aJ

C

CC

O

*-HK

a u_

C:

H-

1111C

J C

,: C

,

sO

f^- Q

O O

a a cr a

ct,H-

UJ

Lu 00

O

H-

> I

C,

Cc<f

a.i g*

LL. ~

* CC

CO

CD CC

LL,-i <y)a.

H-fi

«,C

oc

_J v

CJ

uJ uJ o_

J X

LT

Z> a

JC

L C

UJ

_l

1

Z

_j

CJ

<

C*

cc c, e

1 C

i r\i

1 "-

1

1CJo

*-» ruc c c

a:i Z'

aJ5CD LL.

rs

<r ii. *C

J

LU_

JZ)

C.

UJ

X;_j

to1||fC

J C

J

rO

S3"C

C

(MCCCDCO k

OC^-^

c.aJ

oX

=J

Jjc

_J 1 _

J C

<£ O

:-2

cj e

LUc o

N"!

"-T«

«-

LH

vO h

-c o

c

cco

oco

ccc. o

cc

oo

oo

co

cc

oc

co

co

oo

co

cc

cc

co

cc

-c

oo

co

cc

co

oc

co

c

Page 65: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 00^3 AUTRM io:ifl AM MOM., y MAP., t9«i

FTN4 CHMPILtP: HP9?060-160^2 RFV. 1913

**

60

Page 66: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0004 F[N. 10:10 AM M (JN., 9 MAP., 19*1

0106 FMD$

61

Page 67: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Z9

000000 dfooooo x200000 XTOOOOo X diiM3*TOOOOO d vldSQ

1000TOOo

Page 68: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Ttfitjl* b'HUHdl ON **VldSU

NdfUldSidllMd3i\'l NO

-S f)i VivO 1

UMV

91

A OvOl

iJ3dIUNi dA

-b* ui iiHinu j901 XP

Oa'9'VldSu

dludsrViUdOlMd9r VO'l

dludPi'

dON vld^uy f> d 0 d H SiXdIfxld^VN

dTOOOOOX?009lO109^01OoOoOO

X2009IOdOoOci:0 1dOOOOOuXlo09tOOuOOOuOOOOOO

HOOO010002.000090000bOOOOt?ooooiOoOodOoOulOuOu00000

ooooo

IdOOOdOO610091002.10091005100t7tOO£100? tooI 10001006000

62.6L HOdVrt "y'y&'il 'N

HdiSlUld-S dMl Ul

6^61 HOdVw i?IJ 'A *(1 A'd NllllHrt

*9oOO

01 dNllnOd*t?000*f 000

0'1000

Page 69: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAQF 0003 DSPLATABLt

00011 00017

00011 000?0

.FNTR OOOH 00014

OSpLA 0001^ 00010 00021 QOOP2

SPEC 0001? 00015 00016

64

Page 70: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

4L.SUOaOc

-rsC

O.

O

cc oc

oLL

o

or >IT* r-1

H-

Z><

r5.<i

Ct J)

C2£Q

C

AND TRFATt NFCFSSAPY NHRK F

P

PAPAMETEPS.

1'2"Z

" i-

1

UJ

t/3d

CCD

aJc_

CD aH

- C

tCL

H-

z: coLu

H-

^_ 13

e

ajj

2CC

i-

1111,

C_ C

J C

fc *

COt

e *

totwy<x ,H

o

C

t CC

UJ C7^

t »

- Cr

U_ Lu QC

* i

>

Lu?3> C

2t IZ>- d-cc.

iZi

Z

LuU

J

1

h~ Lu

1

I-Ht-

Cce a^

^

J C

> C

J C.

*

O

C

: Ix

CT.

ax

rv rx cr

<->

(1 LL

/-> Q

<

i /^

*-

*. *.<

-vcr ix

<r

rv x

_J

UJH

Hd

f\J

~T

22

^>

*. *. C

Lu

-J

»- ^

*-, ^

C7 >-

LL C~

^3 c?<

i fV

^^-^

_ |

w o ^

«-» ^ '

^

*- 1 <C

O

X

"O

.s *. 31 :"O ' ^ t

cr JL.

<t »-»

i"XI <,/D

j£ " '

'if O

*

^T

"£> /->

v-'

> «

X

O

^

>Q

"Sj

»-t

*

v-*

H-»

T- »

v_/

;jj .-\

wc

rv H-

- ^ *~. x

e x

^ _

j x

»- x_ 1

*£ >

CO rC

"3"

i

IZ

> Z

l u

J t «

v-/ .c

ccft

C-'*

cc<

itL

u'ti"

> '^:x

<-«

* «JD

«»Z

li !«.*( X

<

J L

u.'V

t jj

CL *Z

K-^X

«-N

/-a

. t-_

jLu

XX

_

O'-**Z

C*U

_"

;T-

:3**

wJO

_

1 ^ <

fZ. S

CL

CL

/"^ ^~*

* ^ ^ CC

Zf

Zl

Zi

*

LL LL

_ J

CO

1,1 Z

) -^

*

^O

^

CD

CZ)

,xJ <"" »

T*

<(

_j^

/~

tv_

^<

tx>

'> i

_J

*

<C X

,2

*

* *.

r-4 --3-

CO *

UJ

CO CO

<

--'

_J

(Z

H-C

LX

-* *

^<

-> _ iZ

'«e

^>

Lu

H

-IS

Q

. O

I !D

Z)'~

x;:3

'CL

ixJu

J>

«Z

}<t

Z)

S.

C:

H-

1-

CJ

_

53 "-

2

2

S

Z d

t-

aa x

co z> a a- ^

u. o -» ^

o -5 -«

zC

' »

H

-. _J

»- i

LL C

C

J C

C

LL

v-

C

»

*******

*1111

j C

J <_<

0co »--w>-J

H-

/-ZJ

X_ i

»

N_

^

\

Lu <r

i

21f i

ct

X

Z)

S

LLCoc«-«

"l

_J LL

UJ

CD K

-

-J

U.

o a.

» 5o O

»-" C_

> 1

>-

sH

- *

»- rv

z> <c

_ i

s-^v-'

1

Lu *£

i X

»~

Q

-r CDS

LLO»-*c f->

Jj

» t

LLt t

/-*>c.O

JcT

-4^

/ >>

- fU

t <t

H-

fOz? ^_

l 1

v-

<L

z> :,£<

t DC

UJ

CDC

t Ucnj

c -»

c

\i

UJ

t

LLLui »w,OCJo

Lu _

J1

V

^

H"t

Z

Lx. LU

1 d

X

Z)

jy _

j

LL _J

a. <tC

C

J

1111j L:

N

ifr-H

CC II

uJ 'i:

K^ LL

V * »

C

LL «

_J

>

s O

U

_ *

*- i~

rv

c <- K

.LD

O

*

I*"1 s

^ 0

II

C ^

LL*.

_J

* X

t~

UJ

> li-

CD l~

C

Z

) s

30_

_ |

V_

»

-f

X.

* ' 1

Lu LL

<t

C>-<

r X

h-

v-

K-

Ct

ix. ir

CD D

-< B

LL

C

Ct*)o -»

c.

r~>

LL^ Cc, uJ » iikC

LCJ

C-J '-x

Q.

*-* sC

LiJ U

_ -0

C.

C. ^

<

<S Z

iLu

LL LL

T~

/^

x

"T"

I 1

Z>

_

J II

<!

-J K

xJ <X

CL

Ct

CJ

Z

1 c

1 ^

11-'

CJ

XCCZ5 M

Lu X

O

^V

«J

^M

,

*r CD

>c^

^ \C

C

UJ

X

>-t t *-

eH

-

<t

v < H

~_

J Q

-Ll_

^It

v-

1

IX.

d

c

r--Ct**- \iK

1

A) CL

Z'11||

- C

J

j r-

CL r-

< ru

*-

AOC

J I

0

CL

*-» ^

- 1

>

s1

«,I--

fVi

C'Z>

«I

f^-_

J >

-

T -

" '

t

Lu <L

CH- s: i

T£ O

Z

)sue'

cJj-

c^4

<_'

t

XXt

UJ

t « LuLuaU

JK1 4

<r.Lu;j»

l-i

Sa uJjjC

:1111CJ

_JJO'^.-f-\£-

00 _j

(V

DL

T-4 "^

X

III

<-^>a.

»-"X

*

>N

i«/

iT LL

^: rsi_j --)

z

c.ru

c_

x

,0X

vo

t

uJs t

LuitXCxUJ

<cLL x.1||1CJ

o

»-4 rvj ro ^ in

>o r^ oo cy* o

» » r\j ho ^f LTI -o r^- 33 0s o

»-i rxi f«o ^3" in -^ f"» 0

00*^0

*-i rvi r^t ^ in

^o r*^ 000*^0

»-» ru r>o -^j" in >o h~- oo 0s o

«-« ru ro ^ in

<f

c c

o o

c o O

' c- O1 »-1 »- » »- -1 »- »-' » *- fx rw

(X* rv rv. <v fv (x rv. rv. i«c K

! K1 ^

t^r^

i^K

. i^^i^

c'5

js3'4

3'5

T53'?

3'5

j'5T

ir'Lririfir'ir

CL

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

CO

OO

CO

OO

CO

OO

CO

CC

SO

OO

C'O

OO

C'O

OC

OO

CO

OO

OO

CC

OC

OO

OO

OC

OC

OO

CC

OO

O

Page 71: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ02 AIJTR1 10:11 AM *\jW., V M AP., 19*1

0056 CALL CPEATaocR,TEP,*'A^E(l), TcSTZF, 1 J00^7 TFfJFR .GE. 0) GO Ty 30oo58 WKTJFCLUTTY,10^0) NA MEU),N! A^Ef2),MA w Ef3') ,TEP0059 1050 FQPHATO1 CR£ATTUN FR P U P : F TLF = " r 3A?r " IFR=%i5)0060 GU TP 1700061 C0062 c FILL x ftpRK FILE0063 30 CAlL FTLLRf IHEH(54) J.UC6,ir>CR,Ta!IF, JPUF,PUFJ,l?I7Eri))0064 C0065 C TNPUT Y-FILE0066 WKITF(LUTTY,1010) l.APEU?)0067 P£AD(LUTTYfl020) IFIIE0068 C0069 C PPFN Y-FTLF

0071 TFCIFR .GE. o) GP TU 400072 WKITF(l.uTTY, 1010) IFTLF,TEP0073 RU TP 1600074 C0075 c---- READ0076 40 CALL0077 C0078 C -- Ch F C* FyP fOMSTSTENCY PF NP10079 TFCNPT .FQ. ThFDf66)) RO TP 5000*0 WRTTFCLUTTY,1060) LAPEL(1) , h p T , LA&FL(2),THFD r 06)00*1 1060 FyPMATC" N p T IMCniNjSl STFNf f t " /A?, "-NPT = " , 15 , » " , A 2 , "-tj D T =" , I 5 )00*2 HU TP 16000*3 C00*4 C CHFCK FQP CUNSTSTEMCY PF S^MPLF INTERVAL

00*6 TFfDT .EO. DT1) GU TP 6000*7 ^'RTTFCLUTTY, 1,070) t. APEL ( 1 ) , DT , I, AR£L ( ? ) , DT 100*8 1070 FuPMAT*"" DT TNCUMSTST^NCY : " /A2, M -uT = " , F6 . 2 t " " r A2r M -i>T = " f F6 .200*9 GU TP 1600090 C0091 C CRFATE Y hPRK FILE U.YY..)0092 60 CALL CPEATfjncR,T£R,MA wEC4),ISTZF,1)0093 IFflFR .GT. 0) GP TO 700094 WRTTF (L UTTY, 1 050) NA M E <"4) , MA^£ f 5 ) , ^AMt f b) t TEP0095 RU TH 16000^6 C0007 c FILL Y NPRK FILE0098 70 TALL FTLLRf IwEn(SS),LUCd,jncP,TB'iF,JRuF,RUFj,iSi7Eri) )0099 C0100 c---- TiMPuT Z-FILE0101 WRTTF(LUTTY,1010) IABELCD0102 P£AD(LUTTy,l020) IFlLt0103 C0104 r---- PpFh Z-FTL r0105 CALL Q P EN(LDCB,1FR,IFILE,2)0106 IF flFR .RE. 0) GP TU 600107 V\iKTTF(LijTTY, 1 030) TFTLF,T£P0108 GU TP 1500109 C0110 C---- P£AQ hFAHEP

66

Page 72: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ03 AbTRl 10111 AiV, MyN., 9 MAP., 19*1

on i0112011301140115011601170118011901?001?1oi?201?3oi?401?501?b01?701?801?9013001310132013301340135013601370138013901 /JO01410142014301^40145014601470148014901^0015101520153015401550156015701580159016001610162016301640165

80rc

C("..«._

90

CC

too

rc

110cc

1080

120

1301090

1100

CC

H 10

cc rc

1501120

CC

TALL «FAOFancp,iERrTHFD)

CHFC* FOP POM$TSTENC Y np ,^PITFflMPT .FG. THFDC66)) HO TH 90NKTTFd UTTY, 1060) LA R BL(1 ) , iMPT , L AbFL ( 3) , T HFu ( 66)no in 150

CHFCK FQP PUNSTSTL^CY OF bAMPt^ INTERVALnTt=FLnAT(THFDt67)*IHEn(68))/2.TFCDT .EQ. DTP nu in ionWRTTF(l.uTTY r 1070) t APE!- ( 1 ) , DT , !.. AREL C 3 ) , DT 1PO TO 150

PRFATE Z WHKK FILE (,.7Z..)CALL CPEATCKDCR,T t P,NAME(7),TSTZF, 1 )TFCIFR .GT. 0) GH Ty 110WKTTFCLUTTY, 10^0) MA MEC7),rl'AMEr8),MAVEf9),TEf;>KQ in 150

PILL L WHRK FILECALL FTLLH(IHED(56),l DCb, KHCR , I BMP , jayF , PUF J , 1 .S I 7E U) )

n^TtRMTNF W^XIMUM MUMBFN UF PA.^CADF LEVELSWNTTFCLUTTY, 10*01 NPT,NOI K,DTFOPMATC" NPr = M fl5," *! bLK = ",I3," nT = ",F5.1)N=NpT/l2flNDFC=1M = N/?

IFfN .LT, 1) GH TO 130MDFC=NOtrt1nu in 120WRTTFCLUTTY, 1090) ND^CFORMAT (" MAXIMUM iMDE^ = "fT3'>WRTTFCLUTTY, 1 100)PQRMATC" DFSTRFD NOEC? J" )^EADfL'TTY f *) MIFTN .GT. ^ ! DFC) HQ F^ 130WOFC=N

INPUT DATA OVERLAPPINGT$W1=2WRTTFCI UTTY, 1 110)FORMAT (" 50% OVERLAPPING? TYF OR NO) _")PEAUCLl'TTYr 1020) IFUtf 1)TF(IFILEd) -ER. 2HYF) iS»v1 = 1PO TH LOHP1

FRPOP HANOI IMG

PURGE Y-WUPK FTLF C..YY..)WRTTFCLUTTY, 11 ?0) LA«EL(?) ,NAHF(4) ,iMAi»iF(5) ,NAnF(6)FOPMATC" PIIRGING",A2"-^URK FTLF = ",^A?)PALL PURGEf JHCBr TER,NAMEr4U

PUPGF X-WUPK FTLF r..xx..j

67

Page 73: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

00

oo

oo

oo

oo

oo

oo

oo

o

* * T o 2? t>

X -^

t *

~SL

£T>

J) * * ^ C rn t> X D X 'J> * * "C *3 C D X »> 3 II O o

"H H

ZZ & O D ~S 13 £ rn 33 * X 13 vO "U 0 3"

O 1 » » > o o rv X n «c > » sO »

CK

/ .

-J ^ O IX-' o a _/

30

-x4

-s|-

^|-

x4

-x4

<s

l ^

<>|

-s|

<>|

Oo^ooo-s

icrt

r^LH

ruH

-oo

o o

o

~">

r>

,->

I i

»-

Ii

| _*

H*

i1

OD

1 U

J ->

l I

1 01

00

I

T1

OX

I

"H

O5

OT

I^H

^O

z c

rr

a; r

r y>

c x

"n r

O

-1

-H-H

f ^

1-*

D-H

cr

c

r 3

: * >

-> w

a

*J

13

J>

1>

T!

"2

.Tj

Z.

II

-H

O 1

<-«,

T

?r-

. -

i)

, .

-> .

- o

c -

i ~v

c

= e

-

c.C

3 O

:/)

H

^3 c

"n

rn

o -

H -n

x

»

f

-,r-x-H

*n

t 3^

r~

o *

r~

21

~<

J"

) C

J CO

«*

T|

H«i

O i i

»-»

13 ^

^J

-H -t

"t?

*-

* C

- O

O

" Z

73

s-y

T)

C

«-

0 C

T)

2 ^

r-

-HX

T

5

Tl

CT

>

C

-H

'./>

"H

X

_!

f-

j-T

K

-, n

o r

* "n

^

rr- ~

4 r~

-H /

-N<T

I r

-HII

K

H T

l=

J3

»-H

*

f-

^4

S

T)

3>

t «

v^

\j

^

r~ ^ t>

J^ >

O

c» -

vi cr

r>

i-» a- o,->

'

Jr^

X'

-H

J-

-n

-c ^

~ r

~X

C

"

7)

Hrn

-H

-N

<

« '

>

3

~*

O

»-»

I)

<X)

0 <

-/

m a r

-*

j>2L

J3

3>

P"

2 r

-F

! ^

( 1

\_/

v_

/ <«

^ 2

: r> ^ r\ r-*\ t-» N-X

% 2 j>

u J> CD

Tl

0 O o 4i c> C -H X .-^>

»-»

O «

*-* t £> s f c "ZL

^ sO ^ 2J T3 « _» N£J JO i *

c "51 "3 n J-

J rv

T)

O

Page 74: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 00^5 FTN. 10?11 AH MQN., 9 "AP.,

0181 SUBROUTINE FTLiKCinATiwL^tR, Tyre, IPUF,0182 r0183 r RU'ITTNF TO FILL WORK ARRAY. CONVEYS TNTEHER01*4 c FLOATING pnp'f.01*5 c W6LK is THF MU^FR QF 128 WUPD OUTPUT PECUPD^.0186 r0187 DI w t^STO w TDrbCDr JDCBCl) , Tbl'F ( 1 ) , .TB'IF f l),PuFJ(n01880189 TbLK=0Ol^O J=00191 10 1=001^2 C01^3 C READ0194 TALL KFAHF rLDC p-, TE^r TbUF")0195 20 T = T-M0196 J=Jt10197 RuFJf J)=RATN*PLUAT f 1RLJF ( T )-0198 r0199 C - nuTpUT bUFFER F ULL?0200 TFCJ .LT. 64") P-0 TO ?00201 T0202 C '^HTTF nyTpl'T bUFFER0203 CALL rtPUFf ir>ce,T£R, JbUF)0204 J=0020b TbLK=IWLKtl0206 C0207 C PONE?0208 TFCJBLK .UF. i'^LK) GO Ty 400209 C0210 c T.\JPUT RUFFFR E^'PTY?0211 30 TFfJ .1 T. 12«) GO TO 200212 GO TO 100213 C0214 C0215 C TLOSF INPUT FRE0216 40 CALL CUuSEfLHCB)0217 C0218 r REWIND ^OHK FILE0219 CALL N^MOF02?0 02?1

FTN4 COMPILER: HP9?0^0-1^09^ hFV. 1913 (790^06)

** MQ WARNjNGS ** I^U ERRORS ** PRGORAKi = 00102 ru M "iOf\i =

69

Page 75: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OOHb FJM. 10:11 Am M(jN., 9 MAP., 1981

70

Page 76: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 FTM. 10:1? AM M U N., 9 ^AP., 19*1

oooi FT*',L0002 PROGRAM AOTK?,5,*00003 C0004 C---- TNTTTAL17ATIDN SFG0005 C0006 C WRTTTEM RY 0. V. FTTTEPMAn, M.S.R.S., F£ R Kl»APY 1 q 7°0007 C M OHIFIFD 20 AUGUST 1 Q 7<?0008 C00090010001 1 *ISTOP,Tfc'P,NtJP,TbLK,NRLK, TDFC , NHET , n [ , UFCUT ,

0013 *TDCb(144),.TDCb(l44),KDr6fl44),lt>CcHl44),0014 *IFLOf4),TFHlU),MpFGP(4) ,

0016 *np (4), A I (*P , Aj\|ni(4l ,A0f4),ANHOC4) , TDAT"A(?304)

0018 C0019 C TNITTA1.I7E 3T[jPARL b |! P F E p i300?0 DO 10 J=l,4oo?i NSTKCJ)=O00?2 Aifj)=0.000?3 &NGIfJ)=0.000?4 AO(J)=0.000?5 Af^GOfJ)=0.000?6 QPfJ)=0.000?7 PPSTK(J)=0.000?6 HO 20 T=1,?00?9 H(T,.T)r(0.0,n.O)0030 20 FRR(I,J)=0.00031 DO 10 T=1,60032 10 STK(!,J) = (0. 0,0.0)0033 C0034 C CHFCK FOR FIRST F^TRY0035 TPflHET .bT. 1) HO TH LOOP?003b C0037 C CHFATE RFSULT FILE00"^8 30 WRTTFCLUTTY, 1Q10>00^9 1010 FORMATf" N*MF np RFSHLT FIIE? _")

0041 1020 FORMATC3A2)0042 C0043 C-- n^TEPMTNF SI7£ OF FUE,0044 C 6a i\ n RnS PFR FR£nuFf\rCY RFK l/FCTMATTo^1 I EVEL0045 r ?56 WORDS PER00460047 C0048 C TRFATE PTLF0049 CALL CREATrLDCR,TER,TPTLF,TSTZF,l)0050 TpriF K .HE. 0) GH TO 400051 WRTTFCIUTTY,10301 TFTLF,TER0052 103^ PQPMATC" CPLATTUN FRPyR: FTLF=",3A?," IFR=",I5)0053 Ru TO 300054 C0055 C SET FRFQUE^CY AVFRAGTNG PA^DS

71

Page 77: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

1- oc^ f*.f ~*L. O21<rr\j 4 0rv.ciKh-z><rrvico0LLCD

Q.

cf >

X

It CO

X

t .

«£*

S^

x

ruU

. C

-1 «

-H 1

"VJ

*. Z

. H

- /

\ Z5

* s >-

a

x

| -'

rr (^

C

<

> <"->

_!

X -«

O

0

U

-<

2

LT i

Zi

* -.

Z

X

Or C

n

=c cr a

»-*

CC. * 'cr

uj «-i z>

^ _

X

X

CD

O

-4

£

* - ' '" >

cr a,

HI

o /

0

1

X 0.

OJ

UJ

»-

CJ

CO

C >

«» uJ

oJ »-»

Xxd

.ce

-

» rwLO

*-*

O

%O ''X

l CO

i

CO -J

2

>

-K

l C

«

A

j «-»

»-i fV

<

\j H

- <

h-

II

II II

II II

II tl

II Z

) =

X

h-

UJ

^ru

-ocr.r-«

rur<

"icr^

'r-;z<~

__/"" V

_.V

»-V

»-^-<

V_JN

_.V

_.V

_'L

L)<

i,<

l,>

.*^

ZJZ

)D

Dt-

«>

-t^

»-»

h-<

£:a

02

0^

_}_

._/ _

'XX

XX

»

or <a

<i v~

Lu u_

Lu Lu

Lu Lu

U.

Lu *"£

O

LU

Lut

H-

HI

H-

H-« H

- i H-,

H-

3F LL

s s

Ct K~

* *

C

Ccr

cro «C

J

sO

f^-c

OO

NO

'r-«f\jrO

crin

vO

is--aO

Oso

oo

oo

oo

oo

oo

oo

oo

o

/ / \itV

«.

A

\-si i

O

^-i _'

OIfo o

(f

« 1

21"

Jj

»

<C

C X

CL;

.2^ ^

<I

h-

X

Z) =

(_) r w

v-

/ h

-H

- LU

<

lz> H- s:C

L »

- C

t2

;je z>

»~ S

LL.

1 0

1 LO

1 O

1 « *

<--^ rvi r>o

o o

o

t

X

'^_t «./-~

,

"to

^

J

0

UU

>£:

Cv-

» i

O

V

^-v

%

-^-* -K

CJ

>

»-,

%*.*

«»

>-

»~ »

X

. H

-H

33

^j- L_

N- I

_J

C

LL <ct

N sO

1

Z Z

iH

- ct <r

Z> Cd Z

i uJ

c

2 u.

a

C 0

! «-. 4DOt «

cr iT» so f-

o o o

o

/->*-< < *C

LL 4 O

a c

f*-* <s i «v-

/-»

U_

>

!

e>

§C

£§ /->t-~/->

v_y

Hi

H-.

v^.

-y~

^J

»"«

LLi i

^- au_ z>»

K

aO O

K

h-

O O

cr*,w

-

aJ II

2 ^

Hi

C.

H-

X)

Z.O

Z

)c c.

c c

>O

LO

CJ

O

-r-«

^\J

ac oc

ccO

0

O

CJCO

LL.

a. + "Z

*-

c ^

Zi

D

LL _i

aJ

LL.C

t H

-

U_

1

LL -H

C *-

uj ;JL

UJ

»-

JC *

o *

UJ

<\JC

II

LL i-

| K

_[J

z; ctC

L O

2

LL.Q

C

JC

J 2"

111tCJ(>O cj

ec oc

o o

cc1

Z);

U.

X1 C;

Xt t X

LL

CJ

+

LL -

Z> ^

G

C

aJ _J

0.

LL u_

»-*

cr * LL

«a

Z)

2. J

aJ

U_

CJ

*U1

LL

H-

O

z: it

QL '-N2r

i Z

) v '

CJ1

U

1 0

1 aO

11C

J C

J C

,

in sO r^- co

OC CC

OC CC

o o o

o

LLUL

CCCJ

*- «t 0

LL

1-O

X

*-

i

<kH

- >

--J f <J

t Z

) Z>

C

«j

H-

M -'

ID

1 a

»-

2 X

t 2.-

1 C

1 0

siiCJ0s <o

oc t>

o o

D

*- c:

/-. 0

0

i

^ e

u.

LLQ

H-

\- Z

,

CJ LL 3

C

tO

H-

au

o

<

h-

U

- Z

)0

cr

> u_

K

C C

< 4

_J *-

*

^t

-K f

ZZ

-

^

ir ' '-

.3

X-

H

=

*

^~

H- Zi u

<J, »

LL*£

O

C

3or

<t

*-D

LU

U

.LL

a

H-

c.Is*c» «

* ru ho

a a

oo o

o

LUaX

-i ^!_

><r»

CO( z>ai tiiii

I * C»)

cr inCF"

0"

O O

CI

UJ

C:

1O

Ifa. =r-

1

II ^

c ei

> cr

LL U.

a. z

0 1

_|

oco ^

LL,^

CJ

C*>

^tX

»

- X

H-

CO

H-

h-

K- >

_J

V^

v--

H-

O

LL <

i 2

:» s:

u»-

cr rv

ct o3£

U.

B*O

0

O

00

»-

0T-4

<O Is* aO

a o

ao

o o

S"

» 1

/-~^cv>

1-

H-

_J

V_

r

Zi

<i-Uao^a

o

o

cZ)

H-

Crvt ec

CO»- c

f

c c

O

< t

f

K-

U

_J -J

1

^ Is:

CO

CO( «

H-l

s_. v

Lu U

.H

-l

CJ

o

»-« r\jo

o c

ct~

LLLZ-JK

-

Lu ^

G

C

/- ^

o

LL

0^

Z)

0 O

X

«

:r H

- %

LL Z

X

;X2 CJ>

i 2&

LL H

Z> 3

D

-i1 *-

_J

>- i-i

LLZ>

Lu ^~

Q

Hi

1-

.z: u

czt-

H~

S

1 c

1 I-*

1 »-

10N^ cr irtc c c

» 1

i 0

CO

H

v f

-J5aLU

'-N

_ i

§

LL cr

U_

-3ca

-: Q ^J

Z)

cc /-

»SL

-KZ

«» O

2 XH

-

=

H-

iJ

h-

-J

<

j \_^

Z Z

i -3

cc <, ^.

3

UJ

LuU

. C

t »-

o0s

Cv-<

s£) ?***

ooco

o

->HhC

!

C/rf

H-t

O

II II

cr LO2

S

CO

C

OH

- H

~.

CT" O

O -

CM

OO

CC

CC

OC

OO

CO

OC

OO

CO

CC

OO

OO

OC

CC

OC

OC

OO

CC

'C

eC

CC

CO

CO

CC

CC

CO

CO

CC

Page 78: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0003 AUTR? 10:1? AM MyM., 9 M A&.,

oni r0112 r---- T^PUT SPFCTRAL RFPPRTINQfU13 120 WKTTF(LUTTY,1100)0114 1100 FUPMATf" S p fcTTPAL P£ P U P T01 Ib PEADfU'fTY,*) TSW20116 TrflSw? .LT. 0 ,HR. T5 !"2 ,PT. ?) GH TU 1?00117 C0118 c---- T^PUT otrjMATinN PLO T TTNR THPtSHntn0119 WRTTFCLUTTY,1110)oi?o 1110 FoPMATf" uAr a PLPITJNG F^RFSMULD? f<=bLurK.^)01?1 PtADfLf'TTYf*) TS^'30122 nu TH tunp?oi?3 FNP

FTN4 CHMPILtP: H p 9?060-1^0°2 R F V. 1913

73

Page 79: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0004 FfM. 10:1? AIM MUM., 9 M AP., 19*1

01?4

74

Page 80: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF nooi FTM. 10:1? AM MUM., 9 M AP., 1981

0001000200030004000500060007000800090010001100120013001400150016001700180019002000?100?200?300?4002500?600?700?800?9003000310032003300340035003600370038003900400041004200430044004500460047004800490050005100^2005300540055

F

CCCCc

cc

cc

cc

cc

cc

FTN,LPROGRAM AUTR3,5,80

c SEGMFNT TU PFRFQPM SPECTPAIWRITTEN PY D. V. FITTERMAN,MUDIFIFD i? HCTUREP 1979

JANUARY 1979

r ToLKf TDFC , NOfcC , n T , uFCU \ ,

*TFlOf4),lFHIf4),i\iDFGP(4),*F(4),5f6,4l r ^TK(^,4),)\iSTK(*np f4) , Al f 4) , AJMRI (4) , AuC4) ,

STK,H r HT !XC25b),TYf25b), TZ r 256) , X (1 2P ) ,Yfl?8)r7(12«),

(lX(1) f xfl)rTDATA(l)),fiY( 1 ),Yri),T L,ATA(?b7)), *fl7(l)rZfl),TuATA(5l3))r(FX(1) ,sSPEC(1 )r

, fF7(1),SPEC(?57))

*2H1 , 2H2*?h f2Hh7

DATA PTiM/.04^08739/

READ x, Y, AMD z DATACALL RFADF(ir>CR,TEP,TX,25b,i,CALL RFAnFCjncR,T£ p ,TYf25d,i,IPDPT)CALL RFA n F<"Knc R fTEPfIZf256fI,IFDPr)

LTNFA P TRFNH AND CALL DTR^NCX,N&K.)CALL CALL

, TRANSFFR DATA TU FFT ARRAYS

FXf I)=CMPLX(3£LL*XU),0.0)

10 FZCI)=CMPLX(RELL*Z(I),0.0)

COMPUTFCALL FHUR1fFX,NdP,~l) CALL FHUR1(FY,N6R,-1) CALL FnuPirp7,

LOOP UVE P FRFul'ENCTE? TRPRT=n

75

Page 81: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0002 AUTR? 10:1? MAP., 19*1

00^60057OOS6OOS90060006100620063006400650066006700680069007000710072007300740075007600770078007900*000*1008200*300840085008600870088008900900091009200 Q 300^400950096009700980099010001010102010301^4010501060107010801090110

Cr-

rc-

cc-

cr-<

cC-'

rc-

rC--

CC--

nu 20 j=i,uLL=IFLH(J) LU=IFHI(J)

-- 7E P U BAND AVFRAGINH ARPAYn y 40 1=1,6

40 S(T,J)=(0.0,0.0)

I.UOP OVEP RANDSHO 30 T=LL,L"TUFF=OLOFF=-t28no 30 K=I,?LOFF=LPFFtl28

MUFF=LOFF-128 ^u 30 L=K,T Mu p F=MPFF+1 28 TuFF=lPFFtl

30 ,9 ( TUFF i J ) =S (TUFF , J ) +PUNJP, ( SpFC CLHFFt T ) ) *SPFQ ( MHFF t T ) SX=RFAL(S(1, J))

CU^PHTF CPhFKFNCt, J))/SX/SY , J))/SZ/SX , J)

S112(J)=SX*(1C p USi5 5PLPTPA

(J)

?2Y1

J)

J)*CPNJG(SC3,J))*S(5f J))

i>f5, J))

CU MPHTF PARTIALRlY2(J)=RtALfcnNJtfS!Y?(J))*SlY2CJ))/S1 1? ( J) /iSYY? ( J)

CJ))*S2Y1 Cjn/S?21 (JJ/SYY1 (J)

HETEPHTNF TRA^SFFR

A I CJ)=SyPT CRFAL (HJ (\, J) )**?tRt AL f HT ( ?, J)

76

Page 82: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

oca-o«c

rvK>XN1

C

OoLL CD

-3e

s.i «

rv..31V

SL

ru^> et

*5~"TL

Orvj

f*~LT IICDZ<j

O

^rx

-

KKl

K,

CO

KO

*T t

CX

*

c <-<

t

""3(_

w

dC (X

ILL

> r-H

H-

*r

X

_J

~3

Z5 X

C

>oLL

v^H

- II

QL *-}

-D

U-

<_ c

1111CJ 0

*

LL.f HQ

.

aJ

c:c

it

z: ct

D

1.

X

Cc

co '-»H

- (

_1 Z

)z;

<_ CO

LL.LL

C

tLL.

r ' iH

- C

I

LLZ -? z:

Q." LL

»-.U

J 3

t

f *

ZU

J U

. O

c

> c_j

1 C

i ru

iiC

J C

J

to vO r*» oo

K-

cuJ

co

«

uK

-<

t H

- C

. C

t0

.

_J 1 G

.

0

*-i

II II

r\J f\l

3C 3-

-O

COt

K-

»

LL> «

f*

**< J h

--J

COLLXh

-

Ct

DoJ

crIIIIO

O

O

C

J C

O o

-H rvj h

r\j

* it

LLv-l ^

CO -O

h-

K

Z^

*~!

LLCLCj

CLCt

K*:;

OC;

J C

; CJ

>c rvi rv

CLDc.D

Cc3LL t K

(

0.

CL

C

(1, o

Q.

_J

i «. £c«

/ rv»»-

,--j r\ i

*~^

< V

J

c c

fc^J

* .£

*

rv. rv

cc cci j

*V

V

U.

LL.H

- . H

-

^

sO r*» oo rv rvj rv

CO

-ooLL^

Ct

O

CLuJ

Or111ICJ

C

O

Cru r-

> £ II

_l

1 1

r

=

h-

1-

LL. II

rvj c:

H

*

CO U

. CC

<->

* ft

LL

-

k*4.

ldb

«

«v^

w

ID 0

.Z)

II_

i K

- CC

h-

"*" ^ ^ ^

oo

sO

»

- ic

».

0- *-

*- C

UJ

*. *> _J

LO

^t * x

*.d.

o CL

=

LL X

_

i ^ t-

(_>

O

J ' '

H-

Z)

Z"

U.

<.

CJ<

_l f

Z

UL

Zl

<3C kX

ZJ

<? C

J S

LL

E*1

01

T-«

1 0

1 «-«

J CJ-

^fX

IW

^Lft

*

uJ

X

«. or

II 0

A.I

"^>

_J

UJ

! *

CD

0

_ 1

»-«U

J

<\ A

V^«- rv

X

*C

L X

~* ^^

j

^^.

S->

LL <J.

t JZ

i-'

Ct

X

CDS

, LLcrvjc r-H

or^

.

,<rv s c

*

X

v-

!"U

II

t^

»

o

--3

jj «

rv /~* * '

~. ^,

x rv

*. -^ H

»- u

O

-r-H

-Q

3

"3

«^

»

LL> _

| v

%C

* K

I jj

*. -3-

^ M

<->

x ru o

-O

'.y)_^ \1

rv «- ^

o /- . c-

*

UJ

X _

i _

i _J

_ i

X

Q

. CC.

CC £T

CL"

^

cj

LL ^T

Lf-

1*^ t*}

ct o »~ _j _j «- _j

O

TH X

JD

OD

£) D

LL U

. S

_J

-j

_» _j

*

* * * *

Cr-Oc1-1

oo^o^rxj^

<~

\ S

~\

f~\

f~\

V

II II

II II

- '

*-; ":

": *-;

It II

"3

-3

"3

*-3 -^

i

/ i

i _,.

,

*CC

»-.«-»HC

C-^-

»-'--

»>n ii

_ - «j

u *.«

(__

*

JQ »

-r-* rvj

r<

X

'~fr

vj

1^>

-X

X'V

J

'D'.D

'^C

D

£JLT _

' rv >- x- _ ix

_ i x

x x

*-> rv. _

! ^-^ _j 2 c

*r i

-/ rvj >- x-

rvj a; '_D >- o

-.^ H-

<t <i <

O

O

O

%

k. ^^O

^ '

O

k

k

*. O

^

o

ra

ru

/ri'n

r~

*/n

'^'t»

u'-5

c-^

=T

LrvC

-Lr---K

--^o--rvrvrv.^

*-K

»-'-'»

-'K

'-K

_i-i_

i_,_

JH

-_

--_

'_J_l-

K.

_j^

_

I_J_

JX

_

IXJD

l3

C^2

'DX

'IjX-O

TD

-'2

XQ

.C

CiC

.CL

CC

Ca

CC

CL

-J-i-J.J

.JC

L-ja

.-J-J C

LC

cy Lt .

r- cj

CT LL

r-- LL

TH «-»

-»-

»~ LL!

rv LL

rv (X

rv LL'

C

_i!r_i_i_j|z_jjz__j_i_, _jl3_j!ir __

l-^1"23

X

.Xi

'.£) -JO

-X

3D X

TO

'£3

CD 15

,O X

:ti

X

CC "H

12

X

O_

i 2 _

i _

_ 1

5i

_ i

S:

_> _

i _

i _ ' _ i

21. J

A _ ' _ ( _

-2'

O*

***

*

*****

*

***

L/^ ^o r^1* co 0s o* ^ * f\i ro -^J* LO

-^5 r1"** oo o* 05 *~* r\j r*o ^r LO

^J

^J

^J

CJJ ^J

1 ^*"

^/" ^>

^f"1

^/^ ^/"

^^

^^ jy

y

^j

^£%

^^

^£.

^£) y^;

oo

co

co

cc

oo

cc

cc

oc

oc

ro

oo

oc

co

oo

cc

rc

co

oc

cc

rc

oc

cc

cc

rc

cc

co

cc

co

oo

c

Page 83: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 000/4 AUTR3 10M? AH M(jM., 9 ^AP., 19«1

0166

FTN4 CHHPItEP: HP9?0^0-16092 RFV. 1913 (790206)

** NO ^ARMINGS ** MU E p RnRS * * PROGRAM = 0?4?7

78

Page 84: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

m T3

X D

~3C

C/)

£i

O 2 TJ H" 13 o I o o rv

oo

00

TOcn

.&

ru

o

o "JO

»H

- O

o I I I I

oooooooooooooo

c TJ 2

C m c TJ rr

a- u

i

o o

I

ru »

-* o >

o

DO

O

I I

I I

OD O

TJ

TJ

z? r

> u

:/>

~)

i-<

-« o

o

»- r c

i> i

> 5

> D

<:

C71

C

/j *-

* T

J CO

T

j T

?II

II

O

d

II

~T

I d

C3C'

OD

-H

O

II *

i < ,

-H -

H m

" » T

I3>

- 3>

II

C

X

V)

:/3

TJ

/-N

03X

^.

^

i-j

2!

f~"H

X

T

T>

>-

> "D

Z

H

D 3> H

^

O -

C

2 d

GO

SI

C Z

-H

C

X ^" *

^v

<~*

TI rr

c. TJ ~&

CD

TJ ~s>

O o

o .s, C

T!

TJ cLN

*

COm

o

o

ru o

cr

z

c-

C 3

n D

o o

o

Page 85: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

o

o

a- o

00 o

Page 86: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 FIN. 9:5? Atf TUF. MOV., 1980

000100020003000400050006000700080009ooto0011001200130014001500160017001800190020002100220023002400250026002700280029003000310032003300340035003t>00370038003900400041004200/1300440045004600470048

005000510052005300540055

FT

Cc-cccccccccccccc

Nf L

...

1

234

5

67

a9

SUBROUTINE FDUR1(DATA,NN,I

A RELATIVELY FAST, S M ALL FOUP1FR TRANSFORM SUBROUTINE

DATA=CONPLEX ARRAY OF FUNCTION TO BE TRANSFORMED. TWOCONSECUTIVE fcORDS OF ARRAY DATA ARE EXPECTED TO CONTAIN HEAL AND IMAGINARY PARTS RESPECTIVELY OF FACH COMPLEX POI M T.

Mh = NUwBh'P OF DATA POINTS IN ARRAY DATA = 1/2 NUMBER OF WORDS.f\N MuST bF A PO^EP OF 2, I.F.f NN = 2**N

ISIGN=tl OR -1 INDICATING ThF DIRECTION OF TRANSFORMTO TRANSFORM ISJGN CAis, BE +1 OR -1. TO INVFRSE TRANSFORM, TSIGM MUST HAVF ThF OPPuSlTE SIGN.

NUTt: WHFh CONVERTING Tu FREQUENCY, MULTIPLY EACH DATA POINT BY 1/NN.

J DATAfl)

J=JDO 5 I=1,N,2 TFCI-J) If?f2

1 TtMpR=DATACJ)TEMPT=OATA(J+1) DATACJ)=DATA(I)

DATACI+I)=TEMPT

7,10,10

nTHETA=S?PI/FLOAT(MMAX) THFTA=0.0DO 9 H= 1, MM AX, 2

WI=SINCTHETA)DO 6 l=MfNf ISTFPJ=T+ MMAX

J ) - *D AT A ( J+

DATA(J)=DATA(I)-TEMPP DATACJt 1)=DATACItn-TEMPI DATA(i)=DATAU)tTEMpP

8 DATACI+l)=DATA(I+l)+TEMpI9 ThETA=THFTAtDTHETA

GO TO 6

81

Page 87: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGE 0002 FUUR1 9:b2 AM TUF.r 4 NUV., 1980

0056 10 RETURN0057 FNO

FTN4 COMPILE": HP92060-160^2 KFV. 1913 (790206)

** MU WARNINGS *^ NU EPRDR-S **r PPURRAM = 00356 COMMON = 00000

82

Page 88: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGE OQ03 FTN. 9:5? AM TUE., 4 MUV., 19«0

0058

83

Page 89: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 F]M. 10:13 AH 9 *'AP., 19*1

0001000200030004000500060007000800090010001 100120013001400150016001700180019oo?o00?100?200?300?400?500?600?700?800?900300031003200330034003500360037003800390040004100420043004400450046004700480049005000510052005300540055

FT

cc-cccr

cc-

cc-

rc-

cc-

rc-

WKTTTtM PY D. V. M ijniFlFu 1?

PKOGPAM

, SEGMFNT TU pFRFQPM T R A*'3FEP FUf'CTIPN ANAl YS1S

MAN, U.S.H.S., JANUARY 1979 i960

, L nUP3,LPUP4,LPQP5,LPOP6

, TbLK,N«LK f TDFC,NDEC,nT,wFCUr

f 4) , i

*TSTUPf*LUTTY f LUPRT f

144) ,

(4") , Al (4) , A,\GI (4), COMPLEX S f ST"<fH

I, bL(31)HATA

OETEPMTNF TF n U 10 .1=1,4 TSAVF=0 TFCQF(J) .LT. HpTUT) GO TU 10

SET SAVE FLAP TSAVF=1

STACK PESULFSCALL AOSTKfJ,STK,3rP

STACK

OUALTTY

f ?HS1, lf 2HG?

?MAUr 2HGH

STACKFD

, ruMPHTF20 SX = KFAL(STK(1,.T))

SY=RFAL(STK(4,J)) SZ=RFAL(STK(6 f J))

, J))/3X/?Y ,J))/3y/SZ , J))/S V /SZ

S2?l=SY*(1.0-bl2) SVY1=S7*(1 .0-GYp

1.0-GY2)f J)

r J))*STK(bf

84

Page 90: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ02 AUTR4 1u:l? AM **UM.r 9 M A P ., 19*1

0057 GIY<>00^8 G2Yl=RFAl.(CuNJO(S2Yl)*S2Yn/S2?l/SYYt

0060 C0061 C CHFCK TYPE OF STACKING0062 TFfIS*»a .£0. 0) Gy T n 300063 C0064 c TEST FOR IMPROVEMENT BY STACKING0065 TFdSAVE -Fu. 0) GH Tu 300066 C0067 c CHFCK FUP NON-DEGRADATION BY STACKING0068 TMuFSTKfvP .06. GFCIJT-O.JO) 00 TO ^00069 C0070 c REMOVE DATA FROM STACK0071 CALL ADSTKCj,^TK,Sf-n

0073 TSAVF=O0074 C0075 C GO RECOMPUTE STACK VALUES0076 HQ TO 200077 C0076 c CHFCK FOP SO^E DATA STACKED BEFORE COMPUTING0079 C FUNCTION0080 30 TMNSTK(J) ,F(j. 0) GO TQ in0081 C0082 c DETEPMTNF t NEW TRANSFFR FUIMCTTON FSTI^ATE0083 H(l ,,T) = (STK(/l f J)*STK''3f J)-STK(? f J)*STK(5f J))/DSXX

0085 C0086 C ro^PUTF ^5 0 CiJNFTDFNCE LIMIT0087 O=FT0088 *-ri(2rJ)*CONjO(STK(^,J)))/3TKC2,0089 FRR(tr.T)=J0090 FRP(0091 A] (J)=SQPirRFAL(H(t,J))**2 + RFAL(H(?,J))0092 AQfJ)=SQRT(ATMAGCH(lrJ))**?+AIMAO(H(? f J0093 A^4 GlfJ^= c; 7.2 Q 578*ATAN2(RFAL(H(? r J)) r DEALCh(l,J^)')0094 A.i^OOCj')=^7.29575*ATAN2f AlK.AG(H(2f J) ) f AT^AGCHflr J) ) )0095 10 CONTINUE

00^7 C P£PO p T T P ANSFE P FUNCTION E-^ TINA IF IF STACK WAS M.0098 c RETURN TO PY D ASS PLOTTING SLGMFNT0099 TKfWSTK(l)tjMSTK(?)+NSTK(?)-»-NSTK(/U .F.U. 0) GH TO0100 C0101 c DON'T REPORT OP PLOT IF 15^2 = 20102 IF(IS^2 .EH. 2) 00 TO LOOPS0103 C0104 c SET INDUCTION ARROWS TO ?EPO IF MU DATA STACKED0105 no 40 j=i,40106 IFfNSTK(J) .OT. 0) GO TO 400107 AICJ)=0.00106 Ay fj)=n . c0109 ANGICJ)=0.00110

85

Page 91: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

00

* * 2 O 5v j> Z H- 2!

CO * * 7^ c rr. X X V3 )t * TJ C T)

X '> 2 II o » -vj rJ »-»

TI -H 2*

tz O 3) 2 13 > » rr 13 » T r !X>

0 O 1 »-» J" 0 fV X T|

<c t -» X Us

/ *

--J >c ru o a '_y

0

O O

O

0 O

0 O

0

'.j *j

'.j

r\i

* r\

*^

f\

ru*

o>

oo

3^4

O'-u

74

i

if

if

* if *

*

sr c

c:

a

CD a

cr

cc x

-3

i r

- r-

i

, r

" -«

D r

vj fx>

*v)

<x» x

) T\J

TI

O

~»J

>C

~-J

O*

Lr«i

'" *

i) r

- ,

r-

r- r

~ r-

13

"c c

c- a a

: a*

a tr

xcs

r"

. -H

X

vJ

XI

XI

XI

i-»

O

»-*

O

C

»-*

tP

O

c

3= >

j>

j> m

~n

.2 I

D .z

' «

13 i

CT1

CD

< "">

G";

<~>

X

IX-H

1)

'-«

<

" t

-N

7^

^->

v-' * \

v-

»

(X! / -

%

r_j

* c_«

^

* "\J

CM

v-

- C

_ »

C-<

C_i

U-

^

*

)|

>

||

v-"

^

c.

c_ ^

- >»

-C-

« II

*

II

^

r-,

~II

K-

£r

I-*

£r

|| a

v-*

%

s_/

»»

'^_/

: "

4

^ *

-fc

^

*

/-.

Cr

l~'

' ^

Cs

"\J

V- ^

^

S_

/ Jt

f~\

ft -D X* n

f-

^ c_ <.~/

^ '*-*

II

O UJ * ^ ^ Cf

" ^ ^ rr. o fc "» X % TJ

I-* o t Cs

^ "VI

X IT.

»

O -£

0 1 ru >_» ^ UJ o C 3. -H *^

N "U rxi

>« rr r-» o § -C:

* X X TI

o -C:

" X * n~ --k o 41 * IX'

X ^ TJ

»

O r\i

»- * cr r" X)

ix; !~~ cr 'o V

"» T. / >.

"VJ

» t_ *

^ c_ II 1-+ *-/

0 XJ

0 :, !

X -* -n ^ cr TJ x -H _» 0 O I a * * /-* XJ rx X

_S * a ."~ /-\ JO s-'

X T ^-\

) »

» "_,

«-^

«» C II H*

«» 4^

0 0

>O

Oo

»-* o ru 0 c x

XJ 4

S

-H"^

>

""^

(

/-v

H* c

rX

T

J

X)

H3=

-

PU

p-

»"«

O

'Xl

XJ

i*

J* "

1

p^ * r

~C

C

E1

~~4^

*~

>^»

»

t-*

^ '

*5

*

x r

pr

f- »

. \

o r

u

N-/

4:-

*

Z- TI

Cr

^-\

X.

C_<

»

\->

pn ^

»

c_,

0

II*

»4^

^

» i

i ^/

Cr

X

O ^ 3

i

II * T! * *^ 2 c/> H 7 11 = » 4

^:

-H 4i

*-*

O a- H* O t-» o TI o *J t, ~* '"^

'73

"> n * TJ P"* CO cr r~ «

VJ *""*

rr n n 3"* U

J »

r

t '

U r" ^ u = N 4 4^-

O

O O

O

O

en 4

^ uj

ru »

-*

o

r>I I 1

X>1

0

s o

^

"^ )X

>

O

C

-t r

- <.

z

TTI

^

~i»-N

m o

z.

r"

x :

TJ

'"~c.

rn

P"1

TJ r

> TJ

X

*""*

**

H

'jJ

TJ *

* rn

.

13O

H

*f*

O

o e

* »

13 -f

, «

; O

C

T|

TJO

X

*

H4 <

"

JD -*

r~ ^

^ 13 -H * 2*.

i

"^

^ <n T)

O 0 0 UJ s> c -H

X ,. »-' jJ s» IS 5; C ~ZL

t » ><O -, > TJ » ^0 30 »-

-)

c

X

Page 92: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

00

oooooooooooooo

\J\

OD

-«4

O"

en

<n C m x X

o JD m IT

13 NO

f\J O o ^>

ru x

r> D

i

UJ

I\J

I O

O

O

I

z-m

-HC

-rr

i o -

n c i

-> "

c c

"3 H

I!

-H ^

"^^S

'HII

CI!'~

^^A

!C

Z' ^»

-'*

'"D

fT

'O I

T3r-io

^3 l

O'^

^^

^-H

*z~

*

Z" *

>-

i m

c//

x

2:C

_^

«

^ i I

7>

X

-H

T>

~H^

II

^

II

2

C

.

il

II -»

00

-Z

-H

C'

* CO

^

i

C

-HO

-H

O

~

T

.1

0

(T,

33

cr,

c

;*,tj

-* a

O o O c

OC

?

o

o o o

o

rv

o a

c. o o c,

T

H

Page 93: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

oc O

H*

OL<t

20sV*

Z:Z)

5'*2_

<EK" »-« o»-it

Z:1 LLinoooLLOQ_

/* «»CaJCJ^s_i (/-;dUK-o.j;

CH-t

h-

LJZ

"Z)

LL

CJ-

r-.. oo51

=3-

fc LL

CT

Z

~'.

c. z.

>>

i CO

H

rO

LL Z

, a

Z

2T

aJ

C

i- cr

cy O

X

«-

LL. *

LT C

Z

If

O^

O

>-<

LL, cr

Z

UJ

3L v

C

Q

C

C

(

U.

^-«t-

z

z> u. z>

inor c

»->

*H

H

H-

0-

a. cr <i

K-r

XI

_l

*V

. LL,

C

^ t

CX. C

L »>

c e oc

rv1

UJ

UJ

^LL.

C.

K

u

;z o

LL rv H

- *

x

z> in

h- z c

rv x2

K-LL

C

<r /-»

O

K*,>~

zr ru ^

~

<f CL

»- v rv

CL

.~D v--'

^O

^S

=T

*

LP

0

Z) u

Z) a" ^r

t_> f c

a: rv o

JD _i

< ru -«

C Z

h-

X

«.h-

Jj

IT!

G

"Zf

Cc _j z

c?" rv

i Z

C

13

O

JO

'J>

C

LL <

i H

- <

rv

LL

* i I

T> t

«» ;_}

H-

»J Z

C

Z

O uJ to

aJ <t ru

ll

Z >

LL-

5

1-

rvr> uj '.o *-< -i ^

z)LL

_j i; c c -« z

K1111t

'* C

/ t^ "j

& o

«- ru K

I -JT LOCT

LT LT

IT

IT

LT IT

COK<£. a1 o

CO

~y

C

CO

K

-

IT

Z)

c e

* *f~

*~"<r o_j rvZ

)a

' .^ !

LL' _ ;

\

*ZH

- « ("\J"j

ai

"Zc:

^i '

'_i_a

H-

iiiiC

J t_"

-o r QOIT

IT

IT

OrvC,

1

Z)

e/ .o» *t _j

0

*K

^ru

«- rvi c

-D c

r-l «

^ h

-

1-Z

O

»

-

ll u

^

u u

Z

CD Q

-L,

"a. 'Q

1

H-

C

* '

t~

H-

c»- »

Ox o « * ru ro ^

i s i i i i

C--cf

ZZ

) Z3

\ i *

C

<3

J>

_ |

C ^

3

.r-

orUJ

>

!

,Z!_ I

t O

K\

5ru

;X.

c

z: c

1

.T h-

'JO U

_^

II II

QC

'JL.

Z:

JQ aJ

C,

h- 1

>--

1 t

Q.

C

Iru

iiio <_;

in ^o ^%~ oo o^ o

ȣ> >O

^

sO

%O

f"~-

r

"U<3

O_ 1

'-L.

X ,-G

Lfa 4-/-^ru~ ^\_i <rO_

iu_X/ " »2" «V

--

LAano<.1 v-/

KO

ci-ii zr

K a

CO Z

)LL.

Ki

;JLJLL

C:

C'

hO

C

x-i ru hh- r- h

RFEHQM

Li-

Li..DCOLL.X

Ia c

ij> tnLL-D

O1

JL;LL

C<£

.J>

LL.x

>-\»-.

jZC

jJ

C

C c

X

LL C

NJ ru

iiZ.'

K-

Q.

2

CO<

t »-

LL.G

i X

>

K

1-1 LL

1 C

1 =3-

11^ (_:

o ^ in -o

-~ f»~ f«. f^.

a.~~~.s£CZ

)_

1

LL-Jcr<1 2s:z

xO

L C

Z)

XH~"

CLX

i ijj

Cr C

t1111C_J

CJ

Is* 00

Or- i^

i-

/ * »ru"~,'<£Ls

h-

<i

Z)-

XX. »rvZ

)Z

!1

v-/

Lf0^OC<h

-*C*

CfII

Zh-

CL

£0 Z>

LL 1

- C

>~ U

J ^

Lu Or,

LL,

Ctno -r-« ru

oc oc

or

/~ -

c

ch-v_x

*o V

&

«~, >LL,Xruao-c»-iiosOorvo*aT C

tUJ

_JHH

a.5:ct_>^r2H-

LL

co

<r>IIC

TJZ)

(_O

^ 1o

oII<i

XeoOr,a.-K KCOXcXQ

.U

J

ZJsc K KV

.o«£k »

ZX<ssoz K*

CO

oo

cc

co

co

oo

oo

oo

co

cc

c-c

oc

r. c

occccro

cccco

occo

Page 94: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0006 FTM. 10:H AH MOM., 9 MAP., 19*1

89

Page 95: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

cco«, o

o

ccIT

LT5<t

a' CD ca: a

Co0LL:J3 <CL

c a

er,

LL,C

O

xJ

e» « aooH

- ,3

_

ia.CO

O

Luo a,

z- ccH

-«i- a*-

uJ

C 3

'

_j o

a aiiiU

(_;

5 C

<r

x,S.

CtrH-L_QL

CCcr.ijjS

i

Oa

u_ u_ u_ : i; ;~K:O

:_D

r.D "-\ N

*~; "D *~3

i- K

C

C

C

X X

o <_> u

a: i:*****.

X

X

K

X

X

H-

^

u_ U_ u_

x t

:JDC

«-'-

'^ v^

wC

nj

«>

_J

_J

_J

-r-t-l_

J

LL, r\.

<. o

<i x

z. <.

OO

II

UJjJ

jJ^

i «X

»

a

a

cr 2.

SL

O -

II II

II <

<

t O

It

H

C

<-.*

->

/-

II II

O^

.^

-3>» )

: i

j_4

i i

^^

^

»

j-\j

<j

h-

v_- *_

v_

<

i jZ

||

T x

o x

:>- xi i

z :z

a

a c

a a a a a LL

a:

c

ccC

I

CJ

LLLL _JO

CC>

U

O

O

H

L_ LL

LL.O

X

>

- X

I

Cu

X

X-

XI

H- a: a

ac ^ C

C

U_ h~

H-

I-

'£ a_ LL. a_ a:L

lJ -I

_J

_J

H-

-J

_J __i

LJ

<t

-I

<C

O

C

t_

II Iu

o*

J-* u.X4

-

II O

LLiX

lt_LL.

= X

».

c

LL,

oX

^

(_

» O

IX

II LT

> X

UL.

X

*"

*- 2L. a" i

*. :r x

K

* = +

a t ^

c_

CO 13

Z

U

.a

_' c c x

o +

- H

Ct,

/ LL

=

<.

c -

s o

LL.

'-t o

II

tt

^

"~>

i^

»

cj c_: a

i<

0 jj

Z)

=

XX

_J

v-'

«->

u

J ^

H

- II

a. _j H- z. LL.H

_j »~ a

x

ID

«t

X O

C

- (_-

5:

L. t K

I C

I <-*

I C

I *- *

u

»- ru fO -^t ir> >o ? «- oo o*- o * « ru r^i -^ un >o r*" oo o*' o

» « ru ro ^Ln^o^soo^O"-* ru ^o ^1/1 ,of>»uoc7N'0'-< ru fO

LO so i*** oo o*' o »-« ru r^o ^

LO coo'ooocco^^^^-r-^ . <r^»-»^'.^»^»Hrvjfurv(\jAjrv:f

vru^rv.^^^i^K'^

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

COCCOOOOCOOOCCOOC-COCCOC'CCCOCCOC'COOCOOCCOCCOCCOOOCOOOOCO

Page 96: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0002 AUTRS 10:1"$ M UN.

OOS6OOS700^800^90060006100620063006400650066006700680069007000710072007300740075007600770078007900800081008200830084008500860087008800890090009100^2009300^40095009600970098009901000101010201030104010501060107010801090110

rc

cc

2^cc

rc

cc

rc

cc

6050

CC

CC

rc

cc

c

COMPUTF UN^TS TU sryi IT cuNvFKSinNXfC=SO./XFCYFC=SO./YFC7FC=^0./7FC

PLOT TTC^ N'A^KSCALL EXtCO, 1 lOORtLlJPRT,?)CALL MH\/F(M H SK1 , 0 , TpL T , 0 , 66)CALL EXECC?, IOOB^L'JPPI ,IVLT, 6t>)CALL MnvF( M ASK?,o r TPLT, Q, t>6)^U 2S T=1, 10CALL EXECC?, 1 uOB^LUppr,iPLT,66)

nuTpinCALL tx£C(?,i iooRtLuPRT f i )K = 1

Hij 20 T = l , 1d«CALL ZFRn(!pLT,b6)

X DATATL)nT = IFlX(YpC*X(T) ) + l 000CALL lMonT(lPLT,IDnT)

Y OATATDnr=IFiX(YFC*Y(T))t87^CALL iNDPif I P LT,T L^OT')

7 DATATDnT=lFIX(7FC*7CT))t750CALL IND^Tf JPL T ,!unT)

N*APK FPEfOUFNCY AVE^A^INb B^NDSno 50 M = !,/JTt-fK .LT. TFLUTH) .0*. K .CT. TFHlfM)) GO Tj 50HU 60 MM=1,3CALL i^unr TJPLT, TdfM-M )-M-H)CO^'TTNUt

HtTtRHTNF TF SPtCTPAL PUTNTS GO HN THI? Lp.'tTF(Mni;(I,2) .EO. 0 .HR. T .LT. 3) HO TP ^50KrKtl

X SPFCTRATDnT=IFiX(FM*ALUGT(RX(K) )^Fb)t^7SCALL I M DniClPLT, TDHT)

Y SPECTRATDnT = IFIV(FM*ALURT TRY (K ) ) tF8U250TALL i^onr (I P LT,TUHT)

7 SPFCTRATDnT = IFlX(F,v»*Al.onTCR7(K))tFb)t?5CALL INDnrfiPLT^TDHT)

91

Page 97: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

II',"3*

c

oco.0

Cr\jo

UDcoII

*

cc<o

V

z IDI;'51<

r

r/" -4

<

O«F

-<

LTIKKZD<1l-OC'

ooy_CD aQ

_

^0vO*

1-_l

CLH-« v

>

ct:a. ._/+ino0« V

Tx.<

^fr-

C-

«

UJ

oJ

C X

~

'IJ

1£U

. K

IH

- _l

»- _i z:

cr < a

s o

t_1

o

c:i

co ruiic;^ ru N^

^-t »-)

'-NV

fr­eec.13. _

,+CCoo»-*

t V

KV-*

CUJ

XuJ

_l

_!

<U

LJ

^r in« »-»

oNC

< <

*

sC

K

-O

._!*.

CL

O

H-4

k> V

h-

>

_j a

a. a.

» i^

^

* _j

>c c

+O

*.

OD

*. rv o

H- ^

O_

' CO

*-<a. <

o

-.»- 5.

^ ru

ic: C

LL.

<- o

X X

:>

I! ijj

<

U,

C .

»-> X

z >vi :E

ujo

it: u _i ^cr _j

U

_J

_J

_J

-* <t <t o <t

fr- U

0

C

U

1 C

i =r

iiCJ*O

t^

CO

0

s O

«-i »

»-i

*-

fV

-O>c*->

*

fr-

£> ._!

>~*+. D.

r\ o

-« *.

«. *. fr-

H- ce_j a

aa. a. r>>

~

_

;*._

!-»-

c

4- ac

*. U

0

»- c c

V. => r-»V

-r-»

~-

<!*.«

.

^

rv K- ir

u. o e

o>

aJ IjJ OC

X

X

_j

Z.

UJ

UJc

_J

-_l

-J

H-

_l

_j

_j

C.

<c <

<r Q

2!c.

u o

e it.

»-i (\i t^» cr inrv rv rv rv rv

V '

N*»

>

5>

u_cc'Xl

cosC*

1oxCo

rv(>C.X CcLU

1-4

CL^1CLJ^r2h-

U.

J^ C

:D

cta. K*crXcXQL-Uo2.: K*COJ__i tZ

1

ae<E1CO2" K K

cc

co

cc

oo

oc

oc

oo

c

CM

Page 98: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0004 FJM. 10:1"* AM WON., 9 M AP., 19*1

01?6 SUPRHUTlMt FACTRfN,X,FC)01?7 Coi?8 c PUUJTNF TO DFTFRMINE PLOTTING01?9 DIMENSION! LtVEL(A) ,XCl)0130 DATA LFVFL/5,iO,?Q,5n,100,?00,5GO,1OOO/0131 C0132 C DETtRMTN^ MAYXMUM FxfURSTUM0133 Fc=0.00134 ny 10 I=1,N0135 XARS=ARSfX(I))^136 TFfXABS .GT. PC) Fr = y M Bc30137 10 COMTTiMlIt0138 C0139 C GET NtXT LAN^EST LPGAKTTHMTC LFVFL0140 T=10141 20 TF(FC .LF. FLUATrLFVFLCl)) .PR. T .GF. 6) Hu Tn 300142 T = T-H0143 HO TH 200144 30 FC = FLOAT(LFv' fr LCD)0145 PETUPiNi01/46 Fi\n

FTM4 CHMPILF.P: hP9?06o-i6o e'2 KFV. 1913 (790205)

** NO EARNINGS ** NO tPR n RS ** PPUGRAM = 000°3 rO M ^<niM = QOoOO

93

Page 99: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0005 FT M . 10:13 *M WON., 9 MAP., 19«1

94

Page 100: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

t?00000fuoooo

TOOuOO OoOOOO TOOOOu ^00000

ON¥*

TOGO

1S3U iddOS JdnOS

TOOO

Page 101: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

o oO O

ooo ooooooooooo oooooooo

OOOOOOOOOOOOOOOOOOOOOOTJ

c m X

CO

oooooooo ooo oooooooo

ooooooooooooooooooo

ooooooooooo oooooooo

no r

v ru

»-»

»-»»

-»»-

»»-»

»-»»

-»»

» o o

o o

o o

oo

-»O

i-»>

-k-»O

-*O

-»O

'-*O

OO

OO

OO

Or\

/ O

O

O

-C

-" 0"

" 4^

O

" f\

j O

O

1 O

*

O O

O

O

O

O

o o

o

Ji

O- -

7s r\»

"\>

o <

\j \»

o o

o o

o o

o o

ooooooooooooooooooo

OO

O-~

JO

O O

OO

OO

OO

O

O

O

O

O

OU"

; o .

& -»

j UJ

rv;

>-*

o u

"> w

-to

* o

oo

co

o-O

TJ

TJ

TJ

T

J 3D

TJ

TJ

"3

D x

2 oo

o

o

o

<

o

o

m

o

noo

I O

TJ

X

D en TJ

X

-H m

C-

C rr

; m

C

C

<

5 c

o y>

TJ

n-1 a

TJ -

H TJ

x"4

3 H

-H

O

H c

c

m <

/ C

co

co

co c

c cr

, x

z

<:

>

c c

c m

rr

c c

c c

o c:

o<

<

5V

JJ3T

J-<

MS

rr r

r co

T

i ~c

x r

r c:

x

O

2

-H

2rr

c x

c

Z

<!

TJ

«^

* r

n rr

-n

zc -

c

X s

C

rrTJ

in

o

« TJ

C o

rr, JO Co

D TJ

x r

r, m

c c

in

TJ

C *

r &

.

co CD r

">

m a

TI TJ m

-o CC

coTJ

rn o C

O c/.

"3> p

^

^3

13

TJ

t3

^3

TJ

,TJ

Cr-

CO

CO

CO

CO

C

C

C

O O

c m

rn

o o

^

-O

JO

>_

~C

L

""H

i ^

H

>C

^C

1.TJ

«

4

"~) r

>

c

TIa

C'

C

»

C"

m f

rT

J JJ

TJ

T

J T

J

c- c

c

~+

T

) ,T

) ,-

1

Z.

TJ

JD

.D

Oc O

Cc C TJ TJ

X D

D

Page 102: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

VO

-v

j

15

C o

o o o

o .£- O o

01

5

TJ

TO f

X)

3>

O0

0

O

0o

»

l-»

0

0o

oC

' 0

>r

en 0 o

ru

S

O

C

to

rn

-n

-n

<:

C/5

G3

2"

rn

H

TJ

H

0000

O

0

0

O

O

O

0

Ot-

»

O

»-*

O

o

o

o

oO

3

00

o

o

o

o

o

r^j

*\j

*en

o

CN

o o

o » »

-4 o

o C' w o o

T! o o o

o

3 1 rn 2 3

<""

*, <

:

y> -<, o

r~ CD

ru

Page 103: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 0001 7EPU P OOOOO.P.ENTP * oooooiARRAY P 000000 NU^t>R P OOOOOl LOOP P 000012 COUNT P OQOO?0 ** MO EPRHRS PA?S#1

98

Page 104: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

pftGF 0002 #01000100020003*0004*0005*00060007OQ0800090010001 10012001300140015OOlb00170016

001900?000?100?200?300?4** MO

OQOOO

7ERO -

oooooooooioooo?OOOQ3000040000500006OQ007oooio00011OQ01?000130001400015OQ0160001700020

ROUTINE

oooooooooooooooooo016001XOOOQOOR16?OOlR00300407?0?UPOQ?4001 01 7'U1017401 QOQOOP105760036Q?OR026012P126002Roooooo

ERRORS *TOT*L

A3 M b,L, Tf CM A M

TO 7ERQ A

FisjTFXT

ARRAY R S SN U v d R R S S7£PO MUP

JS*HEFIDACMA,S [ ACL ACAY

LOOP SAX

ToXTS7JMPJhP

COUNT RSSFNH

7tPQf 3,

PRAY

7ERU. E * ' T R1t

. E N T RARRAYMyM^P, T

I N ACOUNT

ARRAY, T

ro'JrjTLOOP7£ D Or 117 E P 0

**RTE AS.MB 7b09?

opADORFSS OF

PfSULvF

LOAD "A"

SAVE"A" = 0it y i| ... « A «

STORF 7E p O IN ARRAY

TNCRRMFfoTLOOP uVER 7£ROTNRR E T U R ivI OOP COUM1FR

99

Page 105: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0003 ZFRnFAbLE

.FNTR 00007 00011

ARRAY 0000* 00012 0001P

CnuNj 00023 00015 OQ020

LHQP 000 IP 000?1

NUMRR 00009 00013

00010

100

Page 106: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ01oooiTiMDQT R 00000^.fV'TP X 000001RAS P 000000TGL p nQOOOlMASK P OOOOP2MASKS P oooo?3** MO ERRORS PASS*1

101

Page 107: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

* o ooooooooooooooooooo

* o ooooooooooooooooooo

j^

* *

-^*

£

-C

- *

»

-d

C

5 d

-^

1

M^V

' M

^V

\^J

%A

l 1^

1

hA

>

'-A

«

!t.A

l \«

AJ

Vj

O-

^J

^^*

^^

jr*^

O*1"!

1^

^ *"

"*

CI5

sO

Q-5

**

4 ^7

^ ^"l

f**

* ^"

4 ^^

fr *1

C?

^0

oooooooooooooooo

oooooooooooooooo

OD

c m X

CO

OOOOOOOOO OOOOOOOOOO 00000 O OOOOOOOOOO OO

OCOOOOOOOCOOOOGOOOOOOOOOOOOOOOGOOOOOO

OOOOO OOOOOOO OOOO OOOOOOOOO OOOOOOOOOOOO

£:

ft

^i

^

Xt

O^

IA!

IA!

^/-i

l/J

O^

OJ

O>J

f\J

fV

fV

J f\

J

f\J

I\J

fV

fV

"*

*~*

*~*

*~*

"*

*~*

"*

* -*

O

O

O

O

O

O

O

O

O

'O

O O

'O

O

O

O

1 O

O

O

O

O

:'O

O

* "

** O

^ O

O

*

* ~^

1 |

A *

* O

'O

*

*

" " *

O

O

O

'O

-^

O

'O

O

O

O

OO

CO

OO

C O

OO

OO

* fV

-C

:G

OO

Or\JC

O

O^

^O

£;O

-vJ4i<

-*O

'-O

t-*O

OO

O

OO

OO

OO

OO

i\J

Cs

OO

OO

OO

O7

sO

Ov/|.>

>-»O

>x-^

'\l'"\J

'\>

l\)O

Os

OO

O

OO

OO

OO

f- rV

jJtO

OC

T' O

OO

OO

OO

O

OO

-vJO

OO

OJ^

OO

OO

CO

OO

O

-*

O

O

*-*

fVI

fc O

O

O

OO

O

OO

OO

O

-U

O O

OA

J-J

OO

C

:O

OX

>fX

»X

iOO

OO

OO

'"^i

rV'

i^

o* C

D c^

c

1 ^2

c^

co o

? c

o-'

*o c

i- c?

*~*

^^

c? r

v? "

«o r

x* o

^ c^

c-

j-^ ^

^ cr*

?\j

^/^ -

^ *~

* c^

*~*

c^

c

c^

OOOOO OOOOOOO

OOOOO-OOO-OOOOTJ

^*)_*^OOOOOOOOOJ>

r\j

»-»

o- >

o 02

-»j

0s

en -

t LN

rvj

»-*

o TI o

o

o

rv/

o ho

H * X 1O ->l -

?c

c

o

-H O

13

Z

C

3>:/>

in

D

Do r

D

Dn r

>r:

r.

n o

o o

o o

o o

H-H

H-I 1

-4

-H

-H

-l-H

oa

O O

O

O

O

O

O

O

O

C

' O

O

oo

oo

oo

oo

oo

OOOOOOO

OOOO o

3)

3D if)3>

C

E C

3>

H

"y>

-*

r-

-co

-z

I/J

2 C I? HH T|

f t

T|

C" rv tji ^ 3> -< j~»

>C -vj

-V

j

SI

X -H H H (T.

2 7J -< O"

t < t TI

i t

-H rn

^

j L^

X 33

HO

H

~

TJ

0 C

X ~ <T

; X

a >f >-*

^

CT

«

1 ~*

Hv.

^

-y-

4-

TJ»

>

a- "

H

i -i X

t>

30X

C

*3 d

j> (

-< i

iZ:

TO ~

n3> CO

H

C T

JH

'-

X

3>T

| -) nn

T|

t i >

rj CO C

H

3 ;

h

o o 0 o 0

Jt> O'.' s a: ^ r

"T|

T|

2 *

X

2.

3>

i

H

H 2 ^ O

« -H

,-

Hrn

TT

- ^r

-* c

c

o

o -

?

:o

13

fT* j

nJO

CO

Co

c; CO TI

c o

o

= C

o TJ

*>

ii ~n

C

3> ^

33

,_

J)

%}m

r>

CO o TJ (T> V3 CO

33 rr Cr

co

ox

C C

Z

X

3

rr

:

IS

iT|

TJ

(

-H

JO^ x r

r c c

CO

30

£>

T|

>

o cr

a

"n X

co

m

j)

irr

^>

CO CO

CT'

^-2

E>

a

l-f

> O

co

r,o

>

r, 3

> x

r~

CT2

O i

a; -

H TJ

> j

i c

/

r- c

D

2Tr C

C

30 O

Page 108: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ03

.FNTR oono/4

cni_

I^DOT 000 J6

MASK 00030

MASKS 00031

RflS 00014

00017

QOOPO

o o o 1 9

QOU03

ooo?i

OOQ16

0 0 0 2 *

TABLE

000?7 o o o 2 «

103

Page 109: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF oooi FIN. 10:20 M<\ M uN., 9 MAP.,

0001 F T N , I.0002 PRDGPAM0003 c0004 c SEHMFNT TO w*MTt O'UPUT TO F-TLF0005 C0006 C WRITTEN PY D. V. P T TTEPMA,M, M.S.G.S., FERRtUPY0007 C ^UPIFIFU 50006 C000900100011 *!STOP,0012 *LUTTY,0013 *TDC6U44),JDr6fl441,KQr6(144),lDrBfl44l,0014 *TFLor4),TpHiral,NuFG p (4),0015 *F(4),S(6,4l,STK(6,4) , ijSTK ( 4 ) , H ( 2 , 4 ) , FRP ( ? , 4 )0016 *nF(4)fAl(/4l,AN £!(«),AG(4)fAf\,niK4)fTDAlA(?304l001.7 COMPLEX S,STK,H

0019 rfjMpi EV CbUFL00?0 FylllVALEMCF fLPUF( 1 ),bl'FL (1) , CPUFL f 1) , IDA TA C 1 ))oo?i r00?2 C PhFCK FyP OF L"VvFKTNn 5?TACK TYPE00?3 TFflBv.4 ,l_T. 21 HO in 1000?4 Coo?5 r CHFCK FQP MO STACKFD DATA00?6 TFflM«TK(1 )+rt-<?TK(?)+N-*'lK(3)+NSTK(a) .P,T. 0) UH TO 20 0027 Too?8 c- - TEST FOR L W U"GH OF En^FRT^n0029 TF(I^vv4 .LF. IS^S) GH TO 200030 C0031 C LUWEP ^P AND003200330034 C0035 C PRDCFSS DATA0036 GO in LOPp?0037 C0038 C PESTHRF PF ANO0039 2000400041 C0042 c TLFAP OUTPUT0043 10 Ou 30 1=1,120044 30 I B"P fl)=00045 C0046 C I onp uV£P0047 J = 0004a 40 TOFFT=-64004900^00051 5000520053 TOFFR=ToFpPf3200^4OOS5 C

104

Page 110: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF ^002 AUTR6 10:20

00^600570058005900600061006200630064006500660067006800690070007100720073007400750076007700780079008000810082008300840085008600870088OQ8900900091009200930094009500960097009600^901000101010201030104010501060107o 1060109OHO

c

rr ....

cc--

60rc

rr

cc-

cr----.

cC.».

rc

rc

cr

rr

cc

cc

cc----

cP m, » > _

Cr

CnFCK FUR STACKED DA T ATF(NSTK(J) .^-T. 0) uH T

7EPQ INDUCTION APKHir.'SAi(j)=o.nAyfjl 0.0A N P I C Jf J = 0 . ^ANGQf JlrO.O

FRFuUt^'CYBuFLf inFFR-f 1)=F(.T)

r>TPUFL f inFFRf c) = n T

TDFCLbUFfiOFFl + S^IDFC

W STKl.BUFfinFFl+b^^STKCj)

sxxRUFLdOFFR-fi4)=:Pt" A LCS T K(

SYYBuFLfIOFFR+5)= p tALfSTKC

SZ7p UFLCinFFH+6)=PtALfSTKf

SXYCbUFL (TOFF r t^)=3TK(2fJ 1

SX7CtJl'FLCTUF: Frt^)=STKf3,J)

syzrBUFL(TUFFrt6)=vSTKf5fj)

TRA^SHFR FUNCTIONCbUFL ( IUFFC + 7) =h f 1 f J)CbUFL(TOFFr-l-8)=rlf2f J1

RANDHM E P RHRR uFL(inFFn4-l7)=E.P> HCl ,J")^UFLCinFFK+l ft )=tRRr2f J>

QFSTK«uFLClOFFR-H«>)=yFSTKf J)

QFCUT^UFLCinFFR4-20)=yFcur

AIBU F L(inFFR+21 )=AT(J)

r J))

, J))

105

Page 111: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

COJ

a:Co<t

a,

d

OrCD {_U

JaauJaZ

' C

vJj

LO

L?

K0)

LU<

i |

~

'

*-: "~.

*~. *-;

*- a

LL

_j

^

>-> ^

>

OC

LU

*

t- *-3

C

C

K-

CS LL

a

f-D

^

CD _J

X

oJu_-5

oJ 2

C

Z

: LL

LL C

~

' H-.

u u

ii if

it iT

a

crr\

N"

CT CT

0

»-_J»

C:

rvi '"xi

(\j -T

ji t.n

ID _j

4

4

4

4

4

4LL--

"-a:

-x a:

*-i *

>-* -u !a_

U,

LL LL

LL LL

LuQ

»_'l-

Lu Lu

Lu Lu

Lu LuO

'.3*-iH

-t

C

0

C

C

C

C

LL LL

LL a

^r 4

H

^

H«H > H

^~H

P

^

^j^\~*

\-s \-s

v_. *-^a

* '^

:

LL>

-H_|

_l

CD

-J

OLu

*-»Lu

-DL

u

O"^

( _J

CT LL

LL C

; LL

«J Z

. DC

Z? Lu

Z

LL *-

» ^

«Q a

<

t a

. <

t CL

t- _J

!- «.'

2^ __=

u,

H-

3;

U'

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 t

1 1

1 1

1 1

1 t

c_ (_?

c_> u

cj o

cj c.

c, (_;

c_ o

(_: o

c_

cj c.

i~» f\i ro -«r LO »^J !*" oo &* o

»~< rvj f*o ^f LO ^o r*~ oo 0s c^ »" < rvj PO ^J" u ,~

,_^ ^H «~! ^- .-, «_ ^- »- fx.! rv rv rv> rv rv rv rv rv rvj K^ K

I K*' r^ K> ^

cc

0.

ch-

O!

^ ,

0-

C

LU

*~> i

2

>-

C

D

Lu O

-Z

C

H

- CL

Lu

1 1 1 1

T sO

h-

oO

CX-

C c

r\j o

0s-

LL JCCOo

rv o

axaUU

I> »as: c

o

i:qi.bo

inooil2;a: craCLCcr a_sJ

eo

vO

O

C O

O C

O

O

C O

O

O

O

C

Page 112: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 00^4 FT*1 . 10:2^ Afc Mj f '. f 9 M AP., 19P1

01

107

Page 113: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 FTN. 10:2* Ah *UN., 9 M AP., 1.9*1

00010002000300040005000600070008000900100011001200130014 OOlb001600170018001900200021002200230024 00?5 00?6 00?7 0026002900300031003200330034003500360037003800390040004100420043004400450046004700480049005000510052005300540055

FTN,LAUTK7,5,*0

PASS HTLTEP1N&, DECIMATION, ANDC SEGMENT Tu t>nCC WRITTEN PY D. V. FTTTERMNr M.S.G.S., FtPKl'APYC ^UHlFlFD 3 UCTObFR 1^80C

LOQP1,

*LUTTY f LUPRT, TSTZF (?) nMAMF (9) , IFILt f 3) r

*TFLQfa) , TFHIf 4) ,*F(4) ,S(br 4) , STK(*QK f4) , A I (4) ,

143)

f**) , AU f 4 ) , A NRU C 4) , Tl> A T A (P304)

IbUFf2«6)r TbUF f 2ftb) , K8HF f 29b^ PUFJ (

CIRUF(1 ),bUFT(1 )r

BUFJ r 1/13)

CFLPftt) r TRLTfiO) , MASK 3 ( 30 ) , M ASK 4 C 30 ) DATA CFL.P/-.011607, .OH 179, . 00 1 29 1 0 , -. 035459 , .

*-.«571?l r -. 061011, .577^97 HAT A SCLX/100.0/,SCLY/100.0/,SCL7/50.0/ HAT A MASK3/3*OP,777776,b*i77777b,l76000b,2*Oa,777b,*5*177777^, 177760R,?*06,7R f f>*1 77177*, DATA MASK4/3*Of 4

C C- CHANGE

n u 10 J=i,410 F(J)=G.5*F(J)

c c SCAl E FACTUPS

.GT. ISw3) GO TO 30 CALL EXECC3, 1 100RtLU^RT f 2) WKirF(UUPKT,1010) TFTLF,TDFCf DT f SCLY, RCLX

1010SCALEfNT/TNfh):

CC--

CALL CALLCALL CALLCALL CALL ny 20

TICKEXECC^, 1 1^0R+lU p KT ZFROcTPLT/30)MOvF(^A^K3 f o, TPLT , EXECC?, to^b+LHppj,ZFKO(TPLT,30)

,2)

o, 30, 30)

30)T=1 ,10

20CALL u p Ki,i)

108

Page 114: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAQF OQ02 AUTK7 AH 9 M A p.,

OOS600^700^800^9006000610062006300640065006600670068006900700071007200730074007500760077007800790080008100820083008400850086008700880089009000910092009300940095009600970098009901000101010201030104010501060107010801090110

Cr c

30cc

cC

40

Cc

50

Cc

Cc

6 ftCC

CC

70

Cc

SET COUNTER FUR T/HCF RLPCK MU^FR BECAUSEWE PROCESS 64 phAL ftOn'DS AT ft TIME.NBL K? = NbLK + NRL t</

READ FIRST B-LUCKIPTH=1JPTR=1CALL RFAHFC IHCR,TEP, ib"Fr3i), i?s,i, J.RTR)CALL RFAHF rjDCP,IE p , JbUF(31 ) , 1 ?6, I r iPT R)CAl L HFAHFCKHCRf IEF?,KBUF(31 ),l?6,irlRTP)TPTR=2IBLK=1

INITIALIZE bFGTNNlN'G OF ARP A Yny 40 1=1,15q uFi f I ) =PU F I ( 16)RlJ^J (l) = RU^J( 16)RUFK(I)= R UFK^16)THlPs-1,TJ = 0

START FILTFR AND UFCTMATTON LOOPny 70 1=1,32I 1=1+1-1JJ=JJ+1

7ERO OUTPUTRUFIf JJt79)=oRUFJ ( J.T + 79) =0nUFK<"JJt79)=0

APPLY LOW PASS FTLTtPoy 60 J=1 ,8RUFI (JJf79)=RU'r I f JJ + 79)tCFLP(J)*fhUFI ( I I-J+ 16) +HUF T ( T 1+JPUfr jrjJf79)=PUP"Jf JJt79)tCFl P(J)*ChUFJ(TI-J+16)+b"F J(Ti + jRUFKCJ.J + 79)=RUFK(JJ + 79)tCFLPfJ)*fbUFK(II-J-»-16)4ol!Hl<'(Ti-«-J

SKIP IF ABPVF THPEShPLHIFfNPLK .GT. ISd^) GP TO 70

PLPT FlLTE^E n r»ATACM! L ZFRPCIPLTf 30)lDPT = inEFLfBUFI(JJ + 79) f srLX)-»-400CALL INDPf f IPLT,IDHT)T DPT=: inEFLfbUF.T(JJ + 79),5rLY)+2 i::;uCALL lNu>PT(lRLT,TOPT)TDPT=inEFL(6UFK(JJ+79),SCL?)+100CALL INDPTf iPLTrlonj)CALL EXEC(2,1008+LUPPTrIPLT,30)CONTINUEIFLIP = "l f:r LTPTFf 1FLIP .HI . 0) GP Ty 60

WRTTF RECORDS

-n>

109

Page 115: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ03 AyTR7 10:^0 AH MUM.,

Oil 1 CALL wPlTFfinCPr ThP,T&UFU^9), 12P,.TpTR)0112 CALL ftRiTf jncR,T£R, JbnFfl59), 12*, JPTR)0113 CALL KPlTF(KncP,TtR,KbUF(l59),12«, JPTR)0114 JPTR=JPTRtt0115 JJ=00116 C0117 c SHIFT LAST i* HATA POINTS f3n WORDS) TO FKPUT PFona eo CALL MOVFCTBMF, i?a, iRuF,0,300119 CALL MovF(,TbHF, i?a, jPuF,o,3(n0120 CALL MPVFCKBMF,i?8,KRuF,o,3u)01?1 C0122 c no K*E?oi?3 TFdRL* .C;F. N&LK2) RU m QQ01?4 Coi?s c RL-AD RFCHNDS0126 CALL RFADFUncPf TtR,T6HFf31) . 1?6, J.,iP]P)01?7 CALL RFAHFCjncPfTtP,JDUFC3l)rl?8fl,iPTP)0128 CALL RFAnF(Knc°, f TER, KbUF^l) , 1?«J, i , IP FP)01?9 IPTR=lPTRf101300131 HO TO SO0132 C0133 c SKTP IF0134 90 Tf-fN^LK .UT. ISA'3) GO TU 110ons c0136 C TICK MARKS0137 CALL EXET(3, UOOR+LUPRT, 1 j0138 CALL ZFRO(TPLT,30)0139 CALL MOvF(MASK4,0,TPLTfOr 30)oi^o no 100 1=1,100141 100 CALL LVEC(?,1.00b + LHpPl r 1PLT,30)0142 CALL MOVF(MASK3,0,TPLT,0,30)0143 CALL EX£C(? f 1OOb+LUpRTf1PLT,30)0144 CALL EXECC*, 1 IOQR+LUPRT,?)0145 C0146 C HOME FTLTEFiMG AND DFCIMATTNG0147 C ClJMpMTF FFFECTTVF FILEOH8 1 100149 Coiso c RE.WINU V-0151 CALL0152 CM! L KWNPFfJHCP)0153 TALL RWNOFCKHCP)0154 CO TO LOOP70155

FFN4 COMPILER: riP9?OftO-160 c>2 RFy. 1913 (790^06)

** MO FARMINGS ** MO ERRORS ** PROGRAM = Q0846 rU MMHN =

110

Page 116: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0004 FT*1 . 10:20 A M MQM., 9 MAR., 19*1

0156 FUNCTION IDEFL(X,SCALE)0157 C01^8 C - COMPUTES MnuULAK DFFI.ECTTUN01S9 COiAO C SCALF = NlJMtjFR OF MMTS PEP 100 .^TYLTifl INCH)0161 T*=IFIY(100.*X/SCAL£)0162 TDFpt =Mun(TX + ISlPN(50,TX),100)-ISinu(50,TX)01630164

FTN4 CHMPILfcP; HP9PQ60-160^2 KFV. 1913

** MO MANNINGS ** NU EPKHRS ** RPU^RAM = 00039 CU M UHN = 00000

111

Page 117: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0005 FT*'. io:ao AM MQM., 9 MAP., 19*1

0165

112

Page 118: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 F]M. 10:21 AM MCJN.,

000100020003 C0004 c SESMFNT TU I/VPJTE RFSULTS/ CLDSF OUTPUT0005 c AND PUPGF WU P K FTLFS0006 C0007 c WKTTTEM PY u. v. FTTTEPMAN, u.s.n.s., FEPRNAPY i°7°oooe c MODIFIFQ 21 AUGUST 19790009 c0010 COMMC(hi LHuP0011 *TRPPT,!SW1,00120013 *LUTTY,LUPRT,0014 *!DCB(144) , JDCBC144) ,KDCbM44) ,LDCU(J. 44) ,0015 *!FL.U(4), TFHIf 4) f MDFGP(4) ,001600170016 DIMENSION LA R EI (?) r LPuF(?b6),t>UFi ci2«)0019 FyMIVALENCF (LRUF ( 1 ) f tfllFI C1) )oo?o COMPLEX S,STK,H00?1 r»ATA LABEL/2H50 f ?n O/00?2 Coo?3 c---- PE^I^U U'ITPU T FILE00?4 CALL00?5 C00?6 C ^RINT00?7 CALL EXEC(3 f 1lOORtLU p RT f ?)00?8 WRTTFCLUPRT, 1 005) TFTLF f PFCUT , I. A^EL ( TS^! 1) ,00?9 *(lFLn(T) f IFHT(!),!=1,4)0030 1005 FQPMAT <"2?X / "SUMMARY OF0031 *" QFCI'l=" f F"5.3," uVEPLAp = " f A?,"%"/0032 *?2X f "bANni = " f I?, "-" f T2r " PAMD?=" , I'd , "-" r J ?/0033 *T2r"-%l?r" ttA}-jD4 = ",i?f "-", T210034 r Al L EXEC(3r1100R + 1 UPRTr 1)0035 w K TTF(LuPRT,10101

0037 *"SYY"f 6Xr "PZ7" f bX f "yvy'1 , 1 5X, "3XZ" , 1 5X f "SY/" )0038 HO 10 T=1,NDFC0039 C0040 c PEAD KFSULT0041 CALL0042 IuFFI=-640043 TyFFP=-3?0044 HO 20 J=l f 4004500460047 20 WHTTF(LUPHT f 10?0) nyFL(inpFR^11 f RuFLfIHFFRf21r0048 *Lb"F(inFFJ4b) , PUFLf10FFR+1^) , (RUFL(1HFFR+K1 r K=0049 1020 F"{J p MAT n* f Ffc.6f lX f F6. 1 r IX,0050 10 CALL EX£C(3 f 1 IOOR-KLUPRT, 1)

0052 c PEWJND OUTPUT FILE0053 CALL0054 C0055 C PRINT

113

Page 119: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PA&F 0002 AUTR« 10:21 AM 9 M AP., 19*1

005600570058005900600061006200630064006500660067006800690070007100720073007400750076007700780079 00*0 00*1 00*2 00*3 00*4 0085 00*6 00*7 00*8 00*9 00^0

1030

CC

TALL EYECC?, iWKTTF(LUPRT,1005) TF II.F , *FCUT , I AREU TSW 1 ) , f iFl_n(T),IFHT(T), 1=1,4)CALL txtro, 1 ioo»tt UPRT, n WKTTFCLUPRT, 10^0)

r 5X r "OT " , 3X , "NS 1" , 3X , " CF W r

Du 30

CALLFILE

RFAHFfL^CRr TEPrl

40 J=

TUFF D =TQFFPt32 40 WRTTFCLuPRT, 1 040)

*LbUF(IOFFl+6)fRUFLf( IHFFR+1 ) , RUFL f IPFFk+2 )

, IRUFL r 1PFFR + K) ,K

1040

30 CALLCALL

txercs, itXEr(3r1

, 1

FTLFTALL ci

PUPGFCALL PHRGf, ( CALL PURniCCALL PURGE r nu TO LUOP*

FTLFS

FTN4 HP9P060-16Q92 RFV. 1913 ( 7 90206)

MQ = 00911

114

Page 120: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0003 FIN. 10:21 AH MQM.r 9 MAR., 19*1

0091

115

Page 121: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 0001

S 1057635? 105764

** MO EPRHRS PASS*1 **NTE ASMR

116

Page 122: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0002 #010001 ASMBfLfT 0002*0003* ROUITIMF TO RFPLACE j DT AND .SPT ENTRY POINTS WITH0004* MICRO-COPE INSTRUCTIONS. TO USE MOVF RELOCAPL^0005* Munyi. E %PEPLT TO THE LOAO-AMP-RU (LG) ARFA P1 FRONT0006* OF AIL OTHFR RFLOCATAbLE0007* THF LOADFR.0008*0009* WRITTEN PY D. V. FTTTER^ANr U.S.R.S., JUtY 0010* MUDIFIFD 2^ JULY 1^7^001 1*0012 ooooo MAW0013 FNT0014 10^763 S .LPT P PI,0015 1057MS .SPT PPL0016 F Nn** NO ERRORS *TOTAL **R T E ASHR 7609?a**

117

Page 123: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

oooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo

CD

00

2!

O 3F > .-^ t 1

2! 5 * * 2 c rr TJ X D X J) * T; TJ C G")

% j> j< II O 0 0 o c "^ i CD «£L li o A; a

o di 2 TJ I |

IT TJ » m TJ NO

f\J

0 ^> 0 1 t « ;> 0 ,0 f\J X

1

<r .-» «.c ~* Ul

/-N

«-J «o o ru o a *-/

n o

~~

t D

o r

> o

-ill

ilit

i^ w

i

rv>

i H-

i

i0 0

1 0

1 0

1 1

TJ

-j) D

co

n jj

o c

o £

>)>

£»

>

t>? < t-

n

> o

o

co c

c co

a c

o^7

O

~" x

r" x

r- x

;o

co

:/> v

> co

~o r

~ m

r~

m

r~ m

>-<

i i

i IK

- : i-«

me.

rr c

: m

e:

2" :

z 2 ^

r z-.

x r

~ x r

~ x r

-n~

! m

m

m

mm

.t-

w f

\j ^*

xr~>

"~>

n

o o

o o .

TJ/-

\ cr

<^>

oo

*->. t

* ',

33 d

T

O-H

D

DZ

H

HH

-H

d"-H

"J;-

»

TJ

CC

CC

X-«

D

«

"->

: |

2;

oo

c,

co?;

cc t

mm

mr"

TI 4

T| i

"H

N,.,

D O

D

CD

J>

en

<r^ 2

* o

co

c c

c c

cO

3C

O

JD

^)

CO

d

TJT

JT

JT

JC

J*~

\ C

* /~

> /-

> 2

-t

" O

-! f\>

-

* X

'-4

£

£

: J>

Z

T

Iv-

/ s

* " m

*

' j>

co

X-

2.'

-<

m~<

TI

;>

Z.

c/;

'/>

-H

T|

m

cr\T

) :H

x

m n

z

2?

-H-4

)

")(

")I I 1 1

~z r

~ -

* -3

^3

T

C.

C Z

' 3^

>-

^

TJ H

*-

l -«

2

3- x -

< -H

j>

mX

H

-<

Z

.II

II

1!

3>

t-<

CC

* 0

s *

1 t/

J

f-H

cr

<

m c

N4

»

"><

?!

m

co \

40

(V

C

OCD

X!

.'T

J2

CO

C"t

2

H

COC

*

-N

21

AJ

-OX

v -

3

J>r~

o

o

rux

x i < 5>

T)

AJt !

H

J>

',/)

a

-Hr-

*

m

r\jCO

X J:. n « 'X)

X AJ

*« ru x c/ H * a: > o ^ (V r CK

\

OD

DD

OD

O

TJ

1 <

i z:

i *

i f

C_«

f-H

i"1

?

S

OT

J

TJC

? T

| c

CX

30

x

Xr>

-»2

^^

ao

^

"^ T

I "Z3

*H

-H

TJTJ

TJ

» «.

/ N

^T

t~*

m1

J>

!3>

J>&

W

TJ

2

"S

i !Z

32

1i: -

r

O ^

*-»

dJ

TJ

T>

-H

O

5" c

rc

rj-<

cic

*

C_

^

TJ

H

>

O.

* »

C'

x c

o r;

d '

-. *

^

z: H

^

T)

TS

j>

* j>

%

- \

'-M

i

~<

<C

'~>

\^1

rv r

~ c

^

-o

TI

^3

_*

jo

f: ^

TJ

xC

TS

,

oDO

_

fl -\

J DO

-4

33

v^

v->

«

O

-H

3>

H- c

m

co

~n o

"o

"n

r *

c z

mZD

'jJ

t>

TJ

/ s

*

2TIS

,"""

*

TJ

^ C

C

* CD

d

2!

* i

TJ

(-

;T

| C

r ^3

-H

X

"

~4

2L

7>

CD

/ %

~n

2T

I

'f>\_

^ *

T]

* 2

1 «

^

JJ

.,

r

O

Z.

3>

COD

X

<

»

* O

»-*

:Z

*

T3*;

cr

^

m i^

*H

JO

i>

v_-

^

o

1

H-I c

5J3

H

c.

c;T

| -^

-^

» x

^>

\>

i

cn c

z

^

XJ

"

H i

0 O o » ' n -H -f t _*

O ru AJ r> ~" 2 C -3»

<< s£

)

^ 3> X)

« >_»

vC J3 *-*

Page 124: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 00^2 ^[M. 10:2? AM MQN., 9 MAP., 19«i

0037

119

Page 125: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

o o

o o

o

o o

o

o o

o

o o

o o

o o

o

o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o

o o

o o

o o

o o o

o o

o o

o o

r>

o o

o

<J

1 Jl

J1sz

OJ

rv

r> r

>i i

01

i0

1

n

Oi>

rr

f

£>

r- c

r

x o

T|

J>

J>

1

'D

~f>

T;

TJ

H-

TT

D O

n c

u

o *

ct 4

H", S3 N <

O":

d -TI

* PJ J1 a --.

ooooooooo

-4/1

'>J

"1 £2

£^

-C?

£? ^

C?

£?»

* O

>

i)

Of

' J

O*

O1

.C"1

0>J

o o

n

1 H

-

1

I 0

1

tz

^ 0

s i

01

0

1

Z.

Z

D

T|

;gr

(-4

,->

,3CT

C

C

. C

X

jr

T-

TJ

^

XJ « i

'

TJ

O

1 "t

» t

i |

II

TJ

-3

5>

T|

-TJ

OX

<

/->

X

C

T

*ix»

/-*

r~

TJ

4c

c

= c «

m

|

TJ

-H

7)

3!

T|

T t n

": <

>O

-H

X

-trn

f~~

»

or>

TI

H* o

Dt-

o

v-1

or.

i!

O

0s

-J^

J> O

(P

H

- *H

Z

*

' "D

TJ

i

XO

:z

»

-H

»Z

" C

H

I C

- H

-^/5

H

T

| TJ

H-«

£

H-

33 r

- o r

-rr

m

m/-

N

»

o »

) H- i

TJ -

^(T

s ^"

~^?

z:

TJ

TIrn

r~

r~~3

^-

* v-

***

^! <

,\>

Ti

H

^-H

i-»

r~ <

»TJ

^

n «

5 ^

»

t <

jsl

T|

J:

^}

x> N

£

t

m TJ H 3 1 U"1

>_/

ooooooooo

f\J

^**

O

»C

00

"N|

0^

U1

fc

o

D

r>

o -

>1

H-

1

1 O

1

1 U

"!

11

0

1* «

-H

~)

TJ

t3

TJTJ

-n

3.

C

rr

. IT

>-H

%

T|

TJ

*>

"E»

r

t-. r

: 3*

o c

r'T

J

TJ

X

3>

- *

^

»-!

i

P"

T-

ij4

«

T|

\

~

-H

* rn

c.

uj i

r~^ ^

T3

>

H

T|

T! j

-i

rv x

i

N %

^/

» ,z

*-^

S

I C

/)

H-*

J:«

T|

H

0

2

r~ c

a:

rn

T|

v-/

TJ

0

O

% N-'

* 1 fT

/-

sX»

D

>-H

T: .

-n i

ru

r 'I

TIa;

^

75

4

1

o

»

2L i

J>

"T

|

D

"Z

i~"

t»-

^ ^

^j i

^0

Hi

-H

II~n

-H

^

1 t/

JT

J

^/ s

rv» ^ .Z!

-r i v_/

t TJ

£.

* X» 3 TJ * 3> ^

ooooooooooooooooo

l/J(V

)H^O

>O

OC

*N

lON

l/l4

iLr>

)rV

-»O

'sO

OO

"^J

no

o o

1 l-»

t

» 1

100

01

o-j|-fc

r\j*-*uj

H*

i0

1 0 0

0 0

O

1x-

*

<-»

c?o

TI s

; 2

TJ s

-Z n

3

sT

j^i

"r c

r~

c x

T!

c x T

I 3>

c x

x_

i TJ

xj

f~

TJ <

i

r~

-H

'2

TJ t

"-Hr~

uJ3>

z «nz:-

Hiit -<

3>

:s-H

« T

J^T

J

S>

.T

J^1>

TJO

T

JX

'!>

'T1

TJ

/ \

(<

-\~

r I^

-N

frfrj , i ,

>-H

I «

,Z

- *

!

! %

!

X

2-^!

S »

ii 3>

H

-C-J

- s c

rr

^c-\

c:r

r,Z

»-

* ?!

X

H1-*

H

n

V5

"?

s

H

y>-n

^

rr,

* -H

z:

-i

/-.

-H

i

a.!

'^4

4

X

TJX

L>

J D

"Z

I

X

I>^

j>

ru-

r-"

TJ

c

z: ^

{n

n &

»

--

, ^

TJ

-nrvx

so

o

H*

a:

c: o

T

r>

Cs

'jj

O-J

TJH

-*-<

o

o

o C

x

o

,Z

13

2.

-~>

5>

-f '

O

J>Z

Z

,-

T

| TJ

3

Z

1 TI

m

c x

rn -

n3

3

TJ

2

-1

,/>

f-

*

«-.'

X t

i Z

" ^"

-H Z

TJ

Q

X

*

J>

d

TI

"X»

H

Ho

rn

TI^

TJ

.-,H

- H

-l

J

^

'

TJ

TJ

)T

c/>

~

CO

1

1

s i «

ID\ a

- '

3)s

rn <« H-

t c/

;X»

H

**s

J> ) ^, TJ C- s

^

ooooooooo

QN

tjl

f>

JjJ

(\J *

O

^O

00

o o

r>

n»-» o o o

X- *

TJ s

: ,TJ

^

^, -

i ->

ex

c. H

I o

"n

cTJ

«

"

2 r

> <

2

3- _

i H^

rn

cr

i~ z

.C

» T

J

<

Z

'" »

T

| ,^

3

I

/->

J>

C

C

H*

/-s

2"

* %

i~

~

!

~H

fc

U

sl

= c

rr c

jt

» r~

H

Z

Z

-^ -*

.D

o: i

n

- a

cH

X

T

) TJ

C

« >-

» TJ

3> -

C

C.

^ »

D

i-*

v

TJ

~

C_,

^

H- O

1 :

K-*

T

| T

j

so

33

.-%

i t

! ^o

c. H

- rx

) r~

c^/

TJ

X)

0

T| ^

/-N a

&

^-*

T; '

^ '

TO

'j*l

,'\J

\_»

^

v_-

\_>

%^

^ r~

a

-<

H-! c

~

-^>

TJ 3

T a

; r~

x

H

v-'

D

0*1

/ \

/ s

^~

+

£;

N_/

* '

C

*- '

* 3

H-

TJ

T|

£:

n: -

"H

iZ/

T|

Cs ~

v_>

»

t» 2

HH

T

|

Z?

: o z

:u

x

r-s

--*

Z

XT

Or^

» -H

V_

x

N ^

."

Hi

C

I!

HC

)

T|

X

AJ

^~

LH C

a-

u*

' X

" H ^»

O O

O

o o

o

^i a u

i

o o

o

z s

C

X^

^ 4

H-i «

TJ

-HHH

rn

TJ Z

o,1

3ru

x_o

cr ^y

j *

m TJ

< 1

tT

J

~<i

TJ.^

i-H

|T |

TJ 1

n"1

TJ>o

_ ?>

'DO

J>O

1 2T " ;*

~

* J3 D CO * ^ "^ "S> X 1 »

vC 00 O

o o

o o

O,

Mfc

*^ '

'

w^

4fc

O>J

IX)

H*

r> n

T)

1 -H

1 Z

1 *

1 >"

""

'./>

TJrn

x

CD

D"S

. <P

TJ

TJZ

* 1>

i

i: i

'j>C

~

!>

Cr-

0T

J

.

r~

"TI

ji

o

--H

"53 O

>-< z. TJ C H TJ

1 i"~

IT'

"» H> Z O -£ X 4 t

T|

'!/> C 2 3"

X X

TJ T>

CD TJ

O O o H*

TJ 1 z *-» o « f\J <\) s> 3T .'2 C *z * * >>c 2 J> TJ * * *-» >o 00 » *

Page 126: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGE OQ02 STAC1 10:2? AM MQN., 9 ^AP., 1981

0056 c THFC* FUR0057 TFUFR % Eu. -i?) GO TU 600056 C00^9 c SAVE DT0060 NuFc=Nntr + i0061 DTfNnEC)=bllFT(?)0062 C0063 r TF FTKST TTMF PHTNT FILE NAME AND RAND*0064 TFfNHEC .EH. 1) rt*UTE CLUPPT , I 070 ) h»FL , ( TF TLF ( J ,MFL ) r J= 1 , 3) ,0065 *riBUF(J + fl8),Tt>UFCj.mP) ,J=1, 193,6«)0066 1070 FUPMATf2V,T2, IX, 3 A?, t X , "R A^D 1 =" , T2 , " -" , I ? , " RANO? = B r T 2 , "-" f 10067 *" RAND3 = ",T2r "-",!?," R AMO /I = " , T 2, " -" , 1 ? )0066 HU TP 500069 CGOTO c WKTIF HT'S0071 60 'A/KTTFCLUPRT, 10BO) fOT ( J) , J= 1 , NDfcC )0072 1080 FQPMATf 1 2X , "Hf =» , 8 CF 6 . 1 f 1X) )0073 C0074 c AUVAMCF PAPER0075 CA! L EXECC?, UOORtLUPRT,!)0076 H0077 c CLDSF FILE0078 CALL CLUSEfincR)0079 TFfNFL .LT. MKIMX) GH Tu 10OOPO Ru TP PO00-n l C0082 c REDUCE NFL i..v HNF0083 70 NFL=WFL-I0084 C0085 C EJFCT PAPEP0086 80 CALL E*£C O, 11 nOPtLUPKT, SO)0087 C0088 C WRTTF MESSAyF0089 WRTTFCI UTTY, 1Q90)0090 1090 FU°MAT(/" .^EF SUMMARY HN LTIMF0091 no jn i.unp?0092 Fun

FTN4 COMPILER: HP9P060-160°2 RFV. 1913 (79020 0 )

** NO EARNINGS ** MU EPRHRS ** PPOPRAM = 005^3 PU^MHiM = 0?o60

121

Page 127: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0003 Fj-N. 10:2? AM "W.r 9 M A P., 19*1

0093

122

Page 128: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

Cra_

<2(\o

cLL,O<a.

»- LL

>-

-DK-

a

0

OCa*

CC O

C

cr cr a;

a

G

O

"7

LL,LL

Z.-

C.

*

k

-.

cr LL

c

a.

LL ID

oOCk.LTkrvV

_)<

tI a:'S:<iaLDCCCa

c

(\J h

c,

c

aLUas£(_,<Ch

-CO

CDt ( ^LLZeu

JccII1I

J C

J C

J

o cr in2

d

C,

<UJ

H-»

LL, 5

*. ^>-tr«2LUKK

->

-

a;3CJC

;

OC

aLUcrLL1 a.LUCCaX'

oLL.' i

LLt-4

C-"D5CJ

cr

C

c? _J

^

». C

a LL

ZD *~*

C

»

K r^ n

j ^

a

LLO

_J

C

H-

I U

_k

*~^.

'-I «.

a. ^-xD

0

C

*"__|

k!

K"

,.Z " '

C

LU£

. I

2'

H

D

Ll_l_'

* i

K

UOO

O

O

ork,

( > i »O

C

Ll_

c

cc01

«.V

-- f\

LL. GO

~

v^

.n t *~: c. ,

/~.

2!

Cf

Ocr H-'»-»

iOv_

, 2

33 LU

t_j 2?

C:

~» -: c >«^ rxi

u_

(_>-ruCOk M>

-»-4

COXUJ

_JCL

SO(_hO

V *

*-%

LL"DCCr- 1»-^

U.

CJ

"2LLU_ ;

<£>r 1

~"-

'3

LL

C

cr in

O ' »

C

Co r\j

"- C

Jk,

<J

>

K-

' '0

KZ)

s__

X--

v->

)

LL <

1 _

^7~

»- aJC

OS

LLcroof 1

C.

CJ

CJ

NO f** QO

c » KoLL _JLLC

O

Q^crxLJZ'jj^33LLi"V

iLHUJ

cc111100

IP «

O

£> 'X

! TO

KC

^rx

»-i»

-(V(X

!II

11 II

II II

II II

II^-x

/->

^-,

/-v

/-^

X--

/ / ,

T- «

,\| ,V

^ ij

« i

f\J f^

^f"

v_

/v_

^s_

->_

-v_

.%_

»

_

v_-

CD H?

CD O

» i

1 4 >-«

» i_

^_

j_i_

,XX

X

X'.L

U

_ o_

.j_ LL

j_

LL. o_

V

1 .

h

» i

»

h '

1 '

H-

o » * rvj to cr i/"i >o r*~

(x.ru

f\jf\ rv

;<vrv

f\j

11 (S

; ^

1 1

X

'"N

> LL , V

< »

CO

%J

t~ 2

>- '

ID

vH-, 2»

x"JI

t-VJ

LL U

« I-H n

j

5

X

| x

ro

aoUJ

^

Or *-< o

x

O

LU

CT OC.Z

c

~

<rao0

0cr

cr

CO

aLJ .D

N

, C

.

I I I

O

<X r

'

/->"- a

i-

o

/->o

H- j; c^« ru

LU»-

CJ u: c

>-

* _LJ uj -

r

x u.

,Z o

o

LU

Z"

O d

O

r

x >

or

d

>- H-

>

-JO

CJUJu

V:LJ

CI V

,

CLtf,uJ

CO

CN

UJ

c. (_? z;

>- 'Z oo *:

i- a

<X

D

3

LL =

=

a.aJ

z> K- z;a_ i-< a.;Z

QE:

ID

o

nj

o

CJ

H-

*-/ u

J**** -

/""" _

* -

V .

*^

a

<t *- x

c

c

h-

O

:3

IID

. K

-ZT

C.

rvj

>O I

I it

II CC

K

h

-tl

0.

CL

I C

I cr

t i c_

oococcc o

-* »-i *->»-< »- «-i»

-«»^»

-^fv.fVf(\i(\

(XJX

ixfv

jrvjfv

jK'', K

"'K"; ^

K^K

hO

KK

^K1. c

rcfc

! cfc

rcrc

} cfc

f cfirir'L

riLr<

Lr'Lr ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oco

occo

oo

co

oco

oo

oco

oo

co

oo

oo

oo

oo

oo

oo

co

co

oco

cco

oco

oco

oo

oo

Page 129: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0002 10:2? AM MQM., MAP., 1981

OOS6OOS700^8OOS900600061006200630064006500660067006800690070007100720073007400750076007700780079

00810082008300840085008600870088008900*5000°1009200^300940095009600970098009901000101010201030104010501060107010801090110

1050

50106^

CC

Cc

cr « «.«

60

CC C

70tc

cc

90CC--

rr>---

100

cc

c

HTLSTsO.nWRTIFUUTTY, luSO)FQRhATf/" INPUT 1-8 HT VALUES TO STACK"/

*" VALUFS MUST RE IN ASCENDING nRDtP"/*" USF ^QN-PuSlTiVt VALUt TH STOP"//* " T n T " )WHTTFUUTTY, 1060) TFuRMATClX, Ti, " _")READ f LUTTY f *) n i ( i )

CHFCK FUR PT PHSTITVFTFfDT(I) J.t. . n .O) GH TU 70

CHFCK FUR Asct. M uTfjn OHDERTFfDT(T) ,IE. HTI ST) GO TU 50NuT=NQTt 1HTLSTrP F f I ^

SET OT, FNFUUE^CTE^, AMU BANH LI M IT OH y 60 J = 1 r d

,TRT = JpTt64,.TpTR = JPTRt?2q UFJ(JPrP + ?) = l»T(T)R UFJfJPTR+l) = PIUAl(IFHT(«T) <<-IFLn(J)')/nTri

JyUF(JPTtbO)=IFHT(.T)T = Tt1TFffvHT .l.T. P0 GO TO 50

START STACKING LHQPLOOP UVER FILESHO 80 T=1,NFL

npFfsi FTLFCAl L OPEMCTuCBf lFR,lFHE(l f l),?)

PEAD A RFCHRHCALL RFAnFCincR,TE p rTbLiF/2Sb)

CHFCK FUR FUFTKflFR .Fy. -l?) GH TO 1^0

CHFCK FOP S1ACKARLF OTJ = 0JPT=-2^6JpTR=-128

J=JttJpT=JPTt?56JPTR=JPTRt128TFCbUFTC?) .FQ. D]fJ)) Gn TU 110TFf J .LT . 8) GO TU 100

MQ MATCH UM n TR u T n 9o

124

Page 130: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 00^3 STAG? 10:2? AH MJJM., 9 W A P., 1981

Oni r ruFC* FU P PRHPFR HARMONIC LIMITS0112 110 TpT=-b4

0113 TpTR=-32^114 nu i?o J = i,40115 IPTsIPTtM0116 TpTRrlPTPf320117 TFfI*UF(TPT + 49) .NF. lF|_n(J) .OR. TtfMFfIPJ+bO) .Nfc;. TFHI(J))0118 *CU JH 1200119 KpT=JPT+TpT01?0 KpTRrlPTPt.TPTRoi?i r01 ?2 C DO STACKING DPFRATTQM01?3 C FRFQUtMC v01?^4 RUFJCKPJP-l-1 )=b!»FT (TPTR+n01?5 C01?6 C SAMPLE01?701?8 C0129 C nECI M ATinN LFVFL0130 JBUF(KPT-»-5)=TbMFriPT+b)om r0132 C NuMbFR UF STACKS0133 Jd"FCKPT-»-t>)=Ja!IFCKPT-«-6)tT D IIFf 1PT + 6")0134 C0135 C SpFCTRAL VAL"tS0136 DO 130 K=4,l?0137 130 RUFjCKPTPtK)=bMF-HKpTR-«.K)tf1 uFl(IPTPtK)0136 T0139 r QFCUT0140 RUFJfKPTPt01/11 Coia2 c DEGREES DF01430144 1200145 Gu TO PO0146 C0147 r CLOSF INPUT FILEoi48 140 CALL CLuSf_(i n CB)0149 80 CijNTTNUEoiso r0151 r roMP"TF THAN.SFFR FMNCTTQW AND FRPUP0152 ,TPT = -640153 JpTR=-320154 JPTC=-160155 C0156 C LLIHP UVEP SAMPLE IMTFRX/ALS0157 HO 150 1=1,NO!0158 T0159 C l.onp UV£P FRFQMEMCY RA^US0160 D(j 150 J = l,40161 JpT = -JPTt640162 TpTR=JPTPt320163 JpTC=JPTC-Hb0164 C0165 C ChFC* FOP NO DATA STACKED

125

Page 131: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

cc oC

t<t

p^o0 1

fXi

C_><z1

cc^oooLLCJ>

X

ct

o

.-xL

f LL>

-

h-

»-

C

<= CJ3

Z> C

c

c

« <

i oJ

_J

>-

* C_>

NC a

+

+

4-4-

LU ce ac: a:

LL LL

-; *~j

->

CC Z

Z

Z

1 Z

''~3

X

-Q

JD

.-Q^~

su

n

iiX

Z

, *<

>-

Xi

H-

(_

CO CC

tO

1111(_

0

-JO h*

00 CT*

O

I-H«£>

%C

>O

vC

Is- I*-

C C

C

O

C

- O

4

^

sC

h-

+

(_;X

X

CJ

*-:>-"

H

a^ i/l

X

-3 -.,4

- «-

-: v-

V:

CO CC

Z

K

=3 -.

u.

X

X

>

X -;

t_ Z

tt

XX

X

v£ *-;

CL t_

*

(_>

<_>

:_)

"3 *

Z> 4-

'_> O

o

K K

K

v-

<~ C

t (_

»

H-- h-

XX

X

-3 '-v

0^-X

XX

»-: -;'-;

ct c_

' '-»-: -

»_

X

a_ a.

O i

-^T "3 LL.

LL, LL.

T!

CO JC

/-N

-3

O

"D

CD

~Q "B

C

J C

J C

_ ^T

v-

H

CL (_

t_

t_

/ s « / <

cj

LL *~s

* ' x~i

/-» CD

< %< %

/ \

>

Z> *-^

CD \

<-\

*~3""^

LC

st!

D

C

*""* **""

1 C*

"1

~'

4-4

-4-

ocj

al;z

4-4

-:5H

-H-H

- -3O

,15

O i (

-Ka a

D.

LL "^ i- ^

CL D. ^

^ «^ N-,

QIC

e

«cv~

v.

+ x

LL LL

LL It

Z

Q.- LL

LL H

- CC

cci

a. /-

>/-

/ / LTsc

uxccct^x

-. *->

*n

1 1

1 I

C

O.

U.

CC : -; -

. Z

X

jZ. z: -z

o o

o o

'-3 -3 '-» x

-K 2

,2

,o x

<. <: <i

x >

ix

K a.

cc C,

x

cc <r

<: LL : c

a a

ct u

u H

u u

u *-

u x a

cc

*

II (I

l|f\l»-«

^^(\ir

vi«

-*'~

3X

X4

J

-K

OII

ruT

-Ow

»-<

rvj>

->>

->-L

LX

>->

-rv.

.x <

-- >-

>-

*-» "V

I >

- >

- <r-i

oj

'D

-0

-/><

/>

-CO (\l

>

CL -o cs

cc cc

cc cc

cc c: cr

o c

i

i +

e:

*

-K * *

rvjr-o

^T

Ln

^o

r>~c3

oa

so

»-"ru

ro^u

r»sO

h*

r-t^-t^

-i^r-h

-r^r^

aG

occctta

cco

ccc

cccrcooccoccococo

K

;/) LO

rn

X

X

r\j r-* o«~

fV *

cc </;

^

CO CO

fV

>- >- 4T

CC CC

X

c

cr v^

2:' Z

' '

LL U

.. Q

.

II H

N

-O

J »-

3

>- >-

LL^

S\\

""V

c

CL a

i_-

ao o o

*Hoc

oc c

O

o c

o <r

oKX

"-j

»

rv *- x

^r4-

2) 0

2: h-

<r X

"T

>

-.

LL

</. Z

uj enH

- 0

<

1

' t

ufl

h-

4

CO U

LL

K

X e.

-""3

^ /

(J Z

.3

£5

2C

COLL.

<- LL

H

CC r-

<i

4-X

O

h-

KX

LL --

X

LL, xi

Z

ccO

"D

O<_

CJ

X K1I|1(_.

oj ro cr

O^

0s

O"

c o o

v

LT4-

CLv_.

4- '-J h

-XLL,

"cC_

X*^*s

><!

CL

CC "3

O

z x

C?

f^

1 0

^

4- 11

0/-

N

»-

x. x4-

* }

X

JL.

ul

-KZ

X

03 CO

t_

4- K

t-'

uO "-O r***a

a a

c c

c

4-

<

Xi

-:

^

LL_l .0

tr,U

Li ~

3e

*

t-

4-LL,

H-

CD '-s

L. *

LL, JN

Z~O

JC

a

-.

U-

K

H-

COZ

5 LL

X

h-

5

LL"D

81

c,: cr

II1IUao a--cr

a

O 0

Lfl

4- OX

-3

» / \

/ s

LL. /-«. -N

Z

vC

5J

'.O

4- 4-

CJ

U

CJ'

c a a

*~3 "3

^

D

-3

"->

t_. LL

LL *

Z>

Z>^ a

CL4-

v_, v_,

(_> CJ3

J3

X .^

IZ

"l

C

C

'-^ O

<_)

^ *

X

Z

OC C!'

LQ

4-

4-c_> o

u1

r- h

-N

J d

X

iO

'"3

-3

_f LL

LL<

Z

) Z

)LL

a

aTji

O O

*

1 X

* *

4t

c_

0 *

O

J K

lo o

c c

rvj f\i ro rvj

c o

c c

rv'JLl

>-

X r-4

C

O

<O

LL *

*

CO ^ '-

O »

-

Z

Q-

Ct

C

cc cc

00 tl

II

~JC f-

00

£

^

^....^

X

4- 4-

a ct

Q:aJ H

- t CL a

Z

""3 -3

C

v.

v^

.D -3

-3

Z:

LL LL

<t

.D

Z)

a

a ct

iiii0

C_

^3" LO

xO

r*»

o c c o

nj o

j oj o

j o c c c

ru

K4-aD

.

-3LL Z) a4-

K4-

X*-..

UL.

*- Z

' <

'D

LiJ h

- C

, C

tZ

) 3

K

CCf-t

II

X -«CL

_U 1

co a<

~

3

X

*-5

LLZ

O

t-

CL.

|111000

O

O C

nj o

jC

- 0

cLUZ)

KH- 1

X£<cLLi

<I

X

XU-

c1-"DC1111l_

C_

o »-

OJ

OJ

O 0

rvj*-K4-ar

a-3\_.

*4-

crK

XXN-

1

Cr. 2:

CO II

aJ

r-- _!

hO

CD (X

"2..

at LU

X

CO'

-3 <

t ^-

X-3

XLL~D

. -^cr

»-itIiC

C

J

rxj r^> ^y

rvj oj o

j o

c o

i

X

LL."3LT4-:TCKij_

VI

*COr-LH

C

LT II

;AJ fV

,4-

CCa-3LLZ)

C

Cw

'

LT> -O

OJ

OJ

o o

rx r-i4- CC h-

X-j

U.

COzH-

C

*

21 h

-<c in

oJ

\l

'JD h

-^

IT

<

II

co rc K

x" cc c

X i

uJ O

CL Z

' -j

LL. '"S

" '' C

^

>- C

-3 >

t

K

LL Z

Z>

Z>

O

LJc

cc e; e

I c

i in

i «-^

i0h*

cO 0

s c^

» i

»

«~> (\

rvi oj o

j oj

o o c

o

Page 132: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF flOOS MAC? 10:2? M *W.r 9 MAP., 19P1

0221 FfvD

FTM4 CHMPILEP: H p 9?06G-1^09e RFv. 1913

** NO WARW1MGS ** ^U EPRHRS ** PRu^R«M = 01698

127

Page 133: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

N5

00

* * z o 5- E»

X ,£ HM T> a GO * * ~y r i rr TJ X 3 X C/5

5f

* TJ -0 0 T)

X ^> _> II C o »-» o )

C ~<* 3 jsr II o C;

TI \

2 fc n 3 2 TJ t i

r rr TJ * n: TJ

>£j \J

O Oh

C" 1

» * J* o ^o fX X TI <:

~» sC . »

IN /-\

-g >£ O ro o o~~ v_/

ru r

u ru

ru

ru r

u<j

i ji ji

ji -

ji ji

-vi

o~* \

j\ £?

\jj

ru

o o 1 1

u-i

iO

1

TJ

XJ

T|

0

,TJ

2"

fT'

-H fT

|T

,"3

-H

T

| TJ

-1

C

Cr

TI

cTJ

H

3

TJ

sr

n x

sr &

f5

0

-H

*

> H

T

J3>

|

33

T|

s£)

>J1

^ C

Z 3

cr :

*"x

i cr

v-"

X

X TI

r *

C T> i

-x "2 .__ ru v-/

ru r

u ru

ru

J\

vJI

£;

&*-

* O

*O

O

c

r> o

I I^

Io

I

T|

-H

-H

(

"T*

XTI

-.

1>GO

Z

: T

J H

~

n ro

NJ

O

T|

X0

71 3

r^ 3 X

»

v_

/ T

)

Tj

cn s

3

T|

X 1 C

C

' TIon

<P

O

^0 (T1

TI cr? C TI Tl

X TI

fT ^7 C 5

ru r

u ru

ru

ruIS

Jf

e £

5

£2

Cr

-vj

O"1

U1

^i

W

o r

>I I

L/-J

1O

1

XJ

TJ

TJ

-Hm

-H

nn

rrH

.T

| TJ

II

c. c

/"s ~T

I c&

TJ

-4 3

Z

II X

.

st 0

»

5*-

12"

--N

H i m

">

-O X

"C

0 3

ui r

~-

\ s>

..

j

2

-Hv-

C

X

.ZT

l r~ c i> *

, v IZ "^ ru WS

-4-

H j> 33 sO Jl

i «

cr ^/ ^ -n r~ c > 1

"ZL ~ ru ^/

rur\

jru

ivr>

jivix

)ru

r\jix)r

\jr\

jrvru

rur\

jrv»

fxir\jrv

rufc

JC

5^^ij4

'^'j»

l'^O

Jo

*IL

^^l>

l'A

jrU

^!X

l'X

I"\J

!X)r\J

ru

*-*O

>C

00

1-«4O

sU

1X

;LrJ

ru»

-' O

vO

CC

-^lC

f'U

nX

rO^ru

o o

o o

o o

i 1

1 1

ru

>-*

i i

0

0

1 1

5f

I <

Jl I

-H ' <

D «

<

<

°D

Z -*

!3

.3>

:Z

f"

" T

| T|

i:

T- c

a ir T

I c a

z -

n VH

c r

v T-

*~* c

r rr

c

c:H

-N

II

II

'-^

II

II

-N O

=X

)

H

S

'T|

<

2:

JZ-v

4pi-H

»-'sO

S-<

^-»

*-2

^x:

ii(x

>j>

mccm

o

oi:

D o

cr 3

'xj

'-

n

.z o

z

~~ -

H 4

ru

ru

ru >

i c>

* <

co i

i

i i

>1

-j-4

-Z

T|'X

)t>

-<

T>

-T

l-3

3

o

o

i

<p

ct- c

cr c .

2 z:

<~

r~

r~ T

I i

"\j o

2!

r- T

J i

i

(X

-C

^C

^U

~!P

^

i~

r

»

TJ

''X

HZ

O 4

c,

*-» r

«j 2>

r~

cr

rr^i

-*

r~

o

xi J

3 3

^*

o

-ov-'

O

O>

Xr

-O C

II

C

<

^-

'

H

O«'J

1X

£:3:

-*

co

H-

» a

/-«

c

T,

z-3

D

D

3

IX>

'»-»

TJ;>

C::

7c

ci?

*-* r

u z t

mH

'-J

* O

^-

^ r>

3

T|

:T>

O

<

-H

<

^

~N

|

^*

^

3

33

X

'X

I 0

Z

H

^

Z"

CT

C!

.3'

O

'X)

*

CO

% i »

"V)

T|

C

0

-H

>O

Z

IIt>

H

CJ

Tl

sr

IT m

i

H

IX)

TJ

7)

3JC

r >

TJ x

HH

3s

3

T)

'yj

r~

m -

HO

J >>

CO

^T

J«X

/ i

t «

*

3

33cr>

cr

-n

cr

~Z

Hi-*

~r

» i

J>

3

33 3

fc ^

3 ^>

J1

,Z 3

./

IW

<

2

M

!

~*

X'

"^*

O/

.&

7) ^ 3

(T

1 <f

."

ti"

Q n

TI

U-

21

» i

t-1-

rx 2

* IT"

cr

z>

O

H* O

o

T

I>

TJ r* O TI

O 0 o a TI H Z ~» c. « rv xi t> JS

. 2 c z % ->£, ft. J> TJ t % -* v£) a >-»

Page 134: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

F 0007 FJN. 10:2? AM M QN., 9 MAP.,

0258

129

Page 135: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ01 F]N. 10:23

0001 FTN,I_0002 PROGPA M STAc3,5,so0003 C0004 C SECMFMT TO OUTPUT RESULTS0005 c0006 C WRITTEN' *Y D. V. FTTTEPMAN, M.S.R.S., M A Y 19800007 c MOHIFIFO 26 SEPTF^PER 19*00008 C0009 CU^Mnfo LHDP1 ,LnuP2,L n uP3,LnO p 4,f\FL,NFLMX,Nrn,Ll' \ TYrH'PRr,0010 *TFILF(3,16),JFTLF(?),1FLO(4),IFHU'O,I OCRt144),1«UF(?56),0011 *JDCdU«4), JbUF(204*)0012 niMtN'STO*1 JSIZF(?), b' ! F J (1 0?4)0013 FyUlVALE^CF f JP-UF ( 1 ) , oUF J C 1 ) )0014 HATA jsiZE(2)/i2»/0015 r0016 C WRTTFCIUTTY,1000)0017 C1000 FQRMATf" STAC3")0018 C0019 C P£AD OUTPUT Fit E MMF00?0 10 !A)hTTF(LUTT Y r lulO)00?1 1010 F(jPMAT(" OUTPUT FILE IMAMF? _")00?2 R£AD(LUTTYr 1«20) JFRE00?3 1020 FORMAT C3A2)00?4 T00?5 C CRFATE oUT pUT FU E00?6 ,TSTZF( 1 )=NnT + NHT00?7 CALL CP£ATf JHCP,TEP, JFTLFr.TSTZF, 1 )00?8 TFflFK .RT. 0) bH TO 20oo?9 WKTTFCLUTTY, 1030) VTFTLF,TEP0030 1030 FuPMATf" CPt-ATTON FRPOP: FTLF = ",3A?," IFk^",!^)0031 PLi TH 100032 C0033 c WKTTF RESULTS TO DISC0034 20 TALL ^PlTFCJ n C R ,TE p r.TB"F ,Nr*T*256)0035 CALL CLOSEfjncP)0036 r0037 C - PRINT H^ADFR0038 CAlL EXECC3,1lOORtLUPRT,?)0039 WhTTF(LiJPRT f 1040) JF TLF , CI , IFILt fl , I ) , TFTLF ( ? , T ) , IF R t C 3 , 1) ,0040 *T = I,MFD0041 1040 FOPMATf2?X,"SUMMARY PF STACK: FTLF=",3A?/0042 *?2X,"1 WPDT FILFS:" , 4(1X,12,"=",3A^)/0043 *(34X,4(1X,T2, M =",3A2)/))0044 WRTTFUUPKT, 1050) f I FLO (I ) , IFHI ( T ) ,1 = 1,4)0045 1050 FOPMAJf^Px," R A !>l| D1 =M ,12," "",!?,0046 *Tc',"-",i?," bANna = ",l?,"- fl f T20047 CALL LXECC3, 1 lOQPtl. UPRT, 1 )0048 WKTTFCLUPRT,1OQ49 1060 FOPMATC3X r "0050 *6X,"SYY",6X,"S7Z",6X,"SXY",0051 JpT = -t>40052 JPTh=-320053 C0054 C LOOP OV£P SAMPLE 1^ 1 TFKVALS0055 HCJ 30 1 = 1 , NDT

130

Page 136: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

oooooo oooooo ooo ooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooo

* * .2

O X 2» » < "~Z

L

CP GO * * .i» rn o X 3D X V) * > TJ 13 C J) X J> __ II o o Oo

"VJ ^o "~> C £ 3J 33 2* It

T|

-H 2.

O

D

3T TJ I-H,

fT .TJ

T; TJ >o ru o o »-« Jx 0 0 ru X!

T|

<< t -» >o t-» l/« ^ s -^1

vC o ru o a _x

o r

»-

i

0

1 0

1

TI

en 4

-O

TI

5[

/>2s»

£

> T»

rn

(3

X

f

"2

^N

TJ i >

-H H

-1 c:

Z

1 i o

3)

-s

!>

T|

-xt

r~ * s

~*,

T|

,~

%

3O

CO

1

3 C

C

3)

-H

H

S

TJ

-< o

? -H

rn

Cs

\) -

-4

-<x

-* >

»

z,X

0

D

33JT

) f\J

x1^

^* X

'

O

O

T|

* '

X o

J)

3D

' 37

C

>-*

X

3>T

J

4

3>3J

TJ

*^

j¥ >

r-

r~c

m33

oo

Tj

-0_»

f^ .< m o TJ

2*

C s_/

1 3i_

/

-)

t »

UD 0

s *O

o o

o

* *

10

0

n ."N

J TI

t> T

P> c

cr x

c r

~"

."^

^

TJr-

r- « -t

T!

:s.

i 4

* :r

o

fT f

T* r

. i-»

j

X

X d

X

-^

^N

fT)

fT;

fT ^

*

> *

o

r~>

"n

. » x"

^-^

/^

- N

«"

^

S~

* ^^i

^

s*

^

->J

',/J

t

^

T)

1. 1.

tS ^ f

t «

i »

O

"O

O

is

"

O C

^

»-»

JJ

JO

\J X

-«-

-f

X

*_

j

* T

]

cr c

r T,

cr

TJ

TJ

:r t

X X

H

H

C:

»

J1 -*

>J

X

O^

*- J

^<,

^^-/

»

-H

TI

fL

cr ^

i *

.& x

* ^

\>

TIX

' fi

»

tT

ru

cr

»

ruis

X

^

*

T!

x a

» *

T

4S"

a-

»*

i '

» x

<< %

r\J

T|

x a

» t -C

". ^

"""") /

~j '"i

'*

i i

i i

i i

i i

x> ja «

c_

IH, 0

r-

-^ r

-c x

TJ

TJ c

c

o o

T|

-

-H

-H

3D

3)

C--4

XII

CrT

J

U1

TJ

^N

'TJ

||

C_

0

T>C

., ^

C_

T'

C

C o

r~

TJ

-H u

<

.-

i <

cr *

-f

it rn

n

mT

JT

JT

J:r

-»T

J

i-»T

J-f

T

J -*

Jr

*

* -*

-1

W

E

: T

Z

00

£Z

- ^

5

^ 1

:"

°

z

3£<-*

^ "-O

,.j

i '

a, o

sr

md ^

*HT

I O

»-

^

JJ

"Z/-

cr

as

-4^H

T

! t>

T

|

Tj

C.

Z-

X-H

-N

O

<

X

C,

<7;

3> 4-

TJ

~

;* 4

en '

TJ<

-*

_«.

H ^

*

<»o-

.1 cr

^ ~

»

TJ

30 ^

s^

/-^

*

C_,

^

Tj

U

HC

X

T|

-4*c_

ru

V

V

-/

c, *

TJ

i

CZ"

TJ

~+

TJ

^c

"^' '

C_^

*

TJZ

K 4

M

+fV

0

T

* *

:_,."

_,

s s

T*

T)

3>

T-H

-4

2

X

X

II

CO

»-<

II

1 -H

3

i a

3 -

vj

fc

» J}

ru

^ x

x

* <

3

3

TJ

5 ~5

3

3

^

*

U1

Jt

X X

<

^3

J^ X

2 X

CT- t

<3

J

33

*

^

n x » 3T

|

X X 3

^ V/: X ^3 rn TJ -<3

< J!

X *

3&

»-H 3

^ J1

X *

o OD 0 T|

SI

c x

O

-H

3: -

Ht>

TI

i

^v

-» r

"ix

cr

X

TJ *

x3

H

>o -

*rn

oD

Jo

3 0

^

*

un x *3

C H 3

^ w X <

3

2? V) ( 3

< ',jJ X *3 £> T) 3

* C:

X *

3 X X TJ 3 * £

' X *

0

S>

X

f-

-*r~

-H :T

|rn

/-N

x r

-m

c.

0

TJ<

v X

\A!

'H

-»H

- O

D

i J1

cz^1

o?TJ

N

-'-f 1

-N

C

H-

TJ

T|

X

f~H

3)

^

r-\

AJ

-«s^

v_/

^ t-< TI X » 1

< >

4 »~--

^ t

II t »

* £:

s_/

Cr

GT*

^KJ

f^^

)f <

AII

X-

»

' <

I

2

T|

Tl

/~.

s

! >.

j cr TJ X H ^ 0 S 0 >

' f t Tl i 4

f~ T|

^ -N

J 1

< Y \

T|

J-H r

(T1

. %

»-*

* 1 '

v-'

^ 4 ~n 4 1 TJ

f* \J ^ i 1

*-^

<» K-

T|

K- r~ P"!

oC

M Ji

^4

0 0 O

)fo

r>

TI u

J> O

O

C

r~ "

£ TJ

TI

r~ 4

z: c

_' 4

B>

--\

fT.

Z

-H

C_

X d

* TJ

fT*

fT t » f

r>

x

TJ/-

, -

-f

»-

a <

O

"

'-N

o

a

TJ

X d

4.

*

T,

r"

TI c

_cr

a

/-s

TJ

^

X

*-

TJ

H

*

H"

i X

'

X

Ts^

^

^f

4

>

-/

JJi

^

^

X

»-

11

X

Cs *

^

T|

~*

-fc

rut

v_/

fV'

* '

X "» o m o j^ ^-^

o r

> i i i i

3L

'-*

'-t

~D

~~

X T

T

j C

O

-H H

H

-3

-i

XJ

II

J^

TJ

T|

(1

C_

o<-

» C

, T

J O

j

TJ H

<

-t '<

c. i

-t-

n m

TJ

TJ

:> >

TJX

+

£.

*

» rv

T>

c

"<',

-4

3>C

' z:

i-/

«H O

TJ cr

enT

I £>

C-

Z-

\ C

3C

- C

OT

J-H TJ + _« v '

^ a d T;

C-4

<-s _H

TJ

-H X 4-

ru <*-* "-« 0" ^ Tl \

C- '0 '

+ o-

<D

T| O o

ru JO *

> o LA!

r~k

o « rv'' ^1 T>

? 'S C Z!

t ^ >o "^»

"3>

TJ

t ^ ._» >c TO > '

Page 137: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF OQ03 FT W . 10:2"? AM MQM., 9 MAP., 1981

0100

132

Page 138: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

co

o<ta.

oocIkK

ik.LuXH

-CO >

5>.,ij

QCDCX

La

c

ru.

NSI-FR FM^CTTUN FILES CKFATtn RY PPU&KAMS

<:'V

H"

k-CO

»--JOk 2<t

at_DC(XLaiiii

' °

o cr

icCJt<

rh-

CCcz:<r

<£'

oc:h-ID<t

o c_;

Ln^,

oOCaoJ CL

tTi

aoJ COk

,

"Z. O

<

. oc

UJ

K

Qk-

UJ

»-- CC

LL. ,21LU

H

->

aUJ

cro

\c>- 'xjCu

OZ

Li

LU " i

k-

L.!

-1 «

>

C:

''-y

*"^

5'

S

CJ

CJ

CJ

r^co

o-

f-\

ruc:T t

LL

(Xt)

OtxLuO1 i

Z3

»-'

'

LL, CC

Z.

O

JD \

£»' *^

^^ H

- < /->

X

.«k

T I

<-<> -' crK. LU a*-'

.15 ID

LL, CC

-J_J ( t

k.

1

w

V

0.

*-«H

- LL

XU

>

-*£

Z

. H

-O

u

J k-

H-

_J

Z)

CO

<

_

Jz >

aJ

i i ^t

^

zr H->

1 3

<

£

c: LL

c

C

O-IM

-

/ >oLt

c?"

< ' c

«-<.2

»

>-

UJ i

-J h

->

» ."D

Lu _

J 'H

- Lu

:D a

>-,

< £ C£

» S

1 0

1 ~

4

11

-- C

J

i cr LO

" I

aJ5Lu-J

JJ

Lu. MLu

CC (

LuU.

->C/;:

OihS,

*~**S>

C:

CC *-«

h-

»./->,>- ru

s K

\ » t-n

V-'

Z-'

* '

I _

| !

a. *

<.

SO

Sa

<

a

D

.jJ CD

Lu a

LL

c

oo

-^c:

c.»-(

-r-l

C

o r- »

c

ruUJ

LuvxLu( tV

:.nCJdH

-(^ '

Lu 2

-J

UJ

t~ au. o

,2 _ i

Lu _J

a. <tC

C

i

iiiij

CJ

hO

-

QUJ«.

C

Lu

H-4

O

LL.I-

^

C

*- CD

Orx/-

v O

c

»-».

>-

LJ

V-

e H-

ID_JH

* '

U.

Lui ,

K

^-

t

LU r

t i 3?,

rxj^

ITr IIyLLuk.

fX<t

K**.

sIILL_

1t .1

a_s o

%-/

c1 <

t C

Z

H-

aO

IDLL

c:

0ru0 -»c

cru

n^,

Lu sC

_J

LTIK

- fX

Lu ^O

4-

LT

1-

<c o

ru

o_II

1 H

-

0

v_> II

II<r

Lu H

- K

jj '.r CL a.

Or

2

>-

H-

1 C

0

1 !"U

!*O

11(_:

r^-c

co

o

fXh-

Qr 1

Lu~0t *,

auJ> kor0c f

N

J_

C<£Lu_C_

J_ ,

<c;

o

^aj

o

h-cCD

/-s

(X -*Lu

13Lu

C2

a

LLvD

LuCC

it; LU

O

HH

Lu ^

.r u.C

J »

1111l_

C_

ro cr in

cCJ

l.*>

azjL-'<

JJa

« -H

t-~ C

J

Z

uJLU a"E.

.'£

Lu II

o: oC_

LuS

t- 2

1111°sO r»hT

. N

":

/ »

CC(_)C

: 1

s_

LUU.

o o

K1'

_f

CJ

CH-

_l

_j

>D

<Ce- c.ccr

e,

oO 0

s o

K".

»<r ;rt

k,

If

UJ

LL*

CD

rv L-

K-

U.

ZV O

i _»

Lu

z> LU rr->'

- LL

-»- u

.cc '"^ ccO

O

2

cr K

" <£

v-t

Z2

3Z.f~>

*-*. \~

Otl

»

sLu f

H-

» ->

v

j -y

^^

<- c- a (X

UJ

' 1 1 ~

^ fX

I

XX

_

i * '

LU

s-/ 1

K

LL. <

iIZ

_J

1

«£.t i _

atr

< x o

a

c, s

LL

1 0

1 (-0

1 c

1 *

0.-« iM

rO

CT

rt CT

st

rr

cr ».

k, t~r>O

«. C

=

-<

1

it rv

a

it^T

nj

+ c

' « Z

1 1 ^Q

"B1

. k,

-> (X

-o -t

»- 1

Lu

~D ruC

C

H"

>-< ».

^ '

£II/-

\ *~

o a

Ct

Z"

o

<t

crk,

£

k-

»-

Q^

^^C

L (X

J3 ru-J ^-^v_

/ H

-

LL <s

t

«Lt i

ccX

D

S

LuCcro»-(

LH

»Oct

r?

< \ fX

k,

1

t~

:

k,

£ II

cr

tt. »-<k

.

k-

s a:

a

K- 1

_ f

». -I-

t CC

1 0

= 0

k -r-l

<x; *- >-»

».«. K

ic

^>II

C_h

O

UJ

C

X,«Z

UJ

<ajjQ _ |

i

zt

z

C_ Kr«- aocr

ct

k,

>X K

X

>

-K"'

crk.

£

LU X

C

L

f

X

s

* X

= CC

CC »-

.Z X

S

LT

>

= X

»

CO

£

k,

«. X

X

vOL

O

*./-^

*. :o

s

rxiLT

C

N^

-jJ TJ

«-

Cf

s*

Lu, *

k-

= X

3;

» *3

a x

*

"Z> l*O

£

-J ' '

>-

'

i

>~

Lu o

V

.1

21 £

i a

''£.

Q X

5;

LL vC K

Oi/>C»-

O O

T

-IC

t ir

If;

aCDC_

1

i Z.

a.H

-Z>C

crs

O

Z

1( 1

IIC

- 1

UJ

il.CC

»~

1111C

J C

J

ru ro

cr

ir »r

in

ruK'.1ItC£

1-3_i LT» ir

ro ro

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooococcooccccocoocoooc cooc oocccooooooooc cooococooo

Page 139: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

o o

o

o

o

o

U3

O O

O

O

O

O

O

O

O

.Q

O

-1

J

C^

U1!

-fc

IA-'

PU

i *

O

vO

QC

--

J C

o o

or

. f.

m

g

0

1 1

sO

vO

1

1

001

1

TJ

C/>

O

<

4

TJ

TJ

,jT

|~

O

TJ

2: *

J> T

l m

C

'X

t-

i V

CH

i>

D r

" "*

.TJ

-4

'j>

r"

TI

TJ r

~ *-*

on

: <

4

r~o

,~^

i>

T!

H

m

r~

-H

/-N

>

mX

T

l 'd

/-

» ~

,Z

X

TJ

rr.

c:

-H

3 cr

c

n",

j=O

-H

-H

-H

O

TJ^>

-<

r~

-H :

r <-

n"

U»4

~

\J * 4

-<

TJ

i^JT

J

*

T; t

CT

> X

»

»-»

rr.

t-*

o

TI

»-»

o

--'

o

t>

.0 -

4 o

o

^ z

: o r

~ o

TJ

7)

CD -

' TJ

X

I4-

C .

»-H

<

i X

'

<r -

H m

c

TJ

-D

TJ

TJX

X

-H

__

-TJ

H

*

O

> i

*.&

r-

j\

l/i

m

^_

x

<O <->

-< TJ D X'

' £ D %-^

1s

s '

2O

OO

OO

OO

OO

OO

OC

DO

^O

^xO

^O

OT

OT

OT

DT

OO

OT

Oj

i" o

1 !"

o>^

r\j

i~* o

>o

oc *

*j cr

en

-fc

c/

-> 0

r

i_»

|0

1 ^

J OD

00

1

00

0

1>»

*

*~)

O

~>

TJ

\j

TJ

jo

, «; « 4

3>

: c >

o o

- x c c

r x

TJ -

r c o

z r

~ 2:

> TJ

TJ

-H -

H D

<

r~ i

.fc -

n 3:

«-4

-4

x

u a

TJ

4

4

^

J"i>

\T

JII 4O

z: m

2-

*-*

i *

-t ^-v

H-*

x

c d

xcx-f

c<

-s"or-

Tj i

«

<rr

m m

*

^ ^-H

CI^

^.

n pr

r>

TJ.-

»X

TJT

JT

JO

^T

Jr-

x O

-X

*

-4-X

-f4

^>

'^J

» >

T

) »

-H

'v^4

£S

1 »

T

I Q

C

>£)

*

fV

>>

»-*

cr

*

o

3O

£

i >

'-

N 'T

O "D

O

>

*-»

O"

O

2?

G3

!\>

X

d

v-^

- 4

-1-

X

*

Tl

Oi

*

TJ

4

JDc

TI a

^ c

a.

TJ

3s

« ' *

TJ

^>

x

»

x i

-i

:z

*

*

»-*

X

> :

C/7

!\)

X

4-

TJ» '

X

"

^

<+

~i ^

73

^^\~

i*0

fri-r

1 1 v«

^fc

X

-*

»

* *

w a

rvj

TJ ^

~

X

X-

>-»

Ti

>

30-4

TJ r

u *-^

*-*.

> >

»

«»

ru ^

T=

fc X

"T

! -H

* *

c x

t *

"TJ

TJ

-41

>c

o-

t t

ru>

* <

> ^^

TI

Ji

h-i

«

>

>

TJ

-4

H-

-H

*X>

^ X

TJ

C

I^

". -4-

-n

AJ

TJ ^

">x a ^ ^

»

* >

TJ

4i

pr 5

» U

+

f\j

a

;?cpo<

i>«^>

<_>

«^>

<iJ

t_j<

>t_

3o

c=

>o

O

TO

TO

'To

"*J

*^J

*^>l

"^J

" >!

*^>l

""^^Jj

***

J ^J

***

J T^

TO

O

01

»-

I1

0

|1

^J

11

0

1* *

-H-4

TJ

aa-nsoS

S--)*:

C

TJ

TJ

m

>T

.C

X>

XX

5s- ~

H

-H

D

:.Z

X

TJ

n r~

-H

^ f

-4 ^

iXiiH

H

<r;

» <

:s ir~

-H <

r~

-HO

II

1 «Z

-H

3

T>

T

J :T

J

."TJ

,T

J

IO"~

3

> i<

vrr/-

\/^rr

c,u>

4X

5rJ

*

Ji'->

r~

xf~

r"xx

n rv

c:

j^

xt^

ciiT

ccrr

^fT

;

H

X

»

X

TJ O

T

J TJ

O

*

TJ

«

S'«

X'-N

>C

X'->

C'

o

r~

3 s

JT o

c o >

-»C

D

*

^

O ^

O

.C

i>/J

O

C

U~

£:

30

00

00

TJ

XX

*

N-»

JJ

v-/

*-

» T

J>

>

U

" 4-

-4-

3

3 X

(

">

4

)

^(

-y

^

r"~

.

. -^

i /

,Z

<

3

TJ

TJ

-1

TJ

c

HI c

x c

r x

"s *

" ~s

-T

1 /^!

^ -

T1' ^

!vt *

> A

"H

"\J

X

Jfc

> ' -f

*-

**

<

£2

TJ

S

-_,

X

2"

*X

'J

5 *H

I3

*

Ct-

*

3

~

U1 *

T5

X

>J

/-\

* x

»-.

s *

4-

n"

s xi

TJ

O

,Q-<

TJ

%-/

33

>

*

^

/I

*S

IIX

X

»-*

«

>

>3

S

t »

J>

X

Ot-

t X

C

N3

TJ

«.

*

3

<JS

JJ *

£sX

£

. <-

-*

X *

CP

C

.J O

tJ

t->

«

i> tJ

<

-2

VJ>

tJ

V^

V^

VJ

fj^

'^^

*^

(7*

0s

CT^

O^

^T^

CT*

-J"l

-J1

'Jl

^-/l

Qc

">!

O^

U^

J^

O>J

PO *

* O

>

O CO

s) CT

^

o

o o

K-

10

101

cr

o

iO

0

O

1*

O O

O

T

J D

y 4

t 4

."5

i

C5

C3

>C

CC

X-O

TJC

C

C7"!

JZ

TJT

J'-H

IH

ID

-ir- «

3:

t- -

H x-

n

a T

^

«

*-«

J>

-\

TJ

!|

-H

O

O

2" F

% r:

-H

H- ' ^ *

- TJ

c

dX

CZ

- >

Tjr-T

JH

-H

<

C_

pr m

m >

«

c. »

-i-

ii rr

, n

O

XT

JT

JT

JO

-*T

J

»

<->

^

-f X

-f

£

. *

*vJ

~n

«-»

-H !

j>J

£2 T

;-2

* oc

^

» rv

' J=

- x

^.

. w

.T

J TJ

i

O-

"

0

S.

O0

*

-N >

D

O

t-»

C".

1 O

*e

!TJ

X

d

>

- '

-«-f

*

TJ

O

i~

TJ

-4

J3

d

O"

'"^

C

CXT

J

4

T

J

+>

X

»-*

T

»->

Z5

*

*-"

X ^

CO

-*

X

4-

TJ

v

* ;*

<

£-

* +

-*

II

* '

X

Xs

**

* a

TI

* d

-t r

v» "

n

'

( i

ru

*~>>

4

t-"

TJ

X

-1*

X-O

"!

m

ruo

^^

>>

J

~4

*-^

CC/

d T|

. k

* i TJ I

4.

Cr

V n 0 0 0 rv """^ a: H X TJ

-*

O « ru >* s, "Z "^ C z * >0 z TJ

* *-»

-O D t '

Page 140: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0003 I.STRF 10:23 AH WON., 9 M A P., 19«1

FTN4 CHMPH.EP: HP9?U60-16092 K^V. 1913 (79020-5)

** MO

135

Page 141: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0001 FfN. 10:23 Atf MUM., 9 M AP., 19*1

0001 FTN,l0002 PRPG p A^ p LTRF(3,PO)f MOD 0?30003 C0004 C PROGRAM TU PLOT TRANSFFR FUNCTION FILES RE w E D ATEn R,y0005 C PRPGRA M AUTKN.0006 C0007 C IfiRTTTE^ R Y u. V. FTTTERM*N, U.S.R.S., AUGUST 1°7°ooos c ^ODIFIFQ 16 SE P TFMRE P 19*00009 C0010 COMMON IVEC(?56) , 1 V£C3 (2^6) , ^'DCd ( 1 44) , TNVEC('l) ,!MPTP,'001 1 *TA?CT (6) , IYMTN, IXMAX, I YMTi\ , I YHftX00120013 *0014 FQUIVALENCF f IRUF(1 ),b!'FI. (U)0015 DATA IYDTF/-?00/,IXDTF/-?00/ r i>fFIl E/2HVF, ?HC,Tr 2HKS/,

0017 HATA LUT T Y/l/,LUPRT/6/0016 HATA LRL/2HFT,?HLE,2H: , PhPAr 2H.MO, ? n 1, 2H6A , ?HND, 2w0019 *?HNDr2H 3 , 2rJR A r 2HiM^ f ?H 4/oo?o r00?1 C n£T FILE NAMF00?2 10 tA/HT IFCLUTTY, 1000)00?3 1000 FuPMATf/" TRAiMSFFR FTLF MA ME? _")00?4 PEADCLUTTYr1^10) IF1LE00?5 1010 FOPMAT(25A?)00?6 Coo?7 C---- HPFN TRA^'SF^P FILL0028 CALL UPENCTDCB,IFK,jFiLt,<n00?9 TFUFR .HE. 0) GP TO 2 n0030 WRITF(LUTTY, 1 0?0) TFTLF f IE"R0031 1020 FORMATC" FTLF = ",3A?," TER = "rT!D)0032 RU in ftO0033 C0034 C---- PE*D SCALE FACTOR CUBITS PFR INCH)00^5 20 WRTTFCLUTTY,1030)0036 1030 FORMATC" SCiALE'' (UNITS/INCH) _")0037 READ(LUT T Yf*) sc0038 TFC6C .LF. 0.0) GO TP ^00039 C0040 c READ PLOTTTNR LI^IT0041 30 WRTT p (LuTTY,1040)0042 1040 FsjPiviATf" LfiRRESf ARR n ^ TP PLPT? CUNITS) _")0043 READ(L"TTYf*) ARMAY0044 TFfARMAX .LE. 0.0) GH Ty 300045 C0046 C-- TiMPUT CQ^MFNT FIFLH0047 WRTTFCLUTTY,1050)0048 1050 FuRMTC" COM^E^T FTEI-U? «= ^0 CHARACT FRS) ")0049 no 40 T=1,?b0050 40 TCOM(i)=?H0051 PEADCLi'iTy, ioio) ICOM0052 C0053 C MyRL l^AM PivF COPY OF PL n T?0054 WRTT C (LU T TY,1060^0055 1060 FORMAT(" MPRF THAIM o^!E CPPY PF OF PLPT? CYE PR

136

Page 142: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0002 PLTRF 10:23 AM MQM., 9 MAR.,

00560057005800^90060006100620063006400650066006700680069007000710072007300740075007600770078007900«000«10082OOB3008400*5008600870086008900^000^100^20093OQ940095009600970098009901000101010201030104010501060107010801090110

CC

CC

CC

CC

CCC

cc

cc

cc

cC'

cc.

cc

cc.

cC'

1070

C

1080

1090

TRARM=O PEADCLHTTY, 1010 xTFCI .FQ. ?HY£) TP

PRFPARF FypCALL STAPHNFILE)

BfcAD HTRST 2CALL RFAPFC

FRFfcllfcMCY RAMDS, 1 UFCTMATTjM LEVEL

Pj_ni CUTOFF ROPDFkSCALL DLINEfl?01 , 1 , 1201,21 1?, 1 0,20)CALL DLINEC99,1 ,Q9, 21 1?, 10,20)

SET PLOTTING ^CALL wlNnodoo, i?on f n,

PLOT FILE CALL CM APS n i2S,?o^5,LRLr n ,^,^,-nCALL CHAPS ( 1 040,?OS5, IFII tCl), 6,3,- 1)

CALL

CALL

CALL CHAPSC945r200S,TASCT,1 1'3,-

CALL WRTTFCTASCT, 10«0)FORM AT f "ARMAX=",F4.2)CALL CHAPSf700,200S,TASCT,10,3,-l)

CALLWRTT^CTASCT, 1 0^0) FUPNATCF^. ?,"=") CALL

CQNVFRT SC SC=SC/1 00.

UNITS/INCH TQ UMIT5/STYLIT

PLOT i" i iNtCAI L LTNF(3i5 r ?01 0,215,2010)

2 LARQE TICKS AT FrjQS CALL LTNF(3l^,?015,315,200S) CALL LTNF(?lS,?01b,215,200S)

PLOT 9 SMALL TTCK

137

Page 143: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

-M

« <

oc 0

s-«. t CL5

k

O3L < rvj o»-LLOCh-_JahOcooLL;C

D

Q_

CL

OCX

t

(XruXC

^-

* > »

LLII

O

£» <

»-<

>

-1-

_J

C

XIP

» i

_ |

II _J

*D

X

<£C

-

C

J

CLP

CJ

^ ru ro ^

-» i

oz?<cDC.1111CJJ-l

'-x

O^-

LT

*

LL f*O

Z

)».

a.0

M

/- » ->

53- o

5

a.

_j r

C'

1

CT /->

/ r-«

o ru

». C

1

.IP

i

*

a* ».

i

-0

CJ

*a

LL co rv>

'=!

:D

<C

>

X

C

' >

* *

CJ

CJ ^ !

u. <

_j _j H- s:_i _j H- a-i <c x

oC_

CJ

Sv

Lt

G0»-

«-4

^0 f***

CO 0

s

LT

CJ

C *

LP'.Oa<tXCJ_i

_j iCJ'<->

rx fxi

i\f

JZ>z*<

tcc1111C

J

fXI

(X

T-l

N^-

1 U

.

'O

JQ

sO

>

~C

LL._

j _

" *.

.13 G

»

CO

O

*-

T-«

O

*

O

IP

» *

f/3

CJ

CL u_ cc

<£ 25

*t

X

O

»~ ~

J %

«J x,,./

LL_

J

_J

H-

_ 1 _ 1

>

1J^

<S. \£

.C

J' C

J S

( o

^3* LP

rv ex (x

r-*.

\LT>-

CC

I

0av ip53-C

OCL<

tXC

J

_J_ 1

<Jc,

CJ

fX

OJ

r^od2<3C

a,iiiiCJJO

TO

*» ll

»-«

«.

Hi/~

. /

LT.

v-- CC

03 U

_ <

t

0

H-

O-O

.0

a

/-- a^H

O

*-«

*

G

*L

O

*-» iP

LP

* Jl

V^

» 1

N--

iO

CJ

'.OCL

LL CC

CL<

£

.-^

<J^ ^

X C

i- I

*_ ) C

J '

CJ

^LL

_J _

I )

_J Q

_j

_ !

i _

j 2T

<r <t a: <r <?

cj (_ s <_

criiiiC

J C

J

cr- o »-« AJ ro ^r

rvj

«

rvj

KI

Z-

1».

:D ».

k H

*>r~

r-

LT

TJ LL.

<t

_ 1

Z.

H^

0

t- C

aO

£>

O^

'~v

O"

O i t

«. G

».

iP

«-^ LP

r-O

H

r>O

ro

CJ

:Oa

u., cr, CL<c o

<c <<X

C

. i- X

CJ

CJ

^-^ ' _>

Lu._

J -J

»

- -J

«j

-J

>-= -J

<t -a a:

<tC

. C_

S

CJ

c.

IP

-0

Is-

:X> 0

a. cei DE<

t 0

K

C<C

0

c_ rvjuK

CC

*£. CD

«= CL

H-

>-

V, ^

11I1J

CJ

CJ

h o

«-* ru

^

LLi-^

/ ^ *^

t-

C

H-

>-

>

h-

C/5

+

C

CCX

OC

L>

>

->

U

J

IIC

CC

< o

C

CL

a. >-zr

>~"

1 G

1 -O

11c_hO

^T

OC 3-

AJ

»- s£

K

i G

»H

1 1

II II

II II

C:

CC»-*

X

-Z O

K

h-

<J C

L"L

i

T3

X

» .

f

1

»

CJ

in x0 r- co &

i

LL! ^

LU

» dO

UJ

CJ

^

'

X

_f

5. «

j-t

-, £

a, c_

iiIiCJO

«-H

LT IT

aor 1

CJ

CO

* 1

LP

/^

CCru

D<

- CL

1

>-

LL K

CT 0

^ IP

/

G

+0

CO

«~

LT C

-H

I Li_

Xr-

». X

K-

|| v_

CJ

i

<jOcc c

a

<t

s cj;

»-

*-

X>

' !

'_)

LL <

r» jL

J

^

Ct

_'

ce o <

3? LL

CJ

c«-4

«

»-(

CJ

ru ro ^j- ip

LT IT

LT

IT

Z'

LLO

n

»~ c.h

- X

K

h-

to + <r

C

CC sC

X

I'D

* Q

_ K

-

X

.< f

t-

CL

LiJ

II

f

K

CC

II

J3

)-H

c a

K

XX

X~

»-

H-

1 C

i f«~

iiCJ >o r^~ oo

IT

IT

IT

ru 4-

K

(C4-

z:Q

<u

(

3DLX

i-.

«

IIII

C.

o: z:

»- <c

X

C2

»-i »-

CJ

CT1 O

«

tLO

sC

>C

C

,.<? X

C

X

h- 1

4

CJ

31z:

c.0 a:Z

' CK

H-t

<t

f _ (

C

_J-J <ta

o

iiifCJ

CJ

ru r-o :3~

00

CO

i-H

"2:

CCdaJ XCa.DLL^C

JLL,ZTC

J1I11CJLP

oo

oo

oo

eco

oo

cceo

oo

oceco

Go

co

co

Go

eo

ccco

oco

co

occco

oo

oo

cco

oG

Page 144: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

OC«r-<

t,k

0«e;

Jj>~

<!

<\i

O« 1

LLOCH

-

_J

aCJ"

GOOLu

(J)«3 C

L

crC

CC

D

X

C<"">

O

c?

LLr£

_j

LL

Xh-

O

13_;.

_,

<t

:'jf

C1

i i

ON

-- <

£

\ 1 . I i

^

D11|IC

J C

J

sO r*- so^5

»C

sC

>0

ITCO

Ct

CCu

c i

U-

CL^LL ~£_l

_JstO

(_'

O o

2 ^

c-OcUJ

cr

L£u_

f^-« "^

LL *-

"JD U

.LL

-

1111CJ

C

«-« ru h-h

- h

- h

UJ

U.IDa"2L

t Li-COC_

1c»1111

J C

J

T

=3"-

FV-

LL

< *

Li_ C

L »

i <

-U

H-

crj c a

0

-I '3

-j a

K _J

c/)U

. I

CO

_

l_J

C '

,_J <

tC

_; C

J C

J

1111C

J C

J C

J

LO ^o r** OQ o

^, ^

/-^oV

O

«, /-%K\-J

LL

U.

2.'

ru_J

LL.

( N

LL JH-t

JO

u_a

20

*

h-

LL0

CD

LL cr

>

i-i 5:

U-

C1

_fa

o

ZD LU

c/"; xO

J

LL,<-D

_Ja _

,LJ <

5

C_

1111C,

CJ

o -^ ru

oc oc oo

J)oHoUJ5>H-

C_Jaiiiic-rOoc

< ,

;Taa i^oi^

<-% /LL 1

H-

U,

x-s

UJ

t 4

LLLL _JK

-

U.

H

U.

H

_J

31 u.

«. r

Ct" LL,

N-^

X

I

C_ 1-

i ^j

,.^)

X

2"

UJ

^C

_J »

_J

C<

I _

Jc,

aiiiiU

C

J

^T LO

^O

oc oc

oc

ofVr-l

>-1 H-

^3_J

s-»

LLi i 'X2GCOr^-oc

' >" 1

c 9

CCcLLLL

LV C

oJ ^~

IC

(L

*d c

^"^

»- c >

O ^

"E

Q.

>-

f

=

I

'.3^-^ n; LUH

- _J

O

[

^v/

Z

C*

<-t CL

a

<r ^ c

cCD

LU

LL, r-

.ZLL

CL t-

<T LL

cru»"i i

oo o o

« i ruoc

oc o~

o~ o^

/

c

cv_

/ >.LUX0

»-«

o(XI

3>.

an *aOJ.

ias.c(_)

=T4L

H-

LL

Oo

uZ:

C^E

!

CD C

-

cc II<L

a: ea

a. KcrC

a:D*£.

K*COCD

«L *

_-,

CC a;o5*

O2: K*

OCOC GGOOOOOOCCOCCOOCOOOCCOO

Page 145: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0005 FTN. 10:23 AM ^0^., 9 ^AR., 19*1

0193 SuRRPUTINE ARROW ( IXPPS t i YpPS , IP OF , TPTI,bHFT,TPTK,sr,

0195 c ROUTTNF TU PLOT INDUCTTU M ARROWS AND RANOOM01^6 C0197 niMEMSTQN NOTAT(4) ,IRUF(?56) ,b!IFI(128)0196 C.0199 C CHFCK FOR NO DATA0200 TFCIPUF(TPTI*b> .LF. 0) RETUP.M0201 C0202 c PLPT A CPUSS AT THP PRTGTN0203 CALL LTNFCTXPQS-^,TYPOS,TXPOS+'VTYPOS)0204 TALL LTNE(TX n OS,TYPOS-*:,TXPO$,TYPOStS)0205 r0206 C - ThFCH' FOR ARPQWS [HO L n NH TO PLOT0207 TFfbUFT(TpTR + 21 ) - r-T. ARM A Y .OP. BMPT(TPTR+23) . r. T . WAX)0208 *RETORN0209 C0210 r---- ruMpuiF ARPO W co^P 10211 ^ P-tVEPSF ^E K! L' OF TN021202130214 C021.5 C NuN-P-EVEPSFu SFNSE F'PR OUT OF PHASF0216 IDXO=-IFTX(bUFTCTPTK+lft)/sr)021 7 TDYO=IF1X(RUFI (IPTRtM)/SC)0218 C.0219 c PLOT IN PHAS P ARPQW WITH SPLTD LTNF02?0 CALL LTNF(Tx p oS,TYPUS,TxPUStTDXI,0221 C0222 c---- USF DASHFD LT[S»F FOR PUT PF PHASE02?3 TALL ULlNE(lXpns,lYpnSrlXpns+inxn,TYP(jStTDYu,7,3)02?4 C02?5 c CHFCK FOR FRRuR TOP LAPGF TO PLOT CRFLATTVF FRPU D > ioo/0 i02?6 c CHFCK PEU\TI\/E EPR^H OF I.APGFST VE^TPR02?7 AH = A M AX1 railFT (TpTR + 21 ) roUFT CTPTR + 23) )02?8 TF fBl'PT (IPTK+1«) .GT. Ah .PR. PuF I (iPTR 11 71 .bT. A M ) bP T 0 1002?9 C0230 r COMPUTF FRPOR0231 TE p X = MAXO( 1, Tl0232 TERY=MAXO(1 f TFIX CtJUFT (IPTR+17)/SC) )0233 C0234 C -- PEP] £RR n R0235 CALL0236 *0237 PALL L>PO Y (TXPOS + TDXO+IFRY,TXPOS + TQXU-IFRX,02380239 C0240 c DETEPHTNF ANNPTATTUW PLOTTING0241 10 MOTEX= C;O0242 TpfjnxT .GF. 0) KJOTEX = -500243 MOT£Y=750244 TFTIHYT .GF. o) ^oT£Y=-7^0245 Tpf inYH*^OTEY .GT. 0) M|JTF,Y = -i\m F i02460247

140

Page 146: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0006 ARPQW 10:2"* AM MQN., 9 ^AP., 19R1

0248 C0249 C ANNOTATE0250 PE P =1.0/RUFif0251 TALL0252 WR!T0253 10QO FuPhATf'T =",FS.O)0254 CALL CHA^SfNnTPXfNnTFYriMnTATf 8 f lf-t)0255 MOTtY=NUTtY-100256 C02^7 C ANNOTATE uF02S8 CALL COpF02^9 WRTTF(MUTAT r 1010) BUFICIPTR+J9)0260 1010 FURMAT( w nF= n rF4.?)02^1 CALL LHAPSfNnTFXfi\jnrFYn>jnTATr7r lf-1)0262 MOTfc.YsNOTEY-100263 C0264 C P|_ni NUMRtR n F0265 CALL CODF0266 WHITFC^UTAT, io?u)0267 1020 FQPMATf0268 TALL C02690270

FTN4 C^MPILEP: hP9?06()-160 <'2 RFV. 1913 (790206)

= 00465

141

Page 147: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

PAGF 0007 FT.N. 10:23 AM MUM., 9 ^AP., 19M

142

Page 148: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

U)

o o o o o o o o o o

oooooooooo

» o o o o o o o o o

CC

CC

CIC

CC

C.

-H

HH

-H

HH

-^

H-H

3D

3D X

73

X

X

X

X

X

II o

o

o

o fjy Z)

o o

o o

o o o O'

o

o

o

Page 149: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

til: 0100dn: 6000dO: 9000dO: ZOOOdO: 9000dOs SOOO

^000 TOOO

OoOO = d SVIIi-1 TOOOO 9NTb-n OOfoOdO MU

Page 150: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

/STACK 1 = 000^4 I* OH C p 003^U USIN(, 000^1 bl.K* R = f»Q05

0001 rRP/.^

0003 :RP0004 :RP0005 :TR

145

Page 151: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

LT

IC

'

oCIICOCo

ooCO

o

orO

coQ.

C

Vj

c

o

c

o

II

»- rvj o

c_>

CT

CC

U-

LL U

- LL

QO

Q O

O

coX

"< nj r-o ^r in

O

C

C'

O O

o o

o o

oc c c o c

vO

Page 152: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

/PI_T P F T = OOQO/4 IS HIM

oooi000200030004

147

Page 153: Computation of Geomagnetic Transfer Functions Using … derivation of this analysis can be found in Bendat and Piersol (Random Data: ... The following description uses notation similar

\PI.JRF T=OOQ04 IS ON C p OOQOb USINb 00001 6LKS P=0004

oooi :QF,PLTRF0002 :OF,Mt p&F0003 :OF,PLOT0004 :TP

148