32
Combinatorial Brill-Noether theory Stanislav Atanasov joint work with Dhruv Ranganathan MathFest 2016 Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 1 / 20

Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Combinatorial Brill-Noether theory

Stanislav Atanasov

joint work with Dhruv Ranganathan

MathFest 2016

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 1 / 20

Page 2: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Background

Genus of a graph

Definition

The genus of a connected graph G = (V ,E ), denoted g(G ), equals|E | − |V |+ 1, i.e. the first Betti number of the graph.

Example

The genus of a tree is 0.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 2 / 20

Page 3: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Background

Divisors on graphs

A divisor on G is a formal Z-linear combination of its vertices.

Definition

The degree of a divisor D =∑

aivi is deg(D) =∑

ai .

Definition

The divisor∑

aivi is called effective if ai ≥ 0 for all i .

−3

2

2

Figure: A non-effective divisor of degree 1.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 3 / 20

Page 4: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Background

Equivalent divisors

Vertex fires by moving one of its chips to each of its neighbors. Thisproduces a new divisor.

The equivalence relation on divisors generated by chip firing is calledlinear equivalence. The class of a divisor D is denoted by [D].

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 4 / 20

Page 5: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Background

Chip firing: example

1

2

4

−1

−1

2

3

0

0

0

Figure: The orange vertex fires its chips.

Definition

The class [D] is effective if it contains an effective divisor.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 5 / 20

Page 6: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Background

Chip firing: example

1

2

4

−1

−1

2

3

0

0

0

Figure: The orange vertex fires its chips.

Definition

The class [D] is effective if it contains an effective divisor.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 5 / 20

Page 7: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Background

Ranks of divisors

Definition

The rank of D, denoted rk(D), is the largest integer r such that [D − E ]is effective for all effective divisors E of degree r .If D is not equivalent to effective, then set rk(D) = −1.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 6 / 20

Page 8: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Baker’s gonality conjecture

Classical Brill-Noether theory

Brill-Noether theory is concerned with the ways in which one can embedan algebraic curve into projective space.

Example

The Brill-Noether existence theorem implies that every algebraic curve ofgenus g must admit a surjective map f to P1 of deg(f ) ≤ b(g + 3)/2c.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20

Page 9: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Baker’s gonality conjecture

Combinatorial Brill-Noether theory

Riemann-Roch for graphs (Baker and Norine, 2007)

If D is a divisor on a graph G of genus g , then

rk(D)− rk(KG − D) = deg(D)− g + 1,

where KG is the canonical divisor on G .

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 8 / 20

Page 10: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Baker’s gonality conjecture

Baker’s conjectures

Gonality conjecture (Baker, 2008)

Fix g ≥ 0. Then any graph of genus g has a divisor D withdeg(D) = b(g + 3)/2c and rk(D) ≥ 1.

Special case for rank one of the following:

Brill-Noether existence conjecture (Baker, 2008)

Fix g , r , d ≥ 0, and set ρ(g , r , d) = g − (r + 1)(g − d + r). Ifρ(g , r , d) ≥ 0, then for any genus g graph G there exists a divisor D withdeg(D) = d and rk(D) ≥ r .

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 9 / 20

Page 11: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Baker’s gonality conjecture

Baker’s conjectures

Gonality conjecture (Baker, 2008)

Fix g ≥ 0. Then any graph of genus g has a divisor D withdeg(D) = b(g + 3)/2c and rk(D) ≥ 1.

Special case for rank one of the following:

Brill-Noether existence conjecture (Baker, 2008)

Fix g , r , d ≥ 0, and set ρ(g , r , d) = g − (r + 1)(g − d + r). Ifρ(g , r , d) ≥ 0, then for any genus g graph G there exists a divisor D withdeg(D) = d and rk(D) ≥ r .

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 9 / 20

Page 12: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Baker’s gonality conjecture

Previous results

Theorem (Baker, 2008)

Brill-Noether existence holds for all graphs of genus at most 3.

Theorem (Cools and Draisma, 2016 (informal statement))

For each homeomorphic class of graphs, there exist edge lengths for whichthe gonality conjecture holds.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 10 / 20

Page 13: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Baker’s gonality conjecture

Main result

Theorem (A.,Dhruv R.)

Brill-Noether existence holds for all graphs of genus at most 5.

For g ≤ 5, the Riemann-Roch theorem and the gonality conjecture implyBrill-Noether existence.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 11 / 20

Page 14: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Strategy of proof

Construct divisors D of deg(D) = b(g + 3)/2c and rk(D) ≥ 1 fortopologically trivalent genus g graphs.

Contract edges to obtain constructions for all genus g graphs.

Recall that rk(D) ≥ 1 means we can place an antichip on any vertex andstill chip fire to effective.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 12 / 20

Page 15: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Strategy of proof

Construct divisors D of deg(D) = b(g + 3)/2c and rk(D) ≥ 1 fortopologically trivalent genus g graphs.

Contract edges to obtain constructions for all genus g graphs.

Recall that rk(D) ≥ 1 means we can place an antichip on any vertex andstill chip fire to effective.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 12 / 20

Page 16: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Strategy of proof

Construct divisors D of deg(D) = b(g + 3)/2c and rk(D) ≥ 1 fortopologically trivalent genus g graphs.

Contract edges to obtain constructions for all genus g graphs.

Recall that rk(D) ≥ 1 means we can place an antichip on any vertex andstill chip fire to effective.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 12 / 20

Page 17: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Topologically trivalent graphs

Definition

A graph G = (V ,E ) is said to be topologically trivalent if val(v) ≤ 3 forevery vertex v ∈ V .

G2G1

Figure: G1 is topologically trivalent, while G2 is not.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 13 / 20

Page 18: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Topologically trivalent graphs

Definition

A graph G = (V ,E ) is said to be topologically trivalent if val(v) ≤ 3 forevery vertex v ∈ V .

G2G1

Figure: G1 is topologically trivalent, while G2 is not.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 13 / 20

Page 19: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Topologically trivalent graphs

Definition

A graph G = (V ,E ) is said to be topologically trivalent if val(v) ≤ 3 forevery vertex v ∈ V .

G2G1

Figure: G1 is topologically trivalent, while G2 is not.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 13 / 20

Page 20: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Easy cases

The gonality conjecture holds for genus g graphs with:

bridges separating components of genera greater than 1.

at least one loop if g = 5, or at least two loops if g = 4.

Figure: Bridges and loops are denoted by dashed lines.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 14 / 20

Page 21: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Easy cases

The gonality conjecture holds for genus g graphs with:

bridges separating components of genera greater than 1.

at least one loop if g = 5, or at least two loops if g = 4.

Figure: Bridges and loops are denoted by dashed lines.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 14 / 20

Page 22: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Easy cases

The gonality conjecture holds for genus g graphs with:

bridges separating components of genera greater than 1.

at least one loop if g = 5, or at least two loops if g = 4.

Figure: Bridges and loops are denoted by dashed lines.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 14 / 20

Page 23: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Remaining topologically trivalent graphs

There are 8 remaining infinite families for genus 4 and 16 infinite familiesfor genus 5.

Treat them on individual basis, but...

Observe that the support of each divisor of interest divides the graphinto a finite collection of connected subgraphs.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 15 / 20

Page 24: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Remaining topologically trivalent graphs

There are 8 remaining infinite families for genus 4 and 16 infinite familiesfor genus 5.

Treat them on individual basis, but...

Observe that the support of each divisor of interest divides the graphinto a finite collection of connected subgraphs.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 15 / 20

Page 25: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Remaining topologically trivalent graphs

There are 8 remaining infinite families for genus 4 and 16 infinite familiesfor genus 5.

Treat them on individual basis, but...

Observe that the support of each divisor of interest divides the graphinto a finite collection of connected subgraphs.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 15 / 20

Page 26: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Example

=

We have placed one chip on each red vertex.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 16 / 20

Page 27: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

From trivalent to general graphs via edge contraction

ε

Figure: Edge contraction of the elongated edge ε.

All graphs of genus g are obtained via (repeated) edge contractions oftrivalent ones.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 17 / 20

Page 28: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

From trivalent to general graphs via edge contraction

ε

Figure: Edge contraction of the elongated edge ε.

All graphs of genus g are obtained via (repeated) edge contractions oftrivalent ones.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 17 / 20

Page 29: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

From trivalent to general graphs via edge contraction

Note that there is a natural map ϕε : Div(G )→ Div(Gε) for everyelongated edge ε of G .

ε

ϕε−→

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 18 / 20

Page 30: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Is rank preserved under ϕε?

In general NO, but....

In genus 5, the divisor of interest remains of rank at least one underrepeated applications of ϕεk for distinct elongated edges ε1, · · · , εn.

In genus 4, we can only contract one elongated edge ε. The remainingcases are dealt with independently.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 19 / 20

Page 31: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Is rank preserved under ϕε?

In general NO, but....

In genus 5, the divisor of interest remains of rank at least one underrepeated applications of ϕεk for distinct elongated edges ε1, · · · , εn.

In genus 4, we can only contract one elongated edge ε. The remainingcases are dealt with independently.

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 19 / 20

Page 32: Combinatorial Brill-Noether theory - Yale University · Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 7 / 20. Baker’s gonality conjecture Combinatorial

Outline of proof

Questions?

Stanislav Atanasov (SUMRY, Yale) Combinatorial Brill-Noether theory MathFest 2016 20 / 20