30
UCLA Pb-Free Workshop 090502 1 Compression Deformation Response of 95.5Sn-3.9Ag-0.6Cu Solder* P. Vianco J. Rejent Sandia National Laboratories Albuquerque, NM *Sanida is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company for the United States Dept. of Energy, under Contract DE-AC04-94AL85000.

Compression Deformation Response of 95.5Sn-3.9Ag-0.6Cu Solder*

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

UCLA Pb-Free Workshop 090502 1

Compression Deformation Responseof 95.5Sn-3.9Ag-0.6Cu Solder*

P. ViancoJ. Rejent

Sandia National LaboratoriesAlbuquerque, NM

*Sanida is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company for the United States Dept. of Energy, under Contract DE-AC04-94AL85000.

UCLA Pb-Free Workshop 090502 2

Empirical, accelerated aging programs are fast becomingimpractical for developing long-term reliability databases

•Shift from OEM “circuit board technology” …… to CMS “circuit board assembly”

•Rapid development of new electronic packaging technologies

•A vast array of currently-used electronic packages

ColdColdHotHot

Failu

re P

roba

bilit

y

Number of Cycles

Weibull Distribution/Plot

•• ...and now ...and now ---- PbPb--free soldersfree solders

UCLA Pb-Free Workshop 090502 3

Computational modeling will be heavily relied upon to predict the reliability of Pb-free solder interconnects

Material PropertiesMaterial PropertiesMaterial Properties

Computational ModelComputational ModelComputational Model

Model ValidationModel ValidationModel Validation

Compile materials propertiesmaterials properties datafor model input parameters.

Develop the computational modelcomputational model:

•Constitutive equation•Finite element code (mesh)•Optimization routines

Model validationModel validation using limitedlimitedaccelerated aging experiments.

UCLA Pb-Free Workshop 090502 4

A Unified Creep-Plasticity (UCP) constitutive equationprovides the basis for a computational model

“A Visoplastic Theory for Braze Alloys,” … Neilsen, Burchett, Stone, and Stephens (1996)“A Visoplastic Theory for Braze Alloys,” … Neilsen, Burchett, Stone, and Stephens (1996)

dε11/dt = fo exp(-Q/RT) sinhp |σ11 - B11| sgn (σ11-B11)dε11/dt = fo exp(-Q/RT) sinhp |σ11 - B11| sgn (σ11-B11)βDβD[ ][ ]

dε11/dt ….. the inelastic strain rate (creep + plasticity)

σ11 ...……... applied stressT …………. temperatureB11 ……….. back stress

D …………. isotropic strength (plasticity)β …………. constant (plasticity)

fo …………. constant (creep)Q …………. apparent activation energy (creep)p …………. “sinh law” exponent (creep)

UCLA Pb-Free Workshop 090502 5

(x, y, z)(x, y, z)

Finite element mesh (x, y, z)Finite element mesh (x, y, z)Finite element mesh (x, y, z)

dε11/dt = ƒ {σ(x, y, z); T; t}ddεε1111//dt dt = = ƒƒ {{σσ(x, y, z); T; t(x, y, z); T; t}}

Finite element analysis provides the spatial “locator” ofstress and strain rate within the solder joint geometry

UCLA Pb-Free Workshop 090502 6

Objective

Develop a unified creep-plasticity constitutive model to predict the reliability of 95.5Sn95.5Sn--3.9Ag3.9Ag--0.6Cu0.6Cu soldered interconnects.

••Step 1 … Materials properties databaseStep 1 … Materials properties database

UCLA Pb-Free Workshop 090502 7

Experimental procedures

19 mm19 mm

10 mm10 mm

Specimen geometrySpecimen geometrySpecimen geometry

Compression testing (ASTM E9Compression testing (ASTM E9--89A):89A):

10 mm10 mm

MachinedMachinedChill-cast

(modified bullet mold)Chill-cast

(modified bullet mold)

95.5Sn95.5Sn--3.9Ag3.9Ag--0.6Cu0.6Cu

UCLA Pb-Free Workshop 090502 8

Experimental procedures

Mechanical Testing

SampleSample

Upper platenUpper platen

Lower platenLower platen

Temperaturecontrollines

Temperaturecontrollines

Lower temperaturecontrol platenLower temperaturecontrol platen

Upper temperaturecontrol platenUpper temperaturecontrol platen

(-25°C)((--25°C)25°C)

SampleSample

Lower temperaturecontrol platenLower temperaturecontrol platen

Upper temperaturecontrol platenUpper temperaturecontrol platen

Strain rates (stress-strain):

4.2 x 10-5 s-1, 8.3 x 10-4 s-1

Test Temperatures:

-25°C, 25°C, 75°C, 125°C, 160°C

Creep stress (percent of σy):

20%, 40%, 60%, 80%

Samples test conditions:

•as-fabricated•post - 125°C, 24 hour125°C, 24 hour heat treat

(2.7 - 35 MPa)

UCLA Pb-Free Workshop 090502 9

Experimental procedures

•Dynamic elastic modulus meausurements:

• -50°C to 200°C

• Temperature dependence of density, ρ:

25°C- 4.0 x 10-4 g/cm3-C° + 4.0 x 10-4 g/cm3-C°

7.30 g/cm3

•Thermal expansion coefficient measurements:

• -50°C to 200°C

RxRx TxTxSampleSample

SampleSample

FurnaceFurnace

FurnaceFurnace

LVDTLVDT

• Convert the expansion data to a coefficent of thermal expansion (CTE).

UCLA Pb-Free Workshop 090502 10

Microstructure of the as-cast Sn-Ag-Cu solder

100 µm

AABBCC

DD

EE

Dendritic microstructure was prevalent near the cylinder walls.

Untested

UCLA Pb-Free Workshop 090502 11

Microstructure of the as-cast Sn-Ag-Cu solder

AABBCC

DD

EE

Equiaxed microstructure was observed near the cylinder interior.

100 µm

Untested

UCLA Pb-Free Workshop 090502 12

Effect of the 125°C, 24125°C, 24 hourhour aging treatment on the Sn-Ag-Cu solder microstructure:

The dendritic morphology near the cyclinder walls became slightly more equiaxed in appearance.The dendritic morphology near the cyclinder walls became slightly more equiaxed in appearance.

There was no noticeable change to the microstructure that was interior to the cylinder sample geometry.There was no noticeable change to the microstructure that was interior to the cylinder sample geometry.

AABBCC

DD

EE

Microstructure of the as-cast Sn-Ag-Cu solder

UCLA Pb-Free Workshop 090502 13

Stress/strain response of the Sn-Ag-Cu solder

0

10

20

30

40

50

60

0 0.02 0.04 0.06 0.08 0.1 0.12

True

Str

ess

(MPa

)

True Strain

-25°C

25°C

75°C

• “Roll-up” to linear-elastic deformation for tests at -25°C and 75°C.• Transition from linear-elastic to plastic deformation for tests at 25°C.

4.2 x 10-5 s-14.2 x 104.2 x 10--55 ss--11

UCLA Pb-Free Workshop 090502 14

Stress/strain response of the Sn-Ag-Cu solder

0

5

10

15

20

0 0.02 0.04 0.06 0.08 0.1 0.12

True

Str

ess

(MPa

)

True Strain

As-cast ... 8.3 x 10 -4 s-1

Aged ... 8.3 x 10 -4 s-1

As-cast ... 4.2 x 10 -5 s-1

Aged ... 4.2 x 10 -5 s-1

Plastic deformation appears to reflect two simultaneous processes:work hardeningwork hardening ? dynamic recoverydynamic recovery.

125°C125°C125°C

UCLA Pb-Free Workshop 090502 15

Stress/strain response of the Sn-Ag-Cu solder

Plastic deformation at 125°C:work hardeningwork hardening ? dynamic recoverydynamic recovery

Thermal aging: WORK HARDENING > dynamic recovery.Thermal aging: WORK HARDENING > dynamic recovery.

Faster strain rate: WORK HARDENING > dynamic recovery.Faster strain rate: WORK HARDENING > dynamic recovery.

UCLA Pb-Free Workshop 090502 16

Stress/strain response of the Sn-Ag-Cu solder

0

2

4

6

8

10

12

14

16

0 0.02 0.04 0.06 0.08 0.1 0.12

True

Str

ess

(MPa

)

True Strain

As-cast ... 8.3 x 10 -4 s-1

Aged ... 8.3 x 10 -4 s-1

As-cast ... 4.2 x 10 -5 s-1

Aged ... 4.2 x 10 -5 s-1

Plastic deformation appears to reflect two simultaneous processes:work hardeningwork hardening ? dynamic dynamic recrystallizationrecrystallization

160°C160°C160°C

UCLA Pb-Free Workshop 090502 17

Stress/strain response of the Sn-Ag-Cu solder

Plastic deformation at 160°C:work hardeningwork hardening ? dynamic dynamic recrystallizationrecrystallization

Thermal aging: WORK HARDENING > dynamic recrystallization.Thermal aging: WORK HARDENING > dynamic recrystallization.

Faster strain rate: WORK HARDENING > dynamic recrystallization.Faster strain rate: WORK HARDENING > dynamic recrystallization.

Work hardening, dynamic recovery and dynamic recrystallization are not adequately understood to develop quantitative state variables.

UCLA Pb-Free Workshop 090502 18

Deformation microstructure of Sn-Ag-Cu solder

100 µm

AABBCC

DD

EE

As-cast160°C8.3 x 10-4 s-1

UCLA Pb-Free Workshop 090502 19

0

10

20

30

40

50

-50 0 50 100 150 200

Yiel

d St

ress

(M

Pa)

Test Temperature (°C)

As-cast conditionAged: 125°C, 24 hours

4.2 x 10-5 s-14.2 x 104.2 x 10--55 ss--11

Yield stress versus temperature (ASTM E9-89)

UCLA Pb-Free Workshop 090502 20

Yield stress versus temperature (ASTM E9-89)

0

10

20

30

40

50

-50 0 50 100 150 200

Yiel

d St

ress

(MPa

)

Test Temperature (°C)

As-cast conditionAged: 125°C, 24 hours

8.3 x 10-4 s-18.3 x 108.3 x 10--44 ss--11

UCLA Pb-Free Workshop 090502 21

Static elastic modulus versus temperature (ASTM E111-82)

0

1000

2000

3000

4000

5000

6000

-50 0 50 100 150 200

Elas

tic M

odul

us (M

Pa)

Test Temperature (°C)

As-cast conditionAged: 125°C, 24 hours

4.2 x 10-5 s-14.2 x 104.2 x 10--55 ss--11

UCLA Pb-Free Workshop 090502 22

Dynamic (acoustic) elastic modulus versus temperature

30

35

40

45

50

55

60

-50 0 50 100 150 200

Elas

tic (Y

oung

's) M

odul

us (G

Pa)

Test Temperature (°C)

As-cast sample #1 As-cast sample #2 Aged sample #1

UCLA Pb-Free Workshop 090502 23

Differential expansion versus temperature

0 100

25 10-3

50 10-3

75 10-3

100 10-3

-50 -25 0 25 50 75 100 125 150 175 200

Diff

eren

tial E

xpan

sion

(mm

)

Temperature (°C)

As-castAsAs--castcast

There was no indication of solid-state phase transitions.

UCLA Pb-Free Workshop 090502 24

Coefficient of thermal expansion versus temperature

10 10-6

15 10-6

20 10-6

25 10-6

30 10-6

-50 -25 0 25 50 75 100 125 150 175 200

Coe

ffici

ent o

f The

rmal

Exp

ansi

on (

°C-1

)

Temperature (°C)

As-cast #1

As-cast #2

Aged #1

Aged #2

UCLA Pb-Free Workshop 090502 25

Analysis of the creep test data

dε/dtmin = fo exp(-Q/RT) sinhp (ασ)Hyperbolic Sine Creep Law

Multivariable Linear Regression AnalysisMultivariable Linear Regression AnalysisMultivariable Linear Regression Analysis

• ln(dε/dtmin),• (1/T),• ln[sinh (ασ)]

Independent parameter

0

0.01

0.01

0.02

0.02

0.03

0.03

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

0 2 105 4 105 6 105 8 105 1 106

Stra

in

Strain Rate (1/s)

Time (s)

Stress: 10.2 MPaTemp: 75°CAs-cast condition

Stress: 10.2 MPaTemp: 75°CAs-cast condition

Independent variables:

• ln(fo ),• -Q/R,• p

Coefficients:

Reported data will be forthe AS-CAST condition.Reported data will be forReported data will be forthe ASthe AS--CAST condition.CAST condition.

UCLA Pb-Free Workshop 090502 26

Analysis of the creep test data

0

0.01

0.01

0.02

0.02

0.03

0.03

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

0 2 105 4 105 6 105 8 105 1 106

Stra

in

Strain Rate (1/s)

Time (s)

Stress: 10.2 MPaTemp: 75°CAs-cast condition

Stress: 10.2 MPaTemp: 75°CAs-cast condition

0

0.02

0.04

0.06

0.08

0.1

0.12

0

2 10-7

4 10-7

6 10-7

8 10-7

1 10-6

0 2 105 4 105 6 105 8 105 1 106St

rain

Strain Rate (1/s)

Time (s)

A large degree of sample-to-sample variability was observed for specimens tested in the as-cast condition.

Stress: 10.2 MPaTemp: 75°CAs-cast condition

Stress: 10.2 MPaTemp: 75°CAs-cast condition

UCLA Pb-Free Workshop 090502 27

Analysis of the creep test data

10-9

10-8

10-7

10-6

10-5

10-4

0 5 10 15 20 25 30 35

True Strain Rate (/s) -25CTrue Strain Rate (/s) 25CTrue Strain Rate (/s) 75CTrue Strain Rate (/s) 125CTrue Strain Rate (/s) 160C

True

Str

ain

Rat

e (s

-1)

True Stress (MPa)

UCLA Pb-Free Workshop 090502 28

Analysis of the creep test data

-20

-18

-16

-14

-12

-10

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

ln[(d

ε/dt

) min

] (d

ε/dt

min

, s-1

)

ln[sinh(ασ)] (σ, MPa)

160°C125°C

75°C

25°C

-25°C

dε/dtmin = 34856 exp(-43?13 (kJ/mol)/RT) sinh4?3 (0.005σ)

UCLA Pb-Free Workshop 090502 29

Summary

1. A Unified Creep Plasticity (UCP) model is being developed todescribe inelastic deformation in 95.5Sn95.5Sn--3.9Ag3.9Ag--0.6Cu (wt.%) solder0.6Cu (wt.%) solder. for the conditions:

AsAs--fabricatedfabricatedAged: 125°C … 24 hoursAged: 125°C … 24 hours

2. Yield stress, elastic (Young’s) modulus, bulk modulus, Poisson’sratio, and coefficient of thermal expansion were determined for:

--25°C to 160°C25°C to 160°C

3. The creep data as-cast samples were fit to a hyperbolic sine law:

ddεε//dtdtminmin = 34856 exp(= 34856 exp(--4343?? 13 (kJ/mol)13 (kJ/mol)/RT) sinh/RT) sinh44?? 33 ((0.005σ)0.005σ)

UCLA Pb-Free Workshop 090502 30

A final note ….. the back stress, BB1111

dε11/dt = fo exp(-Q/RT) sinhp |σ11 - BB1111| sgn (σ11 - BB1111)βD[ ]

•The impact of the back stress, B11,or Bauschinger effect, on the fatigue response of solder is not well defined.

A scenario in which B11 = 0 can be hypothesizedwhen recovery processes occur very rapidly after load reversal

•The back stress, B11, is difficultto measure experimentally.

Experimental techniques almost certainlyrequire load reversal procedures.

Stress

Strain

σy

σy

σy > σyσy > σy

tension

compression