37
Master Thesis Defense Presented by Eng. Ebtsam Arafa Abdelhamid Under Supervision of: Prof. Abdelhalim Zekry Dr. Heba A. Shawkey CMOS LTE Transmitter Front - End 1

CMOS LTE Transmitter Front-End

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CMOS LTE Transmitter Front-End

Master Thesis Defense

Presented by

Eng. Ebtsam Arafa Abdelhamid

Under Supervision of:

Prof. Abdelhalim Zekry

Dr. Heba A. Shawkey

CMOS LTE Transmitter Front-End

1

Page 2: CMOS LTE Transmitter Front-End

Outline

• Introduction.

• CMOS LTE Transmitter Front-End.

• LC voltage controlled oscillator.

• Up-conversion mixer.

• Power Amplifier with pre-distortion linearizer .

• Transmitter Performance.

• Conclusions and future work.

2

Page 3: CMOS LTE Transmitter Front-End

Introduction

Long Term Evolution (LTE) is commonly identified as the

fourth generation 4G/5G communication systems.

LTE operates over the frequency band from 400MHz to 4GHz.

It mainly targets high user data rates up to 75 Mbit/s for uplink

and up to 300Mbit/s for downlink.

Bandwidth from 1.4MHz to 20MHz for each channel.

3

Page 4: CMOS LTE Transmitter Front-End

CMOS LTE Transmitter Front-End

LTE Transmitter operates at frequency range 1710-1785GHz

(Uplink) and 1805-1880GHz (Downlink).

LC VCO Mixer

RFout

IF+

LO+

LO-

IF-

PARF+

RF-

4

F_LO=1.7GHz

F_IF=100MHz

F_RF=1.8GHz

Page 5: CMOS LTE Transmitter Front-End

Outline

• Introduction.

• CMOS LTE Transmitter Front-End.

• LC voltage controlled oscillator.

• Up-conversion mixer.

• Power Amplifier with pre-distortion linearizer.

• Transmitter Performance.

• Conclusions and future work.

5

Page 6: CMOS LTE Transmitter Front-End

LC Voltage Controlled Oscillator

Design Parameters

The oscillation frequency versus the tuning voltage

Power consumption

Phase noise

6

Page 7: CMOS LTE Transmitter Front-End

LC voltage controlled oscillator

LC VCO is designed at 1.7GHz and covers a wide range of

frequency from 1.6GHz to 1.9GHz.

7

Page 8: CMOS LTE Transmitter Front-End

Oscillation Frequency

8

Page 9: CMOS LTE Transmitter Front-End

Phase Noise

-121.1dBc/Hz at 1MHz offset frequency from 1.7GHz carrier.

The VCO dissipates 19mW from a 1.2V supply.

9

Page 10: CMOS LTE Transmitter Front-End

Outline

• Introduction

• CMOS LTE Transmitter Front-End

• LC voltage controlled oscillator.

• Up-conversion mixer.

• Power Amplifier with pre-distortion linearizer.

• Transmitter Performance.

• Conclusions and future work.

10

Page 11: CMOS LTE Transmitter Front-End

Up-conversion Mixer

Design Parameters

Conversion Gain

Output Power

Power consumption

Noise Figure

11

Page 12: CMOS LTE Transmitter Front-End

Up-conversion mixer

12

Page 13: CMOS LTE Transmitter Front-End

Conversion Gain

The proposed mixer provide conversion gain of 10dB.

13

Page 14: CMOS LTE Transmitter Front-End

Output power

The output power (P_RF) of the proposed mixer.

An output P1dB gain compression point of 3.1dBm.

Input P1dB gain compression point of -6dBm.

14

Page 15: CMOS LTE Transmitter Front-End

Noise Figure

This mixer provides DSB NF of 3dB at P_LO is 5dBm.

Supply voltage of 3.3V, and power consumption of 47mW.

15

Page 16: CMOS LTE Transmitter Front-End

Output return loss

The output return loss of Up converted mixer, S22 is -12dB at

1.8GHz.

16

Page 17: CMOS LTE Transmitter Front-End

Outline

• Introduction

• CMOS LTE Transmitter Front-End

• LC voltage controlled oscillator.

• Up-conversion mixer.

• Power Amplifier with pre-distortion linearizer.

• Transmitter Performance.

• Conclusions and future work.

17

Page 18: CMOS LTE Transmitter Front-End

Power Amplifier

Design Parameters

Output Power

Gain

Power added efficiency (PAE)

Power consumption

Linearity

18

Page 19: CMOS LTE Transmitter Front-End

Power Amplifier Differential-to-single ended converter as the first stage, a driver

stage and a power stage.

Differential-to-single ended converter

DriverStage

PowerStage

Linearizer

19

Page 20: CMOS LTE Transmitter Front-End

Power Amplifier

20

Page 21: CMOS LTE Transmitter Front-End

Output Power

The proposed power amplifier achieves saturated output power

of 24.6dBm.

After linearization, the OP1dBm is improved from 21.3dBm to

22.7dBm at 1.8GHz.

21

Page 22: CMOS LTE Transmitter Front-End

Power added efficiency

The maximum PAE is 25.5% at input power 0dBm.

22

Page 23: CMOS LTE Transmitter Front-End

Gain

The proposed PA achieves a maximum gain of 25.5 dB.

An output P 1dBm gain compression point of 22.7 dBm.

The power consumption is 135 mw.

23

Page 24: CMOS LTE Transmitter Front-End

S-parameters

The input return loss (S11) is less than -18 dB and the output

return loss (S22) is less than -13 dB.

24

Page 25: CMOS LTE Transmitter Front-End

Outline

• Introduction.

• CMOS LTE Transmitter Front-End.

• LC voltage controlled oscillator.

• Up-conversion mixer.

• Power Amplifier with pre-distortion linearizer.

• Transmitter Performance.

• Conclusions and future work.

25

Page 26: CMOS LTE Transmitter Front-End

LTE Transmitter

Design Parameters

Output Power

Gain

Power consumption

Linearity

26

Page 27: CMOS LTE Transmitter Front-End

LTE Transmitter RF Front-End

The proposed CMOS LTE Transmitter Front-End is designed using UMC

130nm CMOS technology at 1.8GHz.

27

Page 28: CMOS LTE Transmitter Front-End

Output power

A saturated output power of 23.1dBm has been achieved.

28

Page 29: CMOS LTE Transmitter Front-End

Gain

A maximum power gain of 29.6 dB.

An output P1dB gain compression point of 21.5dBm

Input P1dB gain compression point of -6.2dBm.

The power consumption is 172.5mW.

29

Page 30: CMOS LTE Transmitter Front-End

Layout view of the implemented transmitter.

The layout of the complete transmitter circuit, with area of

0.775mm×0.7mm.

30

Page 31: CMOS LTE Transmitter Front-End

The transmitter performance summary

Design This work

CMOS Technology (nm) 130

Frequency (GHz) 1.8

Gain (dB) 29.6

Output Power (dBm) 23.1

Output power at P1dB (dBm) 21.5

Input power at P1dB (dBm) -6.2

Voltage Supply (V) 3.3

Power dissipation (mW) 172.5

Area (mm2) 0.775*0.7

31

Page 32: CMOS LTE Transmitter Front-End

Mixer performance summary and comparison

Parameter [20] [21] [22] This Work

CMOS Technology (nm) 180 180 130 130

RF Frequency (GHz) 1.8 1.8 1.8 - 2.6 1.8

IF Frequency (MHz) 100 100 N/A 100

Conversion gain (dB) 5 8.1 1.1< 10

Supply voltage (V) 1.2 1.2 1.2 3.3

Power consumption (mW) 9.45 14.28 12 47

32

Page 33: CMOS LTE Transmitter Front-End

PA Performance Summary and Comparison

Parameter [26] [27] [28]This

work

CMOS Technology (nm) 180 180 180 130

Frequency (GHz) 2.6 1.8 1.8 2.6 1.8

Output power (dBm) N/A N/A 21.6 18.2 24.6

Power gain (dB) 9.6 28.3 24.6 19.2 25.5

PAE (%) 39.5 32 35.3 31.2 25.5

Output power at P1dB (dBm) 19.5 23.2 N/A N/A 22.7

Supply voltage (V) 2.8 3.3 3.3 3.3

Power consumption (mW) 26.5 N/A 378 135

33

Page 34: CMOS LTE Transmitter Front-End

Outline

• Objective and the proposed transmitter block

diagram.

• LC voltage controlled oscillator.

• Up-conversion mixer.

• Power Amplifier.

• Transmitter Performance.

• Conclusions and future work.

34

Page 35: CMOS LTE Transmitter Front-End

Conclusion

This work presents LTE front-end transmitter for operating

frequency from 1.8 GHz has been designed using 0.13μm

CMOS technology.

The proposed transmitter realizes a saturated output power of

23.1dBm, 29.6 dB of power gain, output 1-dB compression

point of 21.5dBm, and the power consumption is 172.5mW.

35

Page 36: CMOS LTE Transmitter Front-End

Future Work

Implement the RF receiver for LTE which include low noise

amplifier (LNA), demodulator, and voltage controlled-

oscillator (VCO).

Implement a complete LTE RF transceiver including RF

transmitter and RF receiver.

Fabrication and measurement the LTE power amplifier, mixer,

and VCO.

36

Page 37: CMOS LTE Transmitter Front-End

Thank you

37