55
Composites Forming Analysis Remko Akkerman www.utwente.nl/ctw/pt [email protected] 26 th September 2013

Composites Forming Analysis Remko Akkerman [email protected] 26 th September 2013

Embed Size (px)

Citation preview

Page 1: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Composites Forming Analysis

Remko Akkermanwww.utwente.nl/ctw/[email protected]

26th September 2013

Page 2: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Introduction

Scope Mechanisms Constitutive Models Implementation

2

Page 3: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Freedom of Design

The sky is the limit? Limits in FORMABILITY Which, why, where & how?

3

Page 4: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Composite Life line

What is a material, what is a structure? What is a Forming Process? Micro is close to Meso is close to Macro...

4

Page 5: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

fibre resin

prepreg

lightweight part

lightweight structure

structural deformationand failure

impregnation

production

assembly

inservice loading

autoclaveRTMhot pressingrubber moulding... low density

high stiffnesshigh strengthusually thin walledgood corrosion resistance

CFRPcontinuous fibrereinforced plastic

glasscarbon...

thermoplasticthermoset

residual stressesproduct distortions

mechanically induced stressescrack initiation & crack growth

Impregnation& consolidation quality

joining,welding & bonding environmental

loading

Composite life line

After life

recycling

5

Page 6: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

processsettings

product properties

fibreorientation

fibre/matrixproperties

compositeproperties

productgeometry

Interrelations:Processing, Properties & Performance

6

Page 7: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Forming Processes

Consolidation

Drape (pre-forming)

Press Forming Compression Molding ....

7

Page 8: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Forming Mechanisms

8

Page 9: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Forming Mechanisms

9

Page 10: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Deformation Limits

“Form ability” Low resistance to shear & bending

High anisotropy Negligible fibre extension Low compressive “strength”

(fibre buckling)

10

Page 11: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Formability Analysis...

From deformation mechanisms ... to material characterisation ... to constitutive modelling ... to process modelling ... and formability prediction

11

Page 12: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Material Characterisation

Intra-ply shear

(a) Picture frame. (b) Bias extension.

0

100

200

300

400

500

0 10 20 30 40 50 60 70

Shear Angle (Deg)

No

rma

lise

d S

he

ar

Fo

rce

(N

/m) 160 oC

180 oC

12

Page 13: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Material Characterisation

Bi-axial response

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8

Strain (%)

Load

(N/y

arn)

Freein the second

direction

k=0.5k=1

k=2

Yarn

T22

T22

T11T11

T11T11 > T22

T22 < T11T22 = 0

T11; T22= 0T11

T22 = 0T22

Crimp leads to non-linear behaviour depending on the warp/weft strain ratio

13

Page 14: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Material Characterisation

Ply/tool and Ply/ply Friction

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 0.5 1.0 1.5 2.0 2.5 3.0Normal Pressure (MPa)

Sh

ea

r S

tre

ss

(M

Pa

)

0.5mm/s 180C 0.5mm/s 200C0.5mm/s 220C 0.8mm/s 180C0.8mm/s 200C 0.8mm/s 220C1.2mm/s 180C 1.2mm/s 200C1.2mm/s 220C

Tool/ply friction (glass/PP)Shear stress vs pressure.

14

Page 15: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum Mechanics

RECAP:

Continuum Mechanics =

Balance equations+ Material ‘Laws’+ Formalism

15

Page 16: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum Mechanics

Balance Equations Conservation of mass Conservation of energy Conservation of momentum

Material ‘Laws’ Constitutive equations,

relating forces & fluxes

Formalism Scalars, vectors, tensors Deformation theories

16

Page 17: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Balance Equations

Conservation of mass

Conservation of momentum

Conservation of energy (1st Law)

17

Page 18: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equations

Relations between Fluxes(transport of an extensive quantity)

e.g.

and Forces(gradient of an intensive quantity)

e.g.

or, indeed, betweenstresses and strains / strain rates

e.g.

18

Page 19: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Formalism

Scalars:

e.g.

Vectors:

e.g.

Tensors:

e.g.

19

Page 20: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Formalism

Single contraction,

Dyadic product,

20

Page 21: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Composites Forming Processesbalance equations

Viscous & elastic forces dominant (low Reynolds number) Neglect inertia:

Neglect also body forces: Stress equilibrium

Neglect cooling during forming(at least initially)

21

Page 22: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Composites Forming Processesconstitutive equations

Matrix response:Viscous visco-elastic elasticlow modulus, O(1 MPa)

Fibre response: Elastichigh modulus, O(100 GPa)

Prepreg/laminate response:Elastic/high modulus - in fibre directionVisco-elastic/low modulus - transverse dir.

22

Page 23: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Composites Forming Processesconstitutive equations

Concluding:

Very high anisotropy

Large rotations & deformations possibleexcept in the fibre direction

23

woven fabric ud ply

Page 24: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Reinforcement structures… some terminology

Unidirectional Biaxial (weft & warp) Triaxial ….

24

Page 25: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Textiles: Woven Fabrics

plain 3x1 twill 2x2 twill 5H satin

war

p

fill

12

25

Page 26: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Fibre Directions

unit vectors a, b

deformation gradient F rate of deformation D

ab

26

Page 27: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Fibre Directions

a'b'ab

deformation

'

'

a F a

b F b

27

Page 28: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

Strain definition:

Frame of reference: Which “l” ?Total Lagrange or Updated Lagrange?

Differential calculus:

28

Δ 𝑙𝑙

𝜖=𝜕𝑢𝜕 𝑥

Page 29: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

3D Strain definition:

Good for linear elasticity

But does it work for Composites Forming?

29

𝑑𝑢𝑥

𝑑𝑥 𝜖𝑥𝑥=𝜕𝑢𝑥

𝜕𝑥

Page 30: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

Rigid rotation:

Often non-zero axial strain

Except for the “average configuration”

30

𝑑𝑋 𝜖𝑥𝑥=𝜕𝑢𝑥

𝜕 𝑋𝑑𝑢𝑥

𝑑𝑢𝑦𝑑𝑥 𝜖𝑥𝑦=12

𝜕𝑢𝑦

𝜕 𝑋

Page 31: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

Average configuration:

But in which direction does the stress act?

Should be in the Final Configuration!

(considering the high anisotropy)

31

𝑑𝑋 𝜖𝑥𝑥=𝜕𝑢𝑥

𝜕𝑥 12

=0

𝑑𝑥

INCONSISTENCY

Page 32: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

Result (tensile test simulation, E1/E2=105):

Exact strain definition required

32

Page 33: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

Large deformation theory

Deformation gradient:

and also:

33

Page 34: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

The usual polar decomposition:

(R orthogonal, V & U symmetric)maintains an orthogonal basis

which is usually wrong!

34

Page 35: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Equationsdefinition of strain

Solution: multiplicative split(R orthogonal, G non-symmetric), knowing such that and hence leading to

as the scalar fibre strain ϵ in direction a

with

35

Page 36: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum model

• Now directional properties f (a,b)

21 2

with , ,i i D D D

p

I II III

σ 1 D D

• Recall incompressible isotropic viscous fluids:

36

Page 37: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum model

Inextensibility: 0

0

a D a

b D b

or introduce

A aa

B bb

leads to : 0

: 0

A D

B D

37

Page 38: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum model

Incompressibility: : 0tr D 1 D

Combine with

A Bp s s σ 1 A B τ leads to

: 0

: 0

A D

B D

38

Page 39: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum model

extra stress t , ,τ τ a b D

Form-invariance under rigid rotations:isotropic function of its arguments

Assume linearity, leads to:

1 2

3 4

2 2 2

2 2 ,

T T

τ D a b D A D D A B D D B

C D D C C D D C

C abwith

39

Page 40: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Continuum model

Fabric Reinforced Fluid (FRF) model

1 2

3 4

2 2 2

2 2 ,

T T

τ D a b D A D D A B D D B

C D D C C D D C

Can be simplified by symmetry considerations (sense of a, b, fabric symmetry)

40

Page 41: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Constitutive Modelling

1. Continuum mechanics2. Alternative: Discrete approach

(resin + fibre + structure)

for instance using mesoscopic modelling

...m a b σ σ σ σ

41

Page 42: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Mesoscopic modelling

Composite property prediction from mesostructure

Shear response from FE model

42

Page 43: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Mesoscopic modelling

Composite property prediction from mesostructure

Biaxial 2D3D

Triaxial 2D KnitMultiaxial 2D (NCF)

TexGen, WiseTex, etc

43

Page 44: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Implementation issues

Accuracy especially concerning fibre directions

Consistent tangent (as above) Shear locking

(due to large stiffness differences)

44

Page 45: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

Linear triangle (N1, N2, N3)

,

,

x x x x

y y y y

u x y a x b y c

u x y a x b y c

Linear strains & rotations

xx x

yy y

y xxy y x

y xxy y x

ua

xu

by

u ua b

x y

u ua b

x y

45

Page 46: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

Fibres in x and y direction (inextensibility)

Eliminate rigid body displacements

0

0x x

y y

a

b

0,0 0 0

0,0 0 0

x x

y y

u c

u c

46

Page 47: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

N1 in the origin (0,0)

Remaining d.o.f.s

x

y

N1

N3

N2

1,

21

,2

x x xy xy

y y xy xy

u x y b y y

u x y a x x

47

Page 48: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

Suppress a single node Ni (i=2,3)

Shear locking !

, 0 0

, 0 0

x i i x

y i i y

u x y b

u x y a

Unless: xi=0 or yi=0 (i=2,3)

Edge coincides with fibre direction!

48

Page 49: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

Result of locking: Far too high stiffness Spurious wrinkles Incorrect deformations

Example: bias extension

49

Page 50: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

Aligned vs unaligned mesh (quads)

50

Page 51: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Shear Locking

Aligned vs unaligned mesh (triangles)Force vs Displacement

51

Page 52: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

UD laminates:

52

Process ModellingINCLUDE RELEVANT DEFORMATION MECHANISMS

Intra-ply shear Inter-ply shear Laminate bending

Page 53: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Process Modelling

Reduction of trial & error

draping trimming spring-backdraping trimming spring-back

Production process simulation of wing leading edge stiffeners

Benchmarking

experiments+ analysis

+ modelling

53

Page 54: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Recap: Formability Analysis of Composites

Very high anisotropy Highly Sensitive to Fibre Directions –

use exact (non linearised) strain definition Shear Locking for non-aligned meshes ‘Stiff systems’ – Consistent Tangent Operators to

prevent divergence

54

Page 55: Composites Forming Analysis Remko Akkerman  r.akkerman@utwente.nl 26 th September 2013

Composites Forming Processesnumerical aspects

In summary:

Very high anisotropy Highly Sensitive to Fibre Directions –

use exact (non linearised) strain definition Shear Locking for non-aligned meshes ‘Stiff systems’ – Consistent Tangent Operators to

prevent divergence

55