36
Federation for a Sustainable Environment Coal Mining and Combustion – Internalising the Cost for a fair Climate Change Debate

Coal Mining – Internalising the Costpmg-assets.s3-website-eu-west-1.amazonaws.com/docs/2009/091117fse-edit.p… · Federation for a Sustainable Environment. Coal Mining and Combustion

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Federation for a Sustainable Environment

Coal Mining and Combustion – Internalising the Cost

for a fair Climate Change Debate

From GCS report

Rain water balance

Rain water balance

Rainfall: 750 mm

Pre MiningPost

Mining

% effecti ve Decant

mm Cub M Cub M

Recharge 4% 30 300 4% 100% 300

Runoff 6% 45 450 3% 100% 225

Evapotranspiratio n 30% 225 2250 15% 0% 0

Sub surface 60% 450 4500 78% 25% 1474.2

0

100% 750 7,500 100% 1999.2

So what?

• Is it necessary to worry about the water quality?

Water Balance ( Million m3)

Sub Catchment Total Available for Water Surplus

allocation Requirements (Deficit)

Komati 426.5 883 (456.5)

Crocodile 273 664 (391.0)

Sabie/Sand 162 101 61.0

Total 861.5 1,648 (786.5)

Water Balance ( Million m3)

Upper Olifants 409 350.5 58.5

Middel Olifants 301 456.2 (155.2)

Lower Olifants 101 178.7 (77.7)

Steelpoort 61 50.9 10.1

Total 872 1,036 (164.3)

Loskop Dam - SO4 and TDS Concentrations

0

50

100

150

200

250

300

350

Sep

-71

Nov

-72

Jan-

74

Apr-

75

Jun-

76

Aug

-77

Oct

-78

Dec

-79

Feb-

81

Apr-

82

Jul-8

3

Sep

-84

Nov

-85

Jan-

87

Mar

-88

May

-89

Jul-9

0

Sep

-91

Dec

-92

Feb-

94

Apr-

95

Jun-

96

Aug

-97

Oct

-98

Dec

-99

Feb-

01

May

-02

Jul-0

3

Sep

-04

Nov

-05

Jan-

07

Con

cent

ratio

n (m

g/l)

SO4 TDS

Loskop dam at outbreakPhysical/chemical parameter

Units Site 1 riverine zone

Site 2 riverine zone

Site 3transitiona l zone

Site 4Lacustrin e zone

Site 5 lacustrin e zone

Total Alkalinity as CaCO3

mgl-1 56 52 48 49 43

Total Nitrogen as N µgl-1 17000 15980 12321 9641 9754

Total Phosphate as P µgl-1 711 700 457 359 340

Aluminium as Al µgl-1 1610 1511 191 76 73

Copper as Cu µgl-1 105 92 26 21 22

Iron as Fe µgl-1 1220 1213 175 64 67

Zinc as Zn µgl-1 23 19 12 10 12

Sulphate as SO4 mgl-1 481 398 167 144 151

Silica as Si mgl-1 2.1 2.1 1.8 1.5 1.5

pH 6.7 6.6 8.9 8.8 9

Conductivity µScm-

1392 390 333 314 317

DO mgl-1 6.64 0.83 5.32 4.97 5.24

Temperature ºC 24 25 25 27 26

Witbank Dam - SO4 and TDS Concentrations

0

100

200

300

400

500

600Ja

n-72

May

-73

Sep

-74

Feb-

76

Jun-

77

Nov

-78

Mar

-80

Aug

-81

Dec

-82

Apr

-84

Sep

-85

Jan-

87

Jun-

88

Oct

-89

Mar

-91

Jul-9

2

Nov

-93

Apr

-95

Aug

-96

Jan-

98

May

-99

Oct

-00

Feb-

02

Jun-

03

Nov

-04

Mar

-06

Aug

-07

Conc

entra

tion

(mg/

l)

SO4 TDS

Middelburg Dam - SO4 and TDS Concentrations

0

100

200

300

400

500

600

700

800

900

1000S

ep-1

978

Aug

-197

9Ju

l-198

0Ju

l-198

1Ju

n-19

82M

ay-1

983

Apr

-198

4M

ar-1

985

Feb-

1986

Feb-

1987

Jan-

1988

Dec

-198

8N

ov-1

989

Oct

-199

0S

ep-1

991

Sep

-199

2A

ug-1

993

Jul-1

994

Jun-

1995

May

-199

6A

pr-1

997

Apr

-199

8M

ar-1

999

Feb-

2000

Jan-

2001

Dec

-200

1N

ov-2

002

Nov

-200

3O

ct-2

004

Sep

-200

5A

ug-2

006

Jul-2

007

Con

cent

ratio

n (m

g/l)

SO4 TDS

And the Future Situation ?Excess mine water - Middelburg Dam catchment

0

2

4

6

8

10

12

2005 2010 2015 2020 2025 2030 2035

Year

Vol

ume

(mill

ion

m3/

a)

Excess mine water - Witbank Dam catchment

0

5

10

15

20

25

30

35

2005 2010 2015 2020 2025 2030 2035

Year

Volu

me

(mill

ion

m3/

a)

MAIN FINDINGS: SALINITY STATUS

Douglas

Aucampshoop

Kalkfontein

RustfonteinTierpoort

Krugerdrif

BLOEMFONTEIN

LOWERVAAL

Tweerivier

Kimberley

Douglas Incremental

Lower Harts

Vaalharts

De Hoop

Taung

Wentzel

Barberspan

Spitskop

Erfenis

Allemanskraal

Sand Vet Incemental

MIDDLEVAAL Klipbank

Bloemhof Incremental

Rietspruit

Johan Neser

Klipdrif

Boskop

Klerkskraal

Rietfontein

Koppies

Kromdraai

Parys

VAALBARRAGE

SuikerbosKliprivier

BarrageIncremental

JOHANNESBURG

Delangesdrift

Vaal Dam Incremental

UPPERVAAL

Sterkfontein

Frankfort

UPPERVAAL

Grootdraai

Standerton

Christiana

VAAL

Mak

wes

ie

Klerksdorp

Bloemhof

VaalhartsWeir

VS1

VS2

VS4

VS5

VS6

VS7VS8

VS16

VS17

VS18VS19

VS20

VS1 - At origin at N17 bridgeLEGEND : LEVEL 1 POINTS

VS2 - At Camden (R29/N2 Bridge)VS3 - At N11 Bridge to AmersfortVS4 - At R35 Bloukop BridgeVS5 - Grootdraai DamVS6 - At Villiers Flood SectionVS7 - Vaal Dam on Vaal River (downstream weir)VS8 - Vaal Barrage - near Barrage wallVS9 - Vaal River at low water bridge

VS10 - VermaasdriftVS11 - MidvaalVS12 - Orkney BridgeVS13 - Regina weirVS14 - BalkfonteinVS15 - Bloemhof Dam (upstream)VS16 - Bloemhof Dam (downstream weir)VS17 - Vaalharts Barrage (downstream weVS18 - Vaal River at De HoopVS19 - SchmidtsdriftVS20 - Douglas Barrage - near barrage wal

VS3VS9

VS11

VS12

VS13

VS14VS15

VS10

0

100

200

300

400

500

600

700

800

900

VS20 VS19 VS18 VS17 VS16 VS14 VS13 VS12 VS11 VS10 VS9 VS8 VS7 VS6 VS5 VS4 VS3 VS2 VS1Monitoring Point on Vaal River(Level 1)

TDS

(mg/

l)Acceptable RWQO

Vaal Dam

GrootdraaiDam

BloemhofDam

Vaal Barrage

DouglasBarrage

And the cost implications?

Escarpment Coal Mining Water Cost

Thickness of seam 3 meters

Tons coal/ha 39,000 Tons

Water / ha affected 2,000 cub m /ha/

annum

Water treated 200,000 cub m/ha/ 100

years

Cost of treatment ( Today) R 2,000,000 @R10/cub m

Coal in SA

Tons of coal mined annually 280,000,000 tons of coal

Water affected in 100 years 1,435,897,436 cub m

Cost of treating water every year R 14,358,974,359

ESKOM

Eskom Coal requirement 150,000,000 tons

Water affected every year 769,230,769 Cub m

Cost of treatment R 7,692,307,692

And Combustion Costs?The economic process is dependent on natural resources, which in turn adhere to the fundamental laws of the natural sciences. The law of mass balance implies that:… the mass of matter that is used as an input into an activity, must be equivalent to the mass of matter that results in the output activity. Any changes in mass that occur during the transformation process, resulting in an output mass lower than an input mass are attributableto waste (Kahn 2000).

(Cost avg of 2 scenarios)

2000 2010

Coal Purchased 92,300,000 150,000,000

CH4Tons 2,267,733 3,685,373 R/ton R 546 R 546Total R 1,238,182,218 R 2,012,213,789

CO2 Tons 161,200,000 261,971,830.99 R/ton R 26 R 26Total R 4,192,812,000 R 6,813,887,324

Total R 5,430,994,218 R 8,826,101,113

Cost of combustion

Costs not internalised

Eskom Total

Water R 7,692,307,692

CH4 and CO2 R 8,826,101,113

R 16,518,408,805

Eskom primary energy cost (2008) R 18,314,000,000

Other costs• Social costs• High potential soils• AGRIBEE

Can we afford to not internalise cost?• If internalisation happens then the

whole Climate Debate will change• It will become an economical debate

vs a green debate– For 100 years the water cost could be

externalised and pollution could be diluted. Not anymore.

– We have reached the same point with air pollution.

• The Climate Change Debate has to be debated on equal footing – Nuclear vs Coal vs renewable based on total cost.

• The cost of the externalities will have to be paid in the future – at what cost?– Housing– Education– Social grants– Political stability– Welfare and healthcare.

THE EXTERNALITY COST OF COAL COMBUSTION IN SOUTH AFRICA ( Paper by Blignaut and King )

• From this study it has been established that the social cost of combusting coal,…… is substantial, with the social cost on average more than double the market price for coal.

“Those who fail to learn the lessons of history will be forced to repeat them”

George Santayana