6
ORIGINAL RESEARCH SPINE Comparison of Sagittal FSE T2, STIR, and T1-Weighted Phase-Sensitive Inversion Recovery in the Detection of Spinal Cord Lesions in MS at 3T X P. Alcaide-Leon, X A. Pauranik, X L. Alshafai, X S. Rawal, X J. Oh, X W. Montanera, X G. Leung, and X A. Bharatha ABSTRACT BACKGROUND AND PURPOSE: Determining the diagnostic accuracy of different MR sequences is essential to design MR imaging protocols. The purpose of the study was to compare 3T sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery in the detection of spinal cord lesions in patients with suspected or definite MS. MATERIALS AND METHODS: We performed a retrospective analysis of 38 patients with suspected or definite MS. Involvement of the cervical and thoracic cord segments was recorded on sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery sequences independently by 2 readers. A consensus criterion standard read was performed with all sequences available. Sensitivity, specificity, and interobserver agreement were calculated for each sequence. RESULTS: In the cervical cord, the sensitivity of T1-weighted phase-sensitive inversion recovery (96.2%) and STIR (89.6%) was significantly higher (P .05) than that of FSE T2 (50.9%), but no significant difference was found between T1-weighted phase-sensitive inversion recovery and STIR. In the thoracic cord, sensitivity values were 93.8% for STIR, 71.9% for FSE T2, and 50.8% for T1-weighted phase-sensitive inversion recovery. Significant differences were found for all comparisons (P .05). No differences were detected in specificity. Poor image quality and lower sensitivity of thoracic T1-weighted phase-sensitive inversion recovery compared with the other 2 sequences were associated with a thicker back fat pad. CONCLUSIONS: The use of an additional sagittal sequence other than FSE T2 significantly increases the detection of cervical and thoracic spinal cord lesions in patients with MS at 3T. In the cervical segment, both STIR and T1-weighted phase-sensitive inversion recovery offer high sensitivity and specificity, whereas in the thoracic spine, STIR performs better than T1-weighted phase-sensitive inversion recovery, particularly in patients with a thick dorsal fat pad. ABBREVIATION: PSIR T1-weighted phase-sensitive inversion recovery M R imaging of the spinal cord is an important diagnostic technique in MS because the prevalence of spinal cord ab- normalities in patients with clinically isolated syndrome is as high as 42%. 1 In clinically diagnosed MS, spinal cord involvement reaches 75%–92%, depending on the series. 2-4 The presence of asymptomatic cord lesions contributes to the demonstration of dissemination in space in the McDonald 2010 criteria for MS, and imaging of the spinal cord allows an increase of 18.3% in the number of patients meeting the diagnostic criteria. 5 The presence of spinal cord lesions not only facilitates diagnosing MS but is also predictive of conversion to clinically definite MS, especially in patients with nonspinal clinically isolated syndrome who do not fulfill brain MR imaging criteria. 6 Moreover, spinal cord lesions in MS can occur in isolation in 5% of patients, particularly in primary-progressive MS. 7 Spinal cord imaging is challenging because the spinal cord is a small and mobile structure. 8 In addition, its anatomic location Received August 25, 2015; accepted after revision November 9. From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.) and Move- ment Disorders (J.O.), St Michael’s Hospital, Toronto, Ontario, Canada; Department of Medical Imaging (L.A.), University Health Network, Mount Sinai Hospital, Toronto, Ontario, Canada; and Department of Medical Imaging (S.R.), University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada. Author contributions: guarantors of integrity of entire study: W.M., P.A.-L., A.B.; study concepts/study design or data acquisition or data analysis/interpretation: P.A.-L., L.A., A.P., G.L.; manuscript drafting or manuscript revision for important intellectual content: all authors; approval of the final version of the manuscript: all authors; literature research: P.A.-L.; statistical analysis: P.A.-L.; manuscript editing: P.A.-L., A.B., J.O. This study was partially funded by Novartis in the form of an educational grant to support the fellowship training position for the first author (P.A.-L.). (Money paid to the institution.) Please address correspondence to Paula Alcaide-Leon, MD, St Michael’s Hospital, Department of Medical Imaging, 30 Bond St, Toronto, ON M5B 1W8, Canada; e-mail: [email protected] Indicates article with supplemental on-line table. http://dx.doi.org/10.3174/ajnr.A4656 AJNR Am J Neuroradiol :2016 www.ajnr.org 1 Published January 21, 2016 as 10.3174/ajnr.A4656 Copyright 2016 by American Society of Neuroradiology.

ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

Embed Size (px)

Citation preview

Page 1: ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

ORIGINAL RESEARCHSPINE

Comparison of Sagittal FSE T2, STIR, and T1-WeightedPhase-Sensitive Inversion Recovery in the Detection of Spinal

Cord Lesions in MS at 3TX P. Alcaide-Leon, X A. Pauranik, X L. Alshafai, X S. Rawal, X J. Oh, X W. Montanera, X G. Leung, and X A. Bharatha

ABSTRACT

BACKGROUND AND PURPOSE: Determining the diagnostic accuracy of different MR sequences is essential to design MR imagingprotocols. The purpose of the study was to compare 3T sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery in thedetection of spinal cord lesions in patients with suspected or definite MS.

MATERIALS AND METHODS: We performed a retrospective analysis of 38 patients with suspected or definite MS. Involvement of thecervical and thoracic cord segments was recorded on sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery sequencesindependently by 2 readers. A consensus criterion standard read was performed with all sequences available. Sensitivity, specificity, andinterobserver agreement were calculated for each sequence.

RESULTS: In the cervical cord, the sensitivity of T1-weighted phase-sensitive inversion recovery (96.2%) and STIR (89.6%) was significantlyhigher (P � .05) than that of FSE T2 (50.9%), but no significant difference was found between T1-weighted phase-sensitive inversionrecovery and STIR. In the thoracic cord, sensitivity values were 93.8% for STIR, 71.9% for FSE T2, and 50.8% for T1-weighted phase-sensitiveinversion recovery. Significant differences were found for all comparisons (P � .05). No differences were detected in specificity. Poorimage quality and lower sensitivity of thoracic T1-weighted phase-sensitive inversion recovery compared with the other 2 sequences wereassociated with a thicker back fat pad.

CONCLUSIONS: The use of an additional sagittal sequence other than FSE T2 significantly increases the detection of cervical and thoracicspinal cord lesions in patients with MS at 3T. In the cervical segment, both STIR and T1-weighted phase-sensitive inversion recovery offerhigh sensitivity and specificity, whereas in the thoracic spine, STIR performs better than T1-weighted phase-sensitive inversion recovery,particularly in patients with a thick dorsal fat pad.

ABBREVIATION: PSIR � T1-weighted phase-sensitive inversion recovery

MR imaging of the spinal cord is an important diagnostic

technique in MS because the prevalence of spinal cord ab-

normalities in patients with clinically isolated syndrome is as high

as 42%.1 In clinically diagnosed MS, spinal cord involvement

reaches 75%–92%, depending on the series.2-4 The presence of

asymptomatic cord lesions contributes to the demonstration of

dissemination in space in the McDonald 2010 criteria for MS, and

imaging of the spinal cord allows an increase of 18.3% in the

number of patients meeting the diagnostic criteria.5 The presence

of spinal cord lesions not only facilitates diagnosing MS but is also

predictive of conversion to clinically definite MS, especially in

patients with nonspinal clinically isolated syndrome who do not

fulfill brain MR imaging criteria.6 Moreover, spinal cord lesions

in MS can occur in isolation in 5% of patients, particularly in

primary-progressive MS.7

Spinal cord imaging is challenging because the spinal cord is a

small and mobile structure.8 In addition, its anatomic location

Received August 25, 2015; accepted after revision November 9.

From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.) and Move-ment Disorders (J.O.), St Michael’s Hospital, Toronto, Ontario, Canada; Departmentof Medical Imaging (L.A.), University Health Network, Mount Sinai Hospital,Toronto, Ontario, Canada; and Department of Medical Imaging (S.R.), UniversityHealth Network, Toronto Western Hospital, Toronto, Ontario, Canada.

Author contributions: guarantors of integrity of entire study: W.M., P.A.-L., A.B.;study concepts/study design or data acquisition or data analysis/interpretation:P.A.-L., L.A., A.P., G.L.; manuscript drafting or manuscript revision for importantintellectual content: all authors; approval of the final version of the manuscript: allauthors; literature research: P.A.-L.; statistical analysis: P.A.-L.; manuscript editing:P.A.-L., A.B., J.O.

This study was partially funded by Novartis in the form of an educational grant tosupport the fellowship training position for the first author (P.A.-L.). (Money paidto the institution.)

Please address correspondence to Paula Alcaide-Leon, MD, St Michael’s Hospital,Department of Medical Imaging, 30 Bond St, Toronto, ON M5B 1W8, Canada;e-mail: [email protected]

Indicates article with supplemental on-line table.

http://dx.doi.org/10.3174/ajnr.A4656

AJNR Am J Neuroradiol ●:● ● 2016 www.ajnr.org 1

Published January 21, 2016 as 10.3174/ajnr.A4656

Copyright 2016 by American Society of Neuroradiology.

Page 2: ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

makes it prone to ghosting artifacts caused by the heart and great

vessels as well as truncation artifacts. 3T MR imaging compared

with 1.5T is more prone to artifacts caused by B1 field inhomoge-

neity,9 susceptibility, vascular pulsation, and chemical shift.10,11

In addition, 3T MR imaging has a higher energy deposit within

the tissue, resulting in a higher specific absorption rate than lower

field scanners. These problems can be partially solved with vari-

ous technical adjustments and fast (parallel) imaging.12

Traditionally, the spinal cord in patients with MS has been

imaged by using sagittal and axial FSE T2/proton density se-

quences. Additional sequences, including STIR13,14 and T1 inver-

sion recovery,15 have shown promise by increasing lesion visibil-

ity, particularly at 3T, in which conventional FSE T2 and proton

density images are frequently unsatisfactory.16 STIR has proved

very useful as a complementary sequence in the detection of MS

lesions but cannot be used in isolation due to its lower specific-

ity.13,14 Numerous studies have demonstrated the superiority of

STIR over T2 at 1.5T,13,14,17-19 and 1 study15 also showed the

advantages of STIR at 3T in the cervical cord. To our knowledge,

no studies have been performed in the thoracic cord comparing

sagittal FSE T2 and STIR. A recent publication showed the advan-

tages of T1-weighted phase-sensitive inversion recovery (PSIR)

for the detection of cervical spinal cord lesions in MS at 3T.16 PSIR

has been shown to improve lesion localization and boundary def-

inition over STIR in the cervical spinal cord, but it has not been

tested in the thoracic cord.16

The aim of our study was to compare the sensitivity and spec-

ificity of sagittal STIR, PSIR, and FSE T2 in the detection of MS

spinal cord lesions at 3T, in both the cervical and thoracic

segments.

MATERIALS AND METHODSSubjectsApproval of the institutional review board to waive informed con-

sent was obtained for this retrospective study. Inclusion criteria

consisted of patients with definite or suspected MS who under-

went MR imaging of the spinal cord at 3T, including sagittal STIR,

PSIR, and FSE T2 as well as axial T2 sections in our institution

from July 1 to October 31, 2013. Exclusion criteria were a final

diagnosis of a disease causing spinal cord lesions different from

MS and substantial motion artifacts. Spinal MR imaging of 39

consecutive patients was reviewed. One patient with a final diag-

nosis of Churg-Strauss syndrome was excluded. Thirty-eight pa-

tients were included in the study. In 11 patients, only the cervical

segment was imaged, and in 12 patients, only the thoracic seg-

ment was covered. In 15 patients, both segments were included.

This inclusion resulted in 26 cervical and 27 thoracic spinal seg-

ments available for evaluation.

MR Imaging AcquisitionStudies were performed on a 3T MR imaging scanner (Magnetom

Skyra; Siemens, Erlangen, Germany) equipped with a 20-channel

head-neck coil and a 16-channel spine-array coil. Image parame-

ters are detailed in the Table. No contrast was administered before

performing these sequences.

Image AnalysisImages of all subjects were stripped of patient identifiers and

numbered randomly to facilitate blinded analysis. Two readers

(P.A.-L. and L.A., neuroradiologists with 6 years’ experience in

MR imaging) independently evaluated scans for the presence of

spinal cord lesions on each spinal cord level on sagittal PSIR,

sagittal STIR, and sagittal FSE T2 sequences. To facilitate this task

and improve consistency between readers, we drew lines separat-

ing the spinal cord levels across the midpoint of the intervertebral

disc, parallel to the vertebral endplates as shown in Fig 1C. These

reference lines were available during all readings. The upper limit

of the C1 segment was defined by the line connecting the tip of the

odontoid and the upper edge of the posterior arch of C1. The

lowest cord segment evaluated was T12, which was limited infe-

riorly by a line through the T12–L1 disc. Each sequence was eval-

uated independent of the other sequences so that the readers

could not use them to confirm or rule out the presence of a lesion.

Readings of different sequences for the same patient were sepa-

rated by at least a 2-week interval to avoid memory bias. Disagree-

ments were resolved by consensus. After the 2 independent read-

ings were completed and the disagreements were resolved, an

additional consensus reading was performed with all sequences

available. This was considered the criterion standard. Combined

information contained in sagittal FSE T2, proton density FSE,

PSIR, and STIR and in axial gradient-echo T2 of the cervical

spine and FSE T2 of the thoracic spine was taken into account

to decide which spinal cord segments truly had demyelinating

lesions and which were falsely identified as positive for demy-

elinating lesions due to the presence of artifacts. A lesion was

considered a true one if visible on at least 2 sequences, regard-

less of the imaging plane.

In our experience, PSIR images of the thoracic spine often

Acquisition parameters of MR imaging sequences

Segment Sequence PlaneFOV(mm)

AcquisitionMatrix

Thickness(mm) TR (ms) TE (ms) TI (ms)

No. of SignalsAcquired

Acquisition Time(min:sec)

ParallelImaging

Cervical PSIR Sagittal 220 320 � 224 3 2400 9.4 400 2 4:45 GRAPPA2Cervical STIR Sagittal 300 448 � 336 3 400 51 200 1 5:46 GRAPPA2Cervical FSE PD Sagittal 220 320 � 288 3 2500 23 1 2:02 NoneCervical FSE T2 Sagittal 220 384 � 307 3 3500 106 2 3:35 NoneCervical GE T2 Transverse 180 256 � 218 3 740 17 2 4:25 GRAPPA2Thoracic PSIR Sagittal 330 384 � 269 3 2400 9.5 400 2 4:45 GRAPPA2Thoracic STIR Sagittal 330 448 � 336 3 4000 50 200 1 5:46 GRAPPA2Thoracic FSE PD Sagittal 330 320 � 288 3 2500 21 1 4:02 NoneThoracic FSE T2 Sagittal 330 448 � 336 3 4000 96 1 4:26 NoneThoracic FSE T2 Transverse 180 256 � 176 5 6780 107 2 4:46 None

Note:—GE indicates gradient-echo; PD, proton density; GRAPPA, generalized autocalibrating partially parallel acquisition.

2 Alcaide-Leon ● 2016 www.ajnr.org

Page 3: ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

have very poor quality, particularly in patients with a large

thoracoabdominal diameter. To confirm our hypothesis that

patient size affects PSIR sequence quality in the thoracic spine,

we classified images by consensus into 2 groups: good quality

or poor quality on the basis of noise and CSF signal saturation.

We also measured the thickness of the dorsal back fat pad on

PSIR sequences of the thoracic region. This was used as a sur-

rogate marker of the thoracoabdominal diameter, which could

not be measured directly on the images. This evaluation was

performed by 1 author (P.A.-L.) in the midline at the level of

T1–T2, T8 –T9, and L1–L2. The mean of the 3 values was cal-

culated. Thicknesses of the back fat pad of patients with good-

quality and poor-quality PSIR of the thoracic spine were

compared.

Statistical AnalysisInterrater reliability analysis by the Cohen � coefficient was per-

formed to determine segmental lesion detection consistency

among raters. � values were interpreted on the basis of the con-

vention by Landis and Koch.20

Estimates of sensitivity and specificity were calculated for each

sequence in the cervical and thoracic segments (On-line Table).

To perform the calculation, we summated all false-positive, false-

negative, true-positive, and true-negative segments of the differ-

ent patients. Thus, calculated values of sensitivity and specificity

do not represent directly the accuracy of the sequence in diagnos-

ing MS but do represent the accuracy of the sequence in distin-

guishing an affected and nonaffected segment of the cord. Confi-

dence intervals for sensitivity and specificity were produced with

the Wilson score method.21 Accuracy of the sequences was also

calculated.

Mean thickness of the thoracic back fat pad of the good-

quality and poor-quality groups was compared by using the

Mann-Whitney U test. The Pearson

correlation coefficient was used to as-

sess correlations between the thickness

of the back fat pad and the sensitivity

of the sagittal PSIR of the thoracic

spine.

RESULTSTwenty-six female and 12 male subjects

were included (mean age, 42.1 years;

range, 25– 68 years). Of 38 subjects in-

cluded in the study, 33 had clinically def-

inite MS (n � 26, relapsing-remitting

MS; n � 3, primary-progressive MS; n �

3, secondary-progressive MS; and n � 1,

progressive-relapsing MS). The mean

disease duration was 9 years (range,

1–27 years). The remaining 5 subjects

included 2 patients with clinically iso-

lated syndrome, 1 patient with radiolog-

ically isolated syndrome, and 2 patients

with vague sensory symptoms without a

definite clinically isolated syndrome.

There were no exclusions due to mo-

tion artifacts. As per criterion standard

evaluation (consensus reading with all sequences available), spi-

nal cord lesions were present in 84% of the cervical examinations

and in 85% of the thoracic segments. In 6 patients, the upper

thoracic region was not included in the FOV; thus, 8 thoracic

segments could not be evaluated. One hundred eighty-two cervi-

cal and 316 thoracic spinal cord segments were evaluated. Of

these, 106 cervical and 128 thoracic segments were affected by MS

lesions. The number of true-positive, true-negative, false-posi-

tive, and false-negative spinal cord segments and the sensitivity,

specificity, accuracy, and � coefficient of each sagittal sequence

are shown in the On-line Table. Comparisons among the number

of true-positive, false-negative, and false-positive spinal cord seg-

ments of the 3 different sagittal sequences in the cervical and tho-

racic segments are shown in Fig 2. In the cervical region, the sen-

sitivity of STIR and PSIR was significantly higher than that of FSE

T2 (P � .05) (Fig 1). No significant difference was found in

sensitivity between PSIR and STIR in the cervical region. In the

thoracic region, the sensitivity of STIR was significantly higher

than that of FSE T2 and PSIR, and the sensitivity of FSE T2 was

significantly higher than that of PSIR (P � .05). Specificities of

all cervical and thoracic sagittal sequences studied were very

similar, with no significant differences identified. Interob-

server agreement was higher for STIR than for FSE T2 and

PSIR, in both the cervical and thoracic segments.

At visual inspection, all sequences were rated as good quality

except for 10 PSIR thoracic studies that showed inhomogeneous

CSF saturation and increased noise (Fig 3). The distribution of the

variable “size of the back fat pad” in the good-quality and poor-

quality groups is shown in Fig 3E. Back fat pad thickness in the

poor-quality group was significantly higher compared with the

high-quality group (P � .001). The mean back fat pad thickness

was 13 mm (95% CI, 9.9 –16.1 mm) in the good-quality group

FIG 1. Sagittal PSIR (A), FSE T2 (B), and STIR (C) sequences in a patient with MS. A demyelinatinglesion at the C2 level (arrows) is adequately visualized on PSIR (A) and STIR (C) but not on FSE T2(B). C, An example of reference lines through the center on the disc spaces used to separate thevertebral levels (gray lines).

AJNR Am J Neuroradiol ●:● ● 2016 www.ajnr.org 3

Page 4: ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

and 24.6 mm (95% CI, 21.8 –27.3 mm)

in the poor-quality group. A moderate

negative correlation (Fig 3F) was found

between the thickness of the back fat pad

and the sensitivity of the sagittal PSIR

sequence of the thoracic spine (r �

�0.58, P � .003).

DISCUSSIONThis study shows that lesion detection in

the cervical region is lower on sagittal

FSE T2 than on PSIR and STIR. The sen-

sitivity of sagittal PSIR in our sample was

slightly higher than that of STIR; how-

ever, the differences were not signifi-

cant. In the thoracic spine, lesion detec-

tion of STIR was significantly better than

that of FSE T2 and PSIR and lesion de-

tection of FSE T2 was significantly better

than that of PSIR.

The poor performance of PSIR in the

thoracic region appears to be related to

the thickness of the back fat pad. We are

unsure about the cause of this effect in

large patients. One explanation may be

the dielectric effect. When the abdomi-

nal diameter exceeds the radiofrequency

wavelength, the 180° pulse is not homo-

geneous through the FOV. Therefore,

some areas may be getting an inversion

pulse different from 180°. This effect,

however, should also be detected on

STIR because both are inversion recov-

ery sequences. Another possibility may

be a problem in phase unwrapping be-

cause the generation of true phase-sen-

sitive images requires phase images to be

FIG 2. Stacked bar charts show the total number of true-positive, false-negative, and false-positive spinal cord segments in the cervical (A) andthoracic (B) regions on the 3 different sagittal sequences evaluated. The horizontal lines represent the total number of segments truly affectedby lesions as per criterion standard evaluation.

FIG 3. A, Thoracic sagittal PSIR image of a patient with MS with a thick back fat pad showsincreased noise and failure of CSF suppression. A demyelinating lesion (white arrow) is clearlyidentified on STIR (B) but not seen on PSIR (A). Sagittal PSIR (C) and STIR (D) sequences of aslim patient with MS show adequate contrast between the lesions (arrow caps) and the cordand adequate CSF signal suppression on PSIR. E, The boxplot shows the distribution of thevariable thickness of the back fat pad in the group of patients with good- and poor-qualitythoracic PSIR images. The bottom and the top of the boxes represent the 25th and 75thpercentiles, respectively; the median is represented by the horizontal line in the box; and therange corresponds to the whiskers that extend from the box. Patients with poor-quality PSIRsequences of the thoracic spine have a median back fat pad size significantly thicker than thatin patients with good-quality images. F, The scatterplot shows the negative correlationbetween the sensitivity of the PSIR sequence of the thoracic segment and the thickness ofthe back fat pad (r � �0.53).

4 Alcaide-Leon ● 2016 www.ajnr.org

Page 5: ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

unwrapped first.22 The algorithm for phase unwrapping depends

on a smooth variation in phase, and this constraint is sometimes

not met, depending on the patient’s anatomy. A similar problem

was found by Riederer et al23 when using a double inversion re-

covery sequence in the cervical cord. They excluded 10% of their

sample due to artifacts presumably caused by adiposity. We did

not observe this problem in the cervical examinations, but we

found it in 37% of our thoracic examinations. We decided not to

exclude large patients with poor image quality because our inten-

tion was to test sequences as they would be used in the routine

clinical practice. Our observation is noteworthy because a se-

quence that provides suboptimal image quality in 37% of the

patients would not be adequate for routine clinical use; thus, the

utility of PSIR to detect thoracic spinal cord lesions may be

limited.

Conventionally, sagittal FSE T2 is the most commonly used

sequence when imaging the spinal cord in MS. Our results suggest

that the use of an additional sagittal sequence can significantly

increase the detection of MS lesions in the cervical and thoracic

cord without a substantial decrease in specificity. Both sagittal

PSIR and STIR perform well in this regard in the cervical spine,

but only STIR appears to be adequate in the thoracic region. All

the sequences studied have reasonable scanning times and can be

implemented in routine clinical practice, but there is a small ad-

vantage for cervical PSIR because it is 1 minute shorter than STIR

with our acquisition parameters.

We used a segment-based approach to quantify affected spinal

cord tissue. With this method, interobserver agreement was mod-

erate for PSIR and FSE T2 of the thoracic spine, substantial for

FSE T2 and PSIR of the cervical spine and for STIR of the thoracic

spine, and almost perfect for STIR of the cervical spine. Studies

comparing lesion detection of different sequences in the spinal

cord often had a consensus read16,24 and a single read25 or did

not report � values.14,18,19 Of note, our � values using a seg-

ment-based approach to quantify spinal cord lesion load are

higher than those reported in prior studies13,26 that used lesion

count; this finding suggests that a segment-based approach

may be a more reliable way to quantify lesion burden in the

spinal cord in MS.

The results of our study provide useful information for the

design of 3T MR imaging protocols in MS. The superiority of

STIR over T2 at 1.5T has been demonstrated on prior studies.14,19

Dietemann et al25 reported that the use of STIR in addition to

sagittal T2 in the spinal cord increases the number of MS lesions

detected by 46%. Another study by Nayak et al,26 which included

a variety of scans performed at 1.5T and 3T, showed a 35% in-

crease in the number of lesions detected using STIR compared

with conventional sagittal T2. At 3T, Poonawalla et al16 reported

improved lesion detection of sagittal STIR over sagittal FSE T2;

however, the sample was small (n � 12) and no statistical analyses

were performed to support the findings. In the study by Philpott

and Brotchie,15 sagittal STIR showed a statistically significant in-

crease in cervical cord lesion detection compared with FSE T2 at

3T. Our findings, therefore, are in agreement with previous stud-

ies at 1.5T and 3T that have shown that sagittal T2 alone does not

have adequate sensitivity to detect cervical cord lesions (Fig 1),

supporting the need to incorporate alternative sequences with

higher sensitivity to accurately detect cervical cord lesions in MS.

We have also demonstrated the utility of STIR sequences for im-

proving spinal cord lesion detection in the thoracic segment at 3T,

which has not been assessed in detail in prior studies.

Our findings support the use of PSIR as another alternative to

improve the detection of MS lesions in the cervical spinal cord. In

our study, PSIR was not superior to STIR in lesion detection in the

cervical spine. Prior studies comparing these 2 sequences include

the work by Poonawalla et al16 (cervical STIR versus PSIR) and

Philpott and Brotchie15 (cervical T1 inversion recovery without

phase reconstruction versus STIR); in both cases, samples were

very small (n � 12 and n � 11, respectively) and statistical analysis

of lesion detection was not performed. Thus, the existing litera-

ture does not provide enough evidence regarding the comparison

between PSIR and STIR in the cervical cord, though a trend to-

ward PSIR superiority has been observed, as in our study.

Our results raise the question of whether sagittal T2 should be

included in the cervical examinations of patients with MS at 3T,

given its inferiority compared with other sequences. We have

shown the advantage of substituting sagittal T2 with STIR or PSIR

in terms of cervical cord lesion detection; however, we have not

evaluated the impact of eliminating sagittal T2 in the character-

ization of nondemyelinating cord pathologies and incidental

findings.

This study has a number of limitations. First, we used a

segment-based lesion-quantification approach in which the

only information recorded was the presence or lack of lesions

in each cord segment. Although this method showed substan-

tially better interobserver agreement than lesion count, it has

the disadvantage of being insensitive to differential lesion bur-

den within a particular segment. Second, we focused on com-

paring FSE T2, STIR, and PSIR, but recent studies have dem-

onstrated that double inversion recovery23 and T1 MPRAGE24

can be applied in the cervical cord of patients with MS; how-

ever, their long acquisition time (�7 minutes) limits their ap-

plication in routine clinical practice. Due to the retrospective

nature of our study, we did not have these sequences available

for analysis in our study population, but future studies com-

paring T1-weighted phase-sensitive inversion recovery and T1

MPRAGE with STIR and PSIR would be useful. Third, contrary

to prior studies, we did not calculate the body mass index.23

This parameter is easy to calculate and would allow rapid pr-

escanning decision-making for STIR versus PSIR.

CONCLUSIONSOur results suggest that at 3T, an additional sequence other than

sagittal FSE T2 should be incorporated to improve lesion detec-

tion in the spinal cord of patients with MS. In the cervical cord,

both sagittal STIR and PSIR showed significantly better lesion

detection than sagittal FSE T2. In contrast, in the thoracic spinal

cord, the sensitivity of PSIR is markedly worse than that of STIR

and FSE T2, particularly in large patients, and STIR is clearly

superior to FSE T2. These findings should be taken into account

when planning sequence protocols to optimize lesion detection in

the spinal cord in MS.

AJNR Am J Neuroradiol ●:● ● 2016 www.ajnr.org 5

Page 6: ComparisonofSagittalFSET2,STIR,andT1-Weighted · PDF fileComparisonofSagittalFSET2,STIR,andT1-Weighted Phase-SensitiveInversionRecoveryintheDetectionofSpinal CordLesionsinMSat3T

ACKNOWLEDGMENTSWe would like to thank Bart Schraa, Siemens Application Sup-

port, for his help with the technical aspects of this manuscript.

Disclosures: Paula Alcaide-Leon—RELATED: Grant: Novartis.* Sapna Rawal—UNRELATED: Travel/Accommodations/Meeting Expenses Unrelated to ActivitiesListed: Association of University Radiologists–GE Radiology Research Academic Fel-lowship Award, Comments: I am a recipient of the Association of University Radi-ologists–GE Radiology Research Academic Award for 2015, and the sponsoring bodypaid for my travel expenses to the Association of University Radiologists meeting inApril 2015. Jiwon Oh—UNRELATED: Consultancy: Biogen-Idec, Novartis, Teva, Gen-zyme, EMD Serono, Roche; Grants/Grants Pending: Biogen-Idec, Genzyme, MultipleSclerosis Society of Canada*; Payment for Lectures (including service on SpeakersBureaus): EMD Serono, Novartis, Genzyme, Teva, Biogen-Idec; Travel/Accommoda-tions/Meeting Expenses Unrelated to Activities Listed: Genzyme, EMD Serono. Gen-eral Leung—UNRELATED: Grants/Grants Pending: University of Toronto,* Com-ments: Internal funding was received for a project for carotid atherosclerosisimaging; Patents (planned, pending or issued): operation of wireless devices throughthe Faraday Cage,* inhibition of intraplaque hemorrhage using drug therapy*; Other:In-kind support was received from Siemens, Synaptive Medical, VisualSonics/Fuji-film. Aditya Bharatha—RELATED: Grant: Novartis,* Comments: educational grant tosupport research fellow (first author, P.A.-L.); UNRELATED: Payment for Lectures(including service on Speakers Bureaus): EMD Serono, Novartis, Biogen, Comments:honoraria for educational lectures on MS. *Money paid to the institution.

REFERENCES1. Brex PA, O’Riordan JI, Miszkiel KA, et al. Multisequence MRI in

clinically isolated syndromes and the early development of MS.Neurology 1999;53:1184 –90 CrossRef Medline

2. Ikuta F, Zimmerman HM. Distribution of plaques in seventy au-topsy cases of multiple sclerosis in the United States. Neurology1976;26:26 –28 CrossRef Medline

3. Nijeholt GJ, van Walderveen MA, Castelijns JA, et al. Brain and spi-nal cord abnormalities in multiple sclerosis: correlation betweenMRI parameters, clinical subtypes and symptoms. Brain 1998;121(pt 4):687–97 CrossRef Medline

4. Bot JC, Barkhof F, Lycklama a Nijeholt G, et al. Differentiation ofmultiple sclerosis from other inflammatory disorders and cerebro-vascular disease: value of spinal MR imaging. Radiology 2002;223:46 –56 CrossRef Medline

5. Bot JC, Barkhof F, Polman CH, et al. Spinal cord abnormalities inrecently diagnosed MS patients: added value of spinal MRI exami-nation. Neurology 2004;62:226 –33 CrossRef Medline

6. Sombekke MH, Wattjes MP, Balk LJ, et al. Spinal cord lesions inpatients with clinically isolated syndrome: a powerful tool in diag-nosis and prognosis. Neurology 2013;80:69 –75 CrossRef Medline

7. Thorpe JW, Kidd D, Moseley IF, et al. Spinal MRI in patients withsuspected multiple sclerosis and negative brain MRI. Brain 1996;119(pt 3):709 –14 CrossRef Medline

8. Mikulis DJ, Wood ML, Zerdoner OA, et al. Oscillatory motion of thenormal cervical spinal cord. Radiology 1994;192:117–21 CrossRefMedline

9. Yang QX, Wang J, Zhang X, et al. Analysis of wave behavior in lossydielectric samples at high field. Magn Reson Med 2002;47:982– 89CrossRef Medline

10. Phalke VV, Gujar S, Quint DJ. Comparison of 3.0 T versus 1.5 T MR:

imaging of the spine. Neuroimaging Clin N Am 2006;16:241– 48, ixMedline

11. Fries P, Runge VM, Kirchin MA, et al. Magnetic resonance imagingof the spine at 3 Tesla. Semin Musculoskelet Radiol 2008;12:238 –52CrossRef Medline

12. Filippi CG, Carlson M, Johnson JM, et al. Improvements in lumbarspine MRI at 3 T using parallel transmission. AJR Am J Roentgenol2012;199:861– 67 CrossRef Medline

13. Bot JC, Barkhof F, Lycklama a Nijeholt GJ, et al. Comparison of aconventional cardiac-triggered dual spin-echo and a fast STIR se-quence in detection of spinal cord lesions in multiple sclerosis. EurRadiol 2000;10:753–58 CrossRef Medline

14. Hittmair K, Mallek R, Prayer D, et al. Spinal cord lesions in patientswith multiple sclerosis: comparison of MR pulse sequences. AJNRAm J Neuroradiol 1996;17:1555– 65 Medline

15. Philpott C, Brotchie P. Comparison of MRI sequences for evalua-tion of multiple sclerosis of the cervical spinal cord at 3 T. Eur JRadiol 2011;80:780 – 85 CrossRef Medline

16. Poonawalla AH, Hou P, Nelson FA, et al. Cervical spinal cord lesionsin multiple sclerosis: T1-weighted inversion-recovery MR imagingwith phase-sensitive reconstruction. Radiology 2008;246:258 – 64CrossRef Medline

17. Rocca MA, Mastronardo G, Horsfield MA, et al. Comparison of threeMR sequences for the detection of cervical cord lesions in patientswith multiple sclerosis. AJNR Am J Neuroradiol 1999;20:1710 –16Medline

18. Campi A, Pontesilli S, Gerevini S, et al. Comparison of MRI pulsesequences for investigation of lesions of the cervical spinal cord.Neuroradiology 2000;42:669 –75 CrossRef Medline

19. Mascalchi M, Dal Pozzo G, Bartolozzi C. Effectiveness of the short TIinversion recovery (STIR) sequence in MR imaging of intramedul-lary spinal lesions. Magn Reson Imaging 1993;11:17–25 CrossRefMedline

20. Landis JR, Koch GG. The measurement of observer agreement forcategorical data. Biometrics 1977;33:159 –74 CrossRef Medline

21. Julious SA. Two-sided confidence intervals for the single proportion:comparison of seven methods by Robert G. Newcombe, Statistics inMedicine 1998;17:857– 872. Stat Med 2005;24:3383–84 Medline

22. Moran PR, Kumar NG, Karstaedt N, et al. Tissue contrastenhancement: image reconstruction algorithm and selection of TIin inversion recovery MRI. Magn Reson Imaging 1986;4:229 –35CrossRef Medline

23. Riederer I, Karampinos DC, Settles M, et al. Double inversion recov-ery sequence of the cervical spinal cord in multiple sclerosis andrelated inflammatory diseases. AJNR Am J Neuroradiol 2015;36:219 –25 CrossRef Medline

24. Nair G, Absinta M, Reich DS. Optimized T1-MPRAGE sequencefor better visualization of spinal cord multiple sclerosis lesionsat 3T. AJNR Am J Neuroradiol 2013;34:2215–22 CrossRef Medline

25. Dietemann JL, Thibaut-Menard A, Warter JM, et al. MRI in multiplesclerosis of the spinal cord: evaluation of fast short-tau inversion-recovery and spin-echo sequences. Neuroradiology 2000;42:810 –13CrossRef Medline

26. Nayak NB, Salah R, Huang JC, et al. A comparison of sagittal shortT1 inversion recovery and T2-weighted FSE sequences for detectionof multiple sclerosis spinal cord lesions. Acta Neurol Scand 2014;129:198 –203 CrossRef Medline

6 Alcaide-Leon ● 2016 www.ajnr.org