9
01.07.2004 Collimator 01.07.2004 Collimator revue revue A. Bertarelli - S. Calatroni - M. M A. Bertarelli - S. Calatroni - M. M ayer - R. Perret TS/MME ayer - R. Perret TS/MME 1 Collimator Test-Bench Collimator Test-Bench Heating Test Heating Test Primary Goals Primary Goals To measure the thermal impedance between To measure the thermal impedance between graphite and the cooling plate as a function graphite and the cooling plate as a function of the applied pressure of the applied pressure To verify the temperature distribution in the To verify the temperature distribution in the collimator jaw baseline design (graphite, collimator jaw baseline design (graphite, copper cooling plate, s.steel support copper cooling plate, s.steel support structure) and compare to simulations structure) and compare to simulations To identify whether graphite dust is produced To identify whether graphite dust is produced after several bakeout cycles at 250 ºC after several bakeout cycles at 250 ºC Secondary Goal Secondary Goal To measure outgassing of graphite in the real To measure outgassing of graphite in the real configuration configuration

Collimator Test-Bench Heating Test

  • Upload
    keely

  • View
    76

  • Download
    4

Embed Size (px)

DESCRIPTION

Primary Goals To measure the thermal impedance between graphite and the cooling plate as a function of the applied pressure To verify the temperature distribution in the collimator jaw baseline design (graphite, copper cooling plate, s.steel support structure) and compare to simulations - PowerPoint PPT Presentation

Citation preview

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

11

Collimator Test-Bench Collimator Test-Bench Heating TestHeating Test

Primary GoalsPrimary Goals– To measure the thermal impedance between To measure the thermal impedance between

graphite and the cooling plate as a function of graphite and the cooling plate as a function of the applied pressurethe applied pressure

– To verify the temperature distribution in the To verify the temperature distribution in the collimator jaw baseline design (graphite, copper collimator jaw baseline design (graphite, copper cooling plate, s.steel support structure) and cooling plate, s.steel support structure) and compare to simulationscompare to simulations

– To identify whether graphite dust is produced To identify whether graphite dust is produced after several bakeout cycles at 250 ºCafter several bakeout cycles at 250 ºC

Secondary GoalSecondary Goal– To measure outgassing of graphite in the real To measure outgassing of graphite in the real

configurationconfiguration

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

22

Experimental set-upExperimental set-up

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

33

Heating resistanc

e

Cooling channels

Springs

AC150 C-C

composite

Experimental set-upExperimental set-up

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

44

2 x 5 lt/min, 6 Kg/m2 x 5 lt/min, 6 Kg/m22 spring spring loadload

Measured temperature Measured temperature increaseincrease84±1 ºC

~13 ºC

2.9±0.3 ºC

5.3±0.3 ºC

6.7±0.3 ºC

10.1±0.3 ºC 200±0.4 ºC

~51 ºC

9.7±0.3 ºC

16.9±0.3 ºC

21.4±0.3 ºC

30.4±0.4 ºC

1500 W 4000 W

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

55

Estimation of thermal Estimation of thermal impedanceimpedance

2

3

4

5

6

7

8

9

1000 1500 2000 2500 3000 3500 4000 4500 5000

T

Gra

ph

ite

- C

op

per

[K

]

Applied Power [W]

Global thermal Global thermal impedance impedance Cu/AC150 C-CCu/AC150 C-C~ 8800 W m~ 8800 W m-2-2KK-1-1

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

66

Thermal impedanceCu / Carbon-Carbon

Spring loadSpring load

2.4 Kg/cm2.4 Kg/cm22

Spring loadSpring load

6 Kg/cm6 Kg/cm22

Experiment Experiment (approximate (approximate global value)global value)

~ 5400 W m~ 5400 W m-2-2KK--

11

~ 8800 W m~ 8800 W m-2-2KK--

11

Estimation of thermal Estimation of thermal impedanceimpedance

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

77

Temperature distribution Temperature distribution Comparison experiment - Comparison experiment -

modelmodel

31.1º

24.9º

21.9º

17.8º

30.8º

24.0º

21.3º

17.4º

Absolute temperatures with water inlet at 11 ºC, 2x5 lt/min, 2500W* E. Marotta, S. Mazzuca, J. Norley, Electronics Cooling August 2002* E. Marotta, S. Mazzuca, J. Norley, Electronics Cooling August 2002

Experiment Model *

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

88

2000 W , 6 Kg/m2000 W , 6 Kg/m22 spring load spring load Change of water flowChange of water flow

109±2 ºC

~26 ºC

9±1.1 ºC

12.6±1.1 ºC

14.8±1.1 ºC

19.6±1.1 ºC104±2 ºC

~20 ºC

4.7±1.1 ºC

8.3±1.1 ºC

10.6±1.1 ºC

15.3±1.1 ºC

2 x 3 lt/min, Twater=5.6±0.4 ºC

2 x 5 lt/min, Twater=2.6±0.4 ºC

01.07.2004 Collimator rev01.07.2004 Collimator revueue

A. Bertarelli - S. Calatroni - M. Mayer - R. PA. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MMEerret TS/MME

99

Switch-on 0 -> 2500 WSwitch-on 0 -> 2500 W