66
Colour vision János Schanda Virtual Environments and Imaging Technologies Laboratory University of Pannonia

Colour vision

  • Upload
    jimbo

  • View
    59

  • Download
    0

Embed Size (px)

DESCRIPTION

Colour vision. János Schanda Virtual Environments and Imaging Technologies Laboratory University of Pannonia. Overview. Human trichromacy The human retina Colour deficiencies Path from the retina to the cortex Brightness versus luminance The fifth light sensitive cell in the human retina. - PowerPoint PPT Presentation

Citation preview

Page 1: Colour vision

Colour vision

János Schanda Virtual Environments and Imaging

Technologies LaboratoryUniversity of Pannonia

Page 2: Colour vision

Overview Human trichromacy

The human retina Colour deficiencies

Path from the retina to the cortex Brightness versus luminance

The fifth light sensitive cell in the human retina

Page 3: Colour vision

Visibility

Perceiving details Rapid identification Brightness/lightness

evaluation Hue & colourfulness

evaluation

Page 4: Colour vision

The eye

Page 5: Colour vision

The structure of the eye

Page 6: Colour vision

The human eyeFovea: only cones, covered by the macula lutea, yellow pigmentation.Foveola: central parto of fovea, only L and M cones, blue colour blind.

Page 7: Colour vision

Artist’s view of the structure of the foveal

retina

Page 8: Colour vision

Light perception Imaging the exterior

world on the retina The retina and its

most sensitive part the fovea

The receptive cells

Page 9: Colour vision

The structure of the retina

Page 10: Colour vision

Cones and rods

Page 11: Colour vision

Distribution of rods and cones within the retina

Page 12: Colour vision

Spectral sensitivity of the three cone types, logarithmic scale

-8

-7

-6

-5

-4

-3

-2

-1

0

1

350 450 550 650 750

wavelength, nm

log

cone

act

ion

sens

itivi

ty

L-cone

M-cone

S-cone

Page 13: Colour vision

Fundamental colour matching experiment

Wright and Guild experiments

Different fundamentals

Transformed to common basis

Page 14: Colour vision

R, G, B primary based CMFs

R: 1 unit, 700 nm

G: 4,5907 units, 546,1 nm

B: 0,0601 units, 435,8 nm

Page 15: Colour vision

Background information CIE 1931 2° standard colorimetric

observer and Colour Matching Functions (CMFs) CIE 1924 spectral luminous efficiency

function CIE 1964 10° standard colorimetric

observer and CMFs

Page 16: Colour vision

CIE TC 1-36 report Fundamental Chromaticity Diagram

with Physiological Axes - Part 1: CIE 170:2006 L,M,S cone fundamentals Photopigment absorption spectrum

Macular pigment absorption Field size dependence

Page 17: Colour vision

Sties-Burch colour matching functions

wavelength (nm)

tristimulus values

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

350 400 450 500 550 600 650 700 750 800 850

_

_

l

r (λ )

_g (λ )b (λ )

Page 18: Colour vision

Macular pigment optical density

wavelength (nm)

Opt

ical

Den

sity

0.0

0.1

0.2

0.3

0.4

350 400 450 500 550 600

2o

10 o

Page 19: Colour vision

Lens and ocular media optical density

wavelength (nm)

Opt

ical

Den

sity

0.0

0.5

1.0

1.5

2.0

2.5

350 400 450 500 550 600 650 700

Page 20: Colour vision

Derived photopigment low density absorbance

wavelength (nm)

Opt

ical

Den

sity

0.0

0.5

1.0

1.5

2.0

2.5

350 400 450 500 550 600 650 700

Page 21: Colour vision

Complete path of getting to the corneal level cone

fundamentals

Photopigment low density

spectral absorbance

Ai,o(L-pigment)()Ai,o(M-pig ment)()Ai,o(S-pigment)()

Cornea

Retina

2° cone fundamentals

l2(), m2(), s2()

Macularpigment o.d.

2 deg

Lenspigment

o.d.

Cone photopigment o.d.

2 deg

FittedCMFs

2 deg

10° cone fundamentals

l10(), m10(), s10()

Cone photopigment o.d. 10 deg

ReferenceCMFs

10 deg

Lenspigment

o.d.

Macularpigment o.d. 10 deg

Stiles & Burch

Photopigment low density

spectral absorbance

Ai,o(L-pigment)()Ai,o(M-pig ment)()Ai,o(S-pigment)()

Cornea

Retina

2° cone fundamentals

l2(), m2(), s2()

Macularpigment o.d.

2 deg

Lenspigment

o.d.

Cone photopigment o.d.

2 deg

FittedCMFs

2 deg

10° cone fundamentals

l10(), m10(), s10()

Cone photopigment o.d. 10 deg

ReferenceCMFs

10 deg

Lenspigment

o.d.

Macularpigment o.d. 10 deg

Stiles & Burch

Page 22: Colour vision

2° cone fundamentals

Page 23: Colour vision

Spectral sensitivity of the three cone types, linear scale

Page 24: Colour vision

Transformation to XYZ-like CMFs for the 2°observer(tentative equation!)

Page 25: Colour vision

CIE 2° and cone fundamental derived (CFD) 2° CMFs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

350 400 450 500 550 600 650 700 750 800

wavelength, nm

tris

itm.v

alue

s

x¯(λ)y¯(λ)z¯(λ)xF¯(λ)yF¯(λ)zF¯(λ)

Page 26: Colour vision

Standard and cone

fundamental

chromaticity diagram

(Insert: DE per wavelength)

Page 27: Colour vision

D(u’,v’) differences if the CIE 2° observer is used or the tentative CMFs of CIE TC 1-36

Calculated chromaticities usingCIE 1931 2° CMFs

0,3

0,4

0,5

0,6

0,0 0,1 0,2 0,3 0,4 0,5 0,6

u'

v'

RGB LEDVisual averageBroad-band reference

#1

#2

#3

#4#5

#7

#8#9#6

CIE 1931 2° CFD-CMF

1 0,025 0,0112 0,038 0,0133 0,025 0,0104 0,013 0,0055 0,003 0,0026 0,002 0,0037 0,017 0,0098 0,002 0,0039 0,006 0,004

Dom. wavelength: 626 nm, 525 nm, 473 nm

Page 28: Colour vision

CIE u’,v’ differences in case of CIE 2°, TC1-36 2° (Fundamental CMFs) und modified

2° Őbserver (Mod.Fund. CMFs)

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

Sample #1

Sample #2

Sample #3

Sample #4

Sample #5

Sample #6

Sample #7

Sample #8

Sample #9

Chromaticity differences using different CMFs (CIE 1976 u'v')

CIE 1931 2° CMFsFundamental CMFsModified Fundamental CMFs

Page 29: Colour vision

Retinal processing Cone vision -> foveal

vision Long wave -L- Medium wave -M- Short wave -S-

sensitive cones

New signals are created already at retinal level Receptor cells produce

analogue potential difference for excitation

At output (ganglion cell) level fireing frequency signal is produced

Page 30: Colour vision

Antagonistic colour channels and the brightness/lightiness channel

Page 31: Colour vision

ON and OFF signals The ON centre

bipolar cell is activated by the cone signal

The OFF centre cell gets activated as the light decreases.

Differences in the ganglion cell fireing rate

Page 32: Colour vision

Receptive fields, functional diagram

Page 33: Colour vision

Receptive fields

Page 34: Colour vision

Neural signal generation H1 &H2: horizontal cells,

participate in the antagonistic signal processing

B: bipolar cells, participate in the centre/surrounding antagonistic process (ON and OFF cells)

G: ganglion cells MC: magnocellular (ON and

OFF cells) PC: parvocellular (2 ON and

OFF cells) KC: koniocellular (2 ON cells)

Page 35: Colour vision

Neural pathway - 1 Achromatic channel:

L + M cone signal Sensitive on edges, contrast Luminance like spectral responsivity

flicker photometry small step brightness comparison

Rapid signal transmission Neurons leading to magnocellular layers

Page 36: Colour vision

Standardised visibility functions

0

0.2

0.4

0.6

0.8

1

1.2

350 400 450 500 550 600 650 700 750 800

wavelength, nm

rel.

sens

itivi

ty

V(l)VM(l)V´(l)y(l)10

Page 37: Colour vision

Neural pathways -2

Parvocellular: L-M cone signal Fine details, slow Red – green antagonistic structure

Koniocellular: S – L, M-S cone signals Slow Yellow – blue antagonistic structure

Page 38: Colour vision

Way of the colour signal from the retina to the

brain

Page 39: Colour vision

Lateral geniculate body

Page 40: Colour vision

Chromatic adaptation

Received from Prof. Hunt

Page 41: Colour vision
Page 42: Colour vision

Parsing of information

Page 43: Colour vision

Visual areas of the cortex

Page 44: Colour vision

Brightness – luminance L+M signals: luminance like All three cones participate in brightness

perception Possible rod contribution to brightness Intrinsically photosensitive Retinal Ganglion

Cells might contribute too by pupil diameter regulation

Rod vision -> scotopic and peripheral vision

Mesopic vision: interaction between rod and cone receptors

Page 45: Colour vision

Brightness description

CIE supplementary system of photometry, CIE 200:2011

Helm holtz-Kohlrauscheffect

Purkinje effect

Equivalent luminance, Leq

a = 0.05 cd/m2, b = 2.24 cd/m2, k = 1.3, f(x,y)=Nakano (1999)Parameters:

a =L + a

L

(adaptation coefficient; achromatic)

Photopic luminance

L

Scotopicluminance

L'

(L') · (L) ·101-a a cac =

L1/2 + bkL1/2

(adaptation coefficient; chromatic)

c =ac · f(x,y)

Cr/gCy/b

Scotopic system Photopic systemV'(λ )input z(λ )inputy(λ )inputx(λ )input

c = ac [ f(x,y) - 0.078]

Page 46: Colour vision

Luminance and brightness

-20,00

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

400 500 600 700

wavelength, nm

rel.

resp

. V(l)

Vb2(l)

Landolt1,2,4,6

Page 47: Colour vision

Sp. sensitivity of different receptors

47

350 400 450 500 550 600 650 70000.10.20.30.40.50.60.70.80.9

1

Gall-Circl¯(λ)m¯(λ)s¯(λ)

wavelength, nm

rel.

sens

itiv

ity,

arb

. uni

ts

Page 48: Colour vision

Binary – broad band match

Broad-band: tunable LED source (curtasy of Zumtobel) with 470 nm blue component

Two component: cyan + deep red LED

25 observers

48

400 450 500 550 600 650 7000.000.100.200.300.400.500.600.700.800.901.00

2LED Zumtobel

wavelength, nm

rel.

inte

nsit

y, a

rbitr

. uni

ts

Page 49: Colour vision

Matching point of binary-broad-band match

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Page 50: Colour vision

View of the double booth

50

Non-fluorescent white paper placed on black background, no colour in field of view.

Page 51: Colour vision

Relative power in the circadian-, S-cone and Rod sensitivity bands comapred to the luminous flux

51

LED source Circadian/lum.flux S-cone/lum.flux rod/lum.flux

2 LED combination 0,73 0,22 1,1Zumtobel

adjustable source0,39 0,23 0,56

Results of brightness comparison of 2 LED and “Zumtobel” source illuminated samples

Number of Persons 4 (1<35Y,0>65Y)

15

(1<35Y,4>65Y)

6 (1<35,1>65Y)

Rel. brightness (2 LED/”Zumt.”

0,86 1,20 1,02

% st. dev. 2,1 9,9 3,1

Observers found chromatic mismatch for equal chromaticity and luminance setting (Instr. Syst. CAS 140CT+TOP100 radiance probe)

Page 52: Colour vision

Visual acuity Landolt-C investigation The fovea is also in the mesopic range V()

sensitive Subjective evaluation is mainly based on

foveal vision

Page 53: Colour vision

Summary Foveal task: V() Peripheral task: V´() Brightness evaluation:

Equivalent luminance

Page 54: Colour vision

Colour deficiencies Dichromat

protanope deuteranope tritanope

Anomalic trichromat protanomal deuteranomal tritanomal

Monochromat cone monochromat rod monochromat

Page 55: Colour vision

Normal trichromat

Page 56: Colour vision

Dichromat

Red-green colour deficient: cone density normal, but has only S and M cones

Page 57: Colour vision

Dichromat

Red-green colour deficient : cone denstiy only 35 % of normal, has only S and L cones.

Page 58: Colour vision

Rod achromat

Congenital rod achromat

Page 59: Colour vision
Page 60: Colour vision

1,00 % 0,02 %

Page 61: Colour vision

1,10 % 0,01 %

Page 62: Colour vision

0,002 % ? %

Page 63: Colour vision

Basic forms of colour deficiency

ProtanópiaDeuteranó

pia

Tritanópia

Page 64: Colour vision

Ishihara test

8 % of males is colour deficient, in case of females it is only 0,4 %.

Page 65: Colour vision

With regard to the colour deficient!

Normal

Deuteranop

Old coloratio

n

Modern coloratio

n

Page 66: Colour vision

Thanks for your kind attention!

This publication/research has been supported by the TÁMOP-4.2.2/B-10/1-2010-0025 project.