8
MICHAEL B. BAYLON MS – CE COE5310 ASSIGNMENT #2 1 COE5310: ADVANCED MATHEMATICAL METHODS PROF. HOMER CO ASSIGNMENT NUMBER 2: TOPIC: POWER SERIES SOLUTION NEAR A REGULAR SINGULAR POINT 1. By power series near a regular singular point 0 3 3 4 y y y x .............................................................................................................. eq. 1.0 SOLUTION: Assume the solution of: 0 n r n n x c y .............................................................................................. eq. 1.1 Getting the first and second derivative of the solution to substitute in the given O.D.E.: 0 1 n r n n x r n c y ........................................................................................................ eq. 1.2a 0 2 1 n r n n x r n r n c y ...................................................................................... eq. 1.2b Substitute equations 1.2a and 1.2b to the given O.D.E.: 0 3 3 1 4 0 0 1 0 1 n r n n n r n n n r n n x c x r n c x r n r n c ............................... eq. 1.3 Shift index, i.e. from n to n-1, hence, the second term changes: 0 3 3 1 4 1 1 1 0 1 n r n n n r n n x c x r n r n r n c ........................................ eq. 1.4a 0 3 1 4 1 1 1 0 1 n r n n n r n n x c x r n r n c ....................................................... eq. 1.4b Investigating eq. 1.4b for n=0: (notice that the second term starts at n=1) arbitrary. is ; 0 1 4 : 0 n for 0 1 0 c x r r c r The indicial equation is: 0 1 4 r r ............................................................................................ eq. 1.4c The indicial roots are: 0 r and 4 1 r . If n≥1, thus the second term of eq. 1.4b will appear, thus the recurrence relation is derived: 0 3 4 0 3 1 4 1 2 1 1 1 n n r n n r n n c r n r n c x c x r n r n c 1 1 4 3 1 n n c r n r n c ................................................................................................. eq. 1.5

COE5310_NO_2

Embed Size (px)

DESCRIPTION

COE5310_NO_2

Citation preview

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 1

    COE5310: ADVANCED MATHEMATICAL METHODS

    PROF. HOMER CO

    ASSIGNMENT NUMBER 2:

    TOPIC: POWER SERIES SOLUTION NEAR A REGULAR SINGULAR POINT

    1. By power series near a regular singular point

    0334 yyyx .............................................................................................................. eq. 1.0

    SOLUTION:

    Assume the solution of:

    0n

    rn

    nxcy .............................................................................................. eq. 1.1

    Getting the first and second derivative of the solution to substitute in the given O.D.E.:

    0

    1

    n

    rn

    n xrncy ........................................................................................................ eq. 1.2a

    0

    21n

    rn

    n xrnrncy ...................................................................................... eq. 1.2b

    Substitute equations 1.2a and 1.2b to the given O.D.E.:

    0331400

    1

    0

    1

    n

    rn

    n

    n

    rn

    n

    n

    rn

    n xcxrncxrnrnc ............................... eq. 1.3

    Shift index, i.e. from n to n-1, hence, the second term changes:

    033141

    1

    1

    0

    1

    n

    rn

    n

    n

    rn

    n xcxrnrnrnc ........................................ eq. 1.4a

    03141

    1

    1

    0

    1

    n

    rn

    n

    n

    rn

    n xcxrnrnc ....................................................... eq. 1.4b

    Investigating eq. 1.4b for n=0: (notice that the second term starts at n=1)

    arbitrary. is ;014 :0nfor 01

    0 cxrrcr

    The indicial equation is: 014 rr . ........................................................................................... eq. 1.4c

    The indicial roots are: 0r and 4

    1r .

    If n1, thus the second term of eq. 1.4b will appear, thus the recurrence relation is derived:

    0340314

    1

    2

    1

    1

    1

    nn

    rn

    n

    rn

    n

    crnrnc

    xcxrnrnc

    114

    31

    nn c

    rnrnc ................................................................................................. eq. 1.5

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 2

    Investigating eq. 1.5, for even and odd integers of n, since there are arbitrary numbers, respectively:

    For n1, r=0 For n1,

    1

    23

    12

    01

    14

    31

    113

    31

    72

    31

    31

    31

    kk ckk

    c

    cc

    cc

    cc

    1

    23

    12

    01

    14

    31

    313

    31

    29

    31

    15

    31

    kk ckk

    c

    cc

    cc

    cc

    For the r=0 indicial root values, multiply all the terms of the LHS and equate to that of RHS:

    1210

    terms terms

    1321141173321

    33331111

    k

    kk

    kk cccckk

    ccccc

    ......................... eq. 1.6

    Eq. 1.6 simplies to, (thus, the cn for r=0):

    0

    1

    14!

    31c

    mk

    ck

    m

    kk

    k

    ........................................................................................................... eq. 1.7

    For the r=1/4 root values, multiply all the terms of the LHS and equate to that of RHS:

    1210

    terms terms

    1321141395321

    33331111

    k

    kk

    kk cccckk

    ccccc

    ......................... eq. 1.8

    Eq. 1.8 simplies to, (thus, the cn of the odd integers):

    0

    1

    14!

    31c

    mk

    ck

    m

    kk

    k

    ......................................................................................................... eq. 1.9a

    Changing variables from n to k, thus eq. 1.1 becomes:

    0n

    rn

    nxcy ...................................................................................................................... eq. 1.10

    Since the given O.D.E. is linear, by superposition, the general solution is: (refer to eq. 1.10)

    4/10 rr yyy

    0

    41

    0 k

    k

    k

    k

    k

    k xcxcy .................................................................................................. eq. 1.11a

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 3

    Substituting equations 1.7b and 1.9b to eq. 1.11a:

    0

    41

    0

    1

    0

    0

    1

    14!

    31

    14!

    31

    k

    k

    k

    m

    kk

    k

    k

    k

    m

    kk

    xc

    mk

    xc

    mk

    y .................................................. eq. 1.11b

    Rearranging eq. 1.11b:

    0

    41

    1

    0

    0

    1

    0

    14!

    31

    14!

    31

    k

    k

    k

    m

    kk

    k

    k

    k

    m

    kk

    x

    mk

    cx

    mk

    cy ................................................. eq. 1.11c

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 4

    2. By power series near a regular singular point

    052152 yyxyx ........................................................................................................ eq. 2.0

    SOLUTION:

    Assume the solution of:

    0n

    rn

    nxcy .............................................................................................. eq. 2.1

    Getting the first and second derivative of the solution to substitute in the given O.D.E.:

    0

    1

    n

    rn

    n xrncy .............................................................................................................. eq. 2.2a

    0

    21n

    rn

    n xrnrncy ............................................................................................. eq. 2.2b

    Substitute equations 2.2a and 2.2b to eq. 2.0:

    052151200

    1

    0

    2

    n

    rn

    n

    n

    rn

    n

    n

    rn

    n xcxrncxxrnrncx .................... eq. 2.3a

    Distribute x from eq. 2.3a:

    0510512000

    1

    n

    rn

    n

    n

    rn

    n

    n

    rn

    n xcxrncxrnrnrnc ............ eq. 2.3b

    Combining similar x terms in eq. 2.3b:

    01253200

    12

    n

    rn

    n

    n

    rn

    n xrncxrnrnc ......................................... eq. 2.3c

    Shift index, i.e. from n to n-1, hence, the second term changes:

    01253221

    1

    1

    0

    1

    n

    rn

    n

    n

    rn

    n xrncxrnrnc ..................................... eq. 2.4a

    Investigating eq. 2.4a for n=0: (notice that the second term starts at n=1)

    arbitrary. is ;032 :0nfor 01

    0 cxrrcr

    The indicial equation is: 032 rr . .......................................................................................... eq. 2.4b

    The indicial roots are: 0r and 2

    3r .

    If n1, thus the second term of eq. 2.4 will appear, thus the recurrence relation is derived:

    01225322

    0125322

    1

    1

    1

    1

    rncrnrnc

    xrncxrnrnc

    nn

    rn

    n

    rn

    n

    1322

    1225

    nn c

    rnrn

    rnc ...................................................................................................... eq. 2.5

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 5

    Investigating eq. 2.5, for even and odd integers of n, since there are arbitrary numbers, respectively:

    For n1, r=0 For n1,

    1

    23

    12

    01

    32

    125

    93

    55

    72

    35

    51

    15

    kk ckk

    kc

    cc

    cc

    cc

    033

    110

    021

    010

    11

    110

    23

    12

    01

    cc

    cc

    cc

    For the r=0 indicial root values, multiply all the terms of the LHS and equate to that of RHS:

    1210

    terms

    1321321212753321

    1253155553

    k

    k

    kk cccckkkk

    kccccc

    eq. 2.6

    Eq. 2.6 simplies to, (thus, the cn for r=0):

    03212!53

    ckkk

    ck

    k

    .................................................................................................. eq. 2.7

    For the r=-3/2 root values, cn simplifies to:

    0100 10; cccc ................................................................................................................................ eq. 2.8

    Changing variables from n to k, thus eq. 2.1 becomes:

    0n

    rn

    nxcy ........................................................................................................................ eq. 2.9

    Since the given O.D.E. is linear, by superposition, the general solution is: (refer to eq. 2.9)

    2/30 rr yyy

    0

    23

    0 k

    k

    k

    k

    k

    k xcxcy .................................................................................................. eq. 2.10a

    Substituting equations 2.7b and 2.8b to eq. 2.10a:

    21

    02

    3

    0

    0

    0 103212!

    53xcxcxc

    kkky

    k

    kk

    .................................................. eq. 2.10b

    Rearranging eq. 1.11b:

    xxcx

    kkkcy

    k

    kk

    1013212!

    532

    3

    0

    0

    0

    ......................................................... eq. 2.10c

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 6

    3. By power series near a regular singular point

    0212 2 xyyxyx ......................................................................................................... eq. 3.0

    SOLUTION:

    Assume the solution of:

    0n

    rn

    nxcy .............................................................................................. eq. 3.1

    Getting the first and second derivative of the solution to substitute in the given O.D.E.:

    0

    1

    n

    rn

    n xrncy ........................................................................................................ eq. 3.2a

    0

    21n

    rn

    n xrnrncy ...................................................................................... eq. 3.2b

    Substitute equations 3.2a and 3.2b to the given O.D.E.:

    0211200

    12

    0

    2

    n

    rn

    n

    n

    rn

    n

    n

    rn

    n xcxxrncxxrnrncx ................ eq. 3.3

    Shift index, i.e. from n to n-2, hence, the second term changes:

    012320

    1

    0

    12

    n

    rn

    n

    n

    rn

    n xrncxrnrnc ....................................... eq. 3.4a

    05223222

    1

    2

    0

    1

    n

    rn

    n

    n

    rn

    n xrncxrnrnc .................................... eq. 3.4b

    0322 1 rnn xrnrnc Investigating eq. 3.4b for n=0 and n=1: (notice that the second term starts at n=1)

    arbitrary. is ;032 :0nfor 01

    0 cxrrcr

    arbitrary. is ;0121 :1nfor 11 cxrrcr

    The indicial equations are:

    014 rr . ....................................................................................................................... eq. 3.5

    0121 rr .................................................................................................................. eq. 3.6 The indicial roots are:

    For c0: 0r and 4

    1r .

    For c1: 1r and 2

    1r .

    The recurrence relation is (for n2):

    2322

    522

    nn c

    rnrn

    rnc ............................................................................................... eq. 3.7

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 7

    For even coefficients, n2:

    For r=0 For r=1/4

    222

    46

    24

    02

    342

    54

    96

    7

    54

    3

    12

    1

    kk ckk

    kc

    cc

    cc

    cc

    222

    46

    24

    02

    5818

    984

    1925

    154

    1117

    74

    39

    14

    kk ckk

    kc

    cc

    cc

    cc

    For r=0:

    22420222642 349512642

    54731

    kkk cccc

    kk

    kccccc

    02

    2

    2!34!2

    54

    ckk

    m

    ck

    k

    mk

    01

    234

    54

    !2

    1c

    m

    m

    kc

    k

    mkk

    For r=1/4:

    22420

    terms

    22264258191131825179

    9815714444

    k

    k

    kk cccckk

    kccccc

    01

    25818

    984 c

    mm

    mc

    k

    m

    k

    k

    For odd coefficients, n2:

    For r=-1 For r=1/2

    1212

    57

    35

    13

    342

    54

    96

    7

    54

    3

    12

    1

    kk ckk

    kc

    cc

    cc

    cc

    1212

    57

    35

    13

    234

    122

    615

    52

    411

    32

    27

    12

    kk ckk

    kc

    cc

    cc

    cc

  • MICHAEL B. BAYLON MS CE

    COE5310 ASSIGNMENT #2 8

    For r=-1:

    1275311212753 349512642

    54731

    kkk ccccc

    kk

    kccccc

    12

    2

    12!34!2

    54

    ckk

    m

    ck

    k

    mk

    1

    1

    1234

    54

    !2

    1c

    m

    m

    kc

    k

    mkk

    For r=1/2:

    12531

    terms

    121275326423415117

    125312222

    k

    k

    kk cccckk

    kccccc

    k

    m

    k cm

    m

    kc

    1

    11234

    12

    !

    1

    The solution is:

    0n

    rn

    nxcy

    0

    21

    0

    41

    0

    1

    0 k

    k

    k

    k

    k

    k

    k

    k

    k

    k

    k

    k xcxcxcxcy

    0

    21

    1

    1

    0

    41

    1

    0

    0

    1

    1

    1

    0 1

    0

    34

    12

    !

    1

    5818

    984

    34

    54

    !2

    1

    34

    54

    !2

    1

    k

    kk

    mk

    kk

    m

    k

    k

    kk

    mk

    k

    kk

    mk

    xm

    m

    kcx

    mm

    mc

    xm

    m

    kcx

    m

    m

    kcy