27
Composite Materials for Wind Blades: Current Performance and Future Directions Current Performance and Future Directions Sandia National Laboratories · 2010 Wind Turbine Blade Workshop · July 20-21 2010 Presented by Juan Camilo Serrano · PPG Industries Inc.

Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

  • Upload
    vuhanh

  • View
    220

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Composite Materials for Wind Blades:Current Performance and Future DirectionsCurrent Performance and Future Directions

Sandia National Laboratories · 2010 Wind Turbine Blade Workshop · July 20-21 2010Presented by Juan Camilo Serrano · PPG Industries Inc.

Page 2: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

OUTLINE

1 PPG Wind Energy1. PPG Wind Energy2. Evolution of wind blade materials 3 The current state –performance review3. The current state performance review4. Alternatives for stronger, stiffer blades5. The future state - long term goals and new5. The future state long term goals and new

developments

Page 3: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

PPG Wind Energygy

1 PPG Wind Energy

• Offering a multitude of products for wind turbines

1. PPG Wind Energy

Offering a multitude of products for wind turbines– Fiber glass for blades, nacelles– Coatings for blades, towers

• World leader in fiber glass• World leader in fiber glass– Established in wind energy for 15+ years– Production and sales from 3 major continents

Hybon® 2002/2001 recognized product in wind– Hybon® 2002/2001 recognized product in wind energy blades

• Specified in blades from most major manufacturers around the world

– Continuing to develop new products that will enhance wind energy production for the future

Page 4: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

PPG Wind EnergyFiber Glass Product Historyy

1 PPG Wind Energy

Hybon® 2002/2001

1. PPG Wind Energy

Tensile Flexural Short Beam FWF

• Specified and used at most wind turbine companies• Designed for multiple resin compatibility

TensileStrength

Flexural Strength

Short Beam Shear Strength

FWF

Units MPa MPa MPa %

Method ISO 527-5 ISO 14125 ISO 14130

Hybon® 2026• Multiple resin compatibility• Enhanced processing

h Sample Prep

A A B

Hybon® 2002

1107 1221 64 74.8

characteristics• Improved strength

and fatigue lifeHybon® 2026

1148 1339 67 75.6

A – Unidirectional infused panels, Hexion RIM 135 epoxyB - Filament wound cylinders per ASTM D 2291

Page 5: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Blade PerformanceNano scale to Mega Watt

1 PPG Wind Energy

g

1. PPG Wind Energy

Fiber design at the nano-scale level drives performance through the value chain

Infusion fatigue weightFiber/Fabric Processing

1nm 1μ 1mm 1m 100m

Infusion, fatigue, weightFiber/Fabric Processing

Page 6: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Evolution of wind turbineblade productionp

2 Evolution of wind blade materials2. Evolution of wind blade materials

Input materials• Core materials (balsa PVC PU etc )

ATP/AFP

Improved Processing

& Performance

• Core materials (balsa, PVC, PU, etc.)• Skin materials (multiaxial fabrics NCF)• Spar materials (UD, multiaxial fabrics NCF)• Root materials (roving, multiaxial fabrics)• Resin systems (DGEBA, VE, PE, …)

V

Hand layup Prepreg

ATP/AFP• Dry fiber• Impregnated

tape

Performance

Wet layup

Vacuum Infusion

y pWet winding

Page 7: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Performance review

3 The current state – performance review3. The current state – performance review

• SNL/MSU/DOE databasePPG / DOE database

• SNL/MSU/DOE database• Optidat Database• PPG internal test data

Static Properties

Fatigue Properties

• Other public information

Page 8: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Material forms

3 The current state – performance review

• Prepreg based materials

3. The current state – performance review

• Prepreg based materials– UD, Biax

f dAPPLICATION/

REINFORCEMENT UDBIAX

0/90 – 45 TRIAX ROVING• Infusion grade

materials

R INFORC M NT U 0/90 45 TRIAX ROVING

WEBSPARCAP

– UD, Biax, Triax SKINROOT

Page 9: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Electronic Database

Page 10: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

UD Prepreg Static Propertiesp

3 The current state – performance review

1767

2504

202017502000225025002750

h (M

Pa)

Uni-directional PrepregTensile Strength

3. The current state – performance review

1767

126411051182

250500750

1000125015001750

Tens

ile S

tren

gth

Carbon-Epoxy

E-Glass Epoxy

122.1129.7139.3

120.0

140.0

GPa)

Uni-directional PrepregTensile Modulus

0250

0 0.5 1 1.5

Epoxy

41.5

47.745.1

20 0

40.0

60.0

80.0

100.0

Tens

ile M

odul

us (G Carbon-

Epoxy

13591250

1500

MPa

) Uni-directional Prepreg Compressive Strength

0.0

20.0

0 0.5 1 1.5

E-Glass Epoxy

790966

774

934879

500

750

1000

50

ress

ive

Stre

ngth

(M

Compressive Strength

Carbon-Epoxy

E-Glass Epoxy

0

250

0 0.5 1 1.5

Com

p Epoxy Epoxy

Page 11: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Double bias Prepreg Static Propertiesp

3 The current state – performance review3. The current state – performance review

20.0

Double Bias Prepreg Tensile Modulus

158

200 Double Bias PrepregTensile Strength

15.0 14.7

18.216

10.0si

le M

odul

us (G

Pa)

Carbon-Epoxy

E-Glass Epoxy

123132145

100

sile

Str

engt

h (M

Pa)

Carbon-Epoxy

E-Glass Epoxy

0.0

0 0 5 1 1 5

Tens

p y

0

0 0 5 1 1 5

Tens

0 0.5 1 1.50 0.5 1 1.5

Page 12: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Triaxial Infusion Static Propertiesp

3 The current state – performance review

951 923

1150

MPa

)

Triax Infusion Tensile Strength

3. The current state – performance review

785867

809

923

650

900

Tens

ile S

tren

gth

(M

E-Glass Epoxy

E-Glass Vinyl Ester

R-Glass Epoxy

1000

(MPa

)

Triax Infusion Compressive Strength

4000 0.5 1 1.5 2

50.0 Triax Infusion T il d l

833

580693 670

250

500

750

mpr

essi

ve S

tren

gth

(

E-Glass Epoxy E-Glass Vinyl

24.529.034.3

30.5034.5

sile

Mod

ulus

(GPa

) Tensile modulus

E-Glass E-Glass

R-Glass Epoxy0

250

0 0.5 1 1.5

Com

0.0

0 0.5 1 1.5 2

Tens

Page 13: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

How to drive performance?p

4 Alternatives for stronger stiffer blades

1. Design/Geometrical approach (Increase Moment of Inertia – stiffness)

4. Alternatives for stronger, stiffer blades

2. Material performance enhancements (strength and/or stiffness)1 Si i Ch i t ( t th)1. Sizing Chemistry (strength)2. Fiber Composition (strength + stiffness)3. Fiber Volume Fraction (strength + stiffness)4. Defect reduction/prevention (strength*)

*at component level

Page 14: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Sizing Chemistry

4 Alternatives for stronger stiffer blades:

g y

4. Alternatives for stronger, stiffer blades: Sizing Chemistry

450

375

400

425

450

s (M

Pa) Green = HYBON 2026

325

350

375

ax F

atig

ue S

tres

s

Red = HYBON 2002

~10 % Improvement~2x on absolute scale

250

275

300Ma

3 3.5 4 4.5 5 5.5 6 6.53 3 5 5 5 5 5 6 6 5log (N - cy c les to fa i lure)

Page 15: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Sizing Chemistry

4 Alternatives for stronger stiffer blades:

g y

Montana State results

4. Alternatives for stronger, stiffer blades: Sizing Chemistry

Montana State results• Vectorply E-LT 5500 using Hybon® 2026

4400TEX input in zero direction• Supports value of Hybon® 2026Supports value of Hybon 2026

Resin: EP = EPON 826Method: SBS = ASTM D2344All testing on 1984 TEX (250 Yield) rovings

Page 16: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Fiber Volume Fraction

4 Alternatives for stronger stiffer blades:

Advantages:

4. Alternatives for stronger, stiffer blades: Increase FVF

g• Avenue for increasing spar cap stiffness (reduction in tip deflection)• Achievable with existing materials

Di d tDisadvantages:• Effect on long term performance of composite laminate (fatigue)?• Increase in weight• Difficulties in processing (dry spots)

Page 17: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Hypothetical case FVFyp

4 Alternatives for stronger stiffer blades:4. Alternatives for stronger, stiffer blades: Increase FVF

• Circular cross section sparCircular cross section spar• Parameters include

– Outside Diameter (OD), Inside Diameter (ID)

– Spar length (L)Elastic Modulus of Fiber (Ef) OD = 0 6 m ID = 0 55 m– Elastic Modulus of Fiber (Ef)

– Fiber Volume Fraction (FVF)

OD 0.6 m, ID 0.55 mL = 60 mEf = 79 GPa (Impregnated strand tensile)FVF = 50%Modulus translation efficiency = 97%

Page 18: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Effect of FVF on tip deflection of spar, self weightp , g

4 Alternatives for stronger stiffer blades:

Common design space (E-glass)

4. Alternatives for stronger, stiffer blades: Increase FVF

98

99

100

0.270

0.275

0.280

n (m

)

94

95

96

97

0.260

0.265

Spar

mas

s (kg

)

wei

ght t

ip d

efle

ctio

n

L/2

d

W

91

92

93

0.245

0.250

0.255

9% % 3% % % 9% %

Self

w

49% 51% 53% 55% 57% 59% 61%

FVF (%)

Tip deflection Mass

Page 19: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Effect of FVF on dynamic propertiesy p p

4 Alternatives for stronger stiffer blades:

S-N Curve Unidirectional-Infusion

4. Alternatives for stronger, stiffer blades: Increase FVF

600

700

800

MPa

Glass Polyester (D092B) vf=39

300

400

500

m T

ensi

le S

tres

s ,M

Glass Polyester (D092D)vf=33

Glass Polyester (D092F) vf=49

100

200

Max

imu Glass Polyester (D092G)

vf=52

What happens at 60% FVF?0

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Cycles to Failure, N

60% FVF?

Page 20: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Reinforcement Landscape -Fiber Propertiesp

4 Alternatives for stronger stiffer blades:

Fib T E l R l S l C b

4. Alternatives for stronger, stiffer blades: Fiber Composition

Fiber Types E glass R glass S glass Carbon

Density (g/cm3) 2.55 – 2.64 2.55 2.46 - 2.49 1.7

Young’s ModulusYoung s Modulus (GPa) 70 – 77 84-86 86 – 90 220

Pristine Strength (MPa)

3450 – 3790*2800**

4400*3900**

4590 – 4830 3800**

Failure Strain (%) 4.5 – 4.9 5.4 – 5.8 0.7

*pristine**impregnated strand per ASTM D2343impregnated strand per ASTM D2343

Page 21: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Edge deflection on spar modelg p

4 Alternatives for stronger stiffer blades:

As Fiber Modulus Increases, deflection is reduced but cost per lb increases…

4. Alternatives for stronger, stiffer blades: Fiber Composition

0 25

0.30

(m) 12

12

0.10

0.15

0.20

0.25

0.28

0.23 0.25eigh

t tip

def

lect

ion

4

6

8

10

8

Cost

(x E

-gla

ss)

0.00

0.05

E-glassCarbon

S glass

0.07Self

we

0

2

E-glassCarbon

S glassR Gl

12

C

gR Glass R Glass

Page 22: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Composition shift E to Rp

4 Alternatives for stronger stiffer blades:

0.280

4. Alternatives for stronger, stiffer blades: Fiber Composition

0.260

0.270

on (m

)

E-glass

0.230

0.240

0.250

wei

ght t

ip d

efle

ctio

R-Glass

g

0.210

0.220Self

w

0.200

49% 51% 53% 55% 57% 59% 61%

FVF (%)

Page 23: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

What is next?

5 The future state – long-term goals

• Faster, easier processing

5. The future state – long-term goals and new developments

Faster, easier processing– Faster wet-out for liquid molding – Reduced probability of porosity in laminates

R d d b i– Reduced abrasion

• Defect reduction– Material forms adequate for FP/ATP (process driven)– Resin specific sizing technology (innovative film former chemistry)

• Higher Tensile strength• Higher SBSS and strength retention• Improved fatigue performance

Page 24: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

New material forms andprocess developmentp p

5 The future state – long-term goals

• ATL/FP grade materials

5. The future state – long-term goals and new developments

/ g– Equilibrium between performance and cost– Material tolerances

Paper requirements– Paper requirements– Impregnation levels and slitting

characteristics– Tack– In situ consolidation

Page 25: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

Acknowledgement/Disclaimer

SANDEEP VENNAM JIM WATSON AND CHERYL RICHARDS f PPG Wi d

Acknowledgment: “This material is partly based upon work supported by the Department of Energy under

SANDEEP VENNAM, JIM WATSON AND CHERYL RICHARDS from PPG WindEnergy

Disclaimer: “Part of this presentation was prepared as an account of work sponsored by an agency of theUnited States Government. Neither the United States Government nor any agency thereof, nor any of their

l k t i li d l l li bilit ibilit f th

Acknowledgment: This material is partly based upon work supported by the Department of Energy underAward Number(s) [DE-EE0001373)].”

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for theaccuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, orrepresents that its use would not infringe privately owned rights. Reference herein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarilyconstitute or imply its endorsement, recommendation, or favoring by the United States Government or anyagency thereofagency thereof.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the UnitedStates Government or any agency thereof.”

Page 26: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and

THANK YOU FOR YOUR ATTENTION

Page 27: Composite Materials for Wind Blades - Sandia Energywindpower.sandia.gov/2010BladeWorkshop/PDFs/2-1-A-3-SERRANO.pdf · Composite Materials for Wind Blades: Current Performance and