8
Short communication Clypeorbis? ultima n. sp. from the uppermost Maastrichtian of Austria: The youngest representative of the Clypeorbinae Sigal, 1952 (calcareous benthic foraminifera)? Felix Schlagintweit a, * , Martin Studeny b , Diethard Sanders b a Lerchenauerstr. 167, D-80935 München, Germany b Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria article info Article history: Received 30 April 2016 Received in revised form 7 June 2016 Accepted in revised form 11 June 2016 Available online 16 June 2016 Keywords: Benthic foraminifera Systematics Kambühel Formation Maastrichtian K/Pg boundary abstract A second possible species of the genus Clypeorbis Douvill e [type-species C. mammillata (Schlumberger)] is described from the topmost Maastrichtian of the Kambühel Formation of the Northern Calcareous Alps, Austria. This comparatively small-sized, asymmetric calcareous benthic foraminifer is characterized by its rather large biloculine embryonic apparatus and a reduced ventral umbo. It occurs in a mixed calcilithicebioclastic littoral facies together with orbitoids, rotaliids, Siderolites, and other mainly calcareous benthic foraminifera as well as red algae. The stratigraphy is constrained by means of asso- ciated planktonic foraminifera, indicating the latest Maastrichtian age (CF-3 hariaensis zone). Clypeorbis? ultima n. sp. might represent the youngest representative of the Clypeorbinae Sigal that became extinct at the CretaceousePaleogene boundary. © 2016 Elsevier Ltd. All rights reserved. 1. Introduction In successions of shallow neritic carbonate rocks, the biotic turnover across the CretaceousePaleogene (KePg) transition still is comparatively poorly documented (e.g., Keller et al., 1995; Koutsoukos, 2005; Molina, 2015). In the western Tethyan domain, shallow-water KePg transitions are known from the Apulian Plat- form (Vecsei et al., 1998), the Adriatic Platform (Drobne et al., 1996; Caffau et al., 1998; Korbar et al., 2015), and from locations in Turkey (Sirel, 1998, 2015; Inan and Inan, 2014). The carbonate platform sections comprise shelfal to reefal environments and/or internal platform settings with typical benthic foraminifera (e.g., Cuneolina, Rhapydionina). In the Turkish Pontides, in contrast, a mixed siliciclastic-carbonate shelf to delta succession shows an associa- tion of red algae, orbitoids (Orbitoides, Hellenocyclina, Omphalocy- clus), Siderolites, Sirtina, and other calcareous benthic foraminifera (e.g., see also Robles-Salcedo et al., 2013, Maastrichtian of Spain and France). In the Northern Calcareous Alps of Austria, at a location termed Kambühel, the KePg transition is located within a package of shallow neritic limestones (Fig. 1)(Plochinger, 1967; Tragelehn, 1996). The uppermost Maastrichtian part of the succession is rich in orbitoidal foraminifera (Orbitoides, Lepidorbitoides) and Sidero- lites calcitrapoides, and is sharply overlain along a hardground by lower Danian limestones of similar facies, but different foraminif- eral fauna. The Paleocene part of the Kambühel Formation (Piller et al., 2004) is the type locality of several taxa of dasycladalean algae (Tragelehn, 1996), brachiopods (Dulai et al., 2008: Basilio- costella kambuehelensis), and a decapod crustacean (Verhoff et al., 2008: Titanocarcinus kambuehelensis). The new clypeorbinid Cly- peorbis? ultima n. sp. described hereunder is from the uppermost Maastrichtian part of the succession. 2. Geological setting and chronostratigraphy The Kambühel Formation ranges from late Maastrichtian pro parte to Thanetian pro parte in age (Piller et al., 2004; Schlagintweit et al., 2015). The formation is part of a synorogenic, Turonian to Ypresian mixed siliciclastic-carbonate succession (Gosau Group) accumulated on the partly emergent orogenic wedge of the Eastern * Corresponding author. E-mail address: [email protected] (F. Schlagintweit). Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes http://dx.doi.org/10.1016/j.cretres.2016.06.006 0195-6671/© 2016 Elsevier Ltd. All rights reserved. Cretaceous Research 66 (2016) 163e170

Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

lable at ScienceDirect

Cretaceous Research 66 (2016) 163e170

Contents lists avai

Cretaceous Research

journal homepage: www.elsevier .com/locate/CretRes

Short communication

Clypeorbis? ultima n. sp. from the uppermost Maastrichtian of Austria:The youngest representative of the Clypeorbinae Sigal, 1952(calcareous benthic foraminifera)?

Felix Schlagintweit a, *, Martin Studeny b, Diethard Sanders b

a Lerchenauerstr. 167, D-80935 München, Germanyb Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria

a r t i c l e i n f o

Article history:Received 30 April 2016Received in revised form7 June 2016Accepted in revised form 11 June 2016Available online 16 June 2016

Keywords:Benthic foraminiferaSystematicsKambühel FormationMaastrichtianK/Pg boundary

* Corresponding author.E-mail address: [email protected] (F. Sch

http://dx.doi.org/10.1016/j.cretres.2016.06.0060195-6671/© 2016 Elsevier Ltd. All rights reserved.

a b s t r a c t

A second possible species of the genus Clypeorbis Douvill�e [type-species C. mammillata (Schlumberger)]is described from the topmost Maastrichtian of the Kambühel Formation of the Northern CalcareousAlps, Austria. This comparatively small-sized, asymmetric calcareous benthic foraminifer is characterizedby its rather large biloculine embryonic apparatus and a reduced ventral umbo. It occurs in a mixedcalcilithicebioclastic littoral facies together with orbitoids, rotaliids, Siderolites, and other mainlycalcareous benthic foraminifera as well as red algae. The stratigraphy is constrained by means of asso-ciated planktonic foraminifera, indicating the latest Maastrichtian age (CF-3 hariaensis zone). Clypeorbis?ultima n. sp. might represent the youngest representative of the Clypeorbinae Sigal that became extinctat the CretaceousePaleogene boundary.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In successions of shallow neritic carbonate rocks, the bioticturnover across the CretaceousePaleogene (KePg) transition still iscomparatively poorly documented (e.g., Keller et al., 1995;Koutsoukos, 2005; Molina, 2015). In the western Tethyan domain,shallow-water KePg transitions are known from the Apulian Plat-form (Vecsei et al., 1998), the Adriatic Platform (Drobne et al., 1996;Caffau et al., 1998; Korbar et al., 2015), and from locations in Turkey(Sirel, 1998, 2015; Inan and Inan, 2014). The carbonate platformsections comprise shelfal to reefal environments and/or internalplatform settings with typical benthic foraminifera (e.g., Cuneolina,Rhapydionina). In the Turkish Pontides, in contrast, a mixedsiliciclastic-carbonate shelf to delta succession shows an associa-tion of red algae, orbitoids (Orbitoides, Hellenocyclina, Omphalocy-clus), Siderolites, Sirtina, and other calcareous benthic foraminifera(e.g., see also Robles-Salcedo et al., 2013, Maastrichtian of Spain andFrance).

lagintweit).

In the Northern Calcareous Alps of Austria, at a location termedKambühel, the KePg transition is located within a package ofshallow neritic limestones (Fig. 1) (Pl€ochinger, 1967; Tragelehn,1996). The uppermost Maastrichtian part of the succession is richin orbitoidal foraminifera (Orbitoides, Lepidorbitoides) and Sidero-lites calcitrapoides, and is sharply overlain along a hardground bylower Danian limestones of similar facies, but different foraminif-eral fauna. The Paleocene part of the Kambühel Formation (Pilleret al., 2004) is the type locality of several taxa of dasycladaleanalgae (Tragelehn, 1996), brachiopods (Dulai et al., 2008: Basilio-costella kambuehelensis), and a decapod crustacean (Verhoff et al.,2008: Titanocarcinus kambuehelensis). The new clypeorbinid Cly-peorbis? ultima n. sp. described hereunder is from the uppermostMaastrichtian part of the succession.

2. Geological setting and chronostratigraphy

The Kambühel Formation ranges from late Maastrichtian proparte to Thanetian pro parte in age (Piller et al., 2004; Schlagintweitet al., 2015). The formation is part of a synorogenic, Turonian toYpresian mixed siliciclastic-carbonate succession (Gosau Group)accumulated on the partly emergent orogenic wedge of the Eastern

Page 2: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

Fig. 1. A, Outline of Austria (dashed-dotted line), and location of Kambühel hill in the Northern Calcareous Alps (red dotmarkedwith arrow). B, LIDAR hillshade of Kambühel. Red dotmarks the location of the succession with Clypeorbis? ultima n. sp. (47�44045,43600N/16�01046,50000E). Yellow area labels the outcrop of an upper Maastrichtian to lowest Daniansuccession of limestones containing the KePg boundary. C, Scheme of KePg boundary hardground, with reconstructed small-scale relief and schematic position ofmain sample (whitequadrangle) used to describe Clypeorbis? ultima n. sp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170164

Alps (Wagreich and Faupl, 1994). The Gosau Group is preserved innumerous erosional remnants scattered mainly along the NorthernCalcareous Alps (NCA, Fig. 1A) (cf. Wagreich and Faupl, 1994). In theGosau Group, because of copious terrigenous input from emergentareas of the orogen, successions of shallow neritic carbonate rockswere confined to settings sheltered from clastic input (Sanders,1998); carbonate deposystems included: (a) mixed lithic/bio-clastic shore-zone to inner shelf systems, and (b) comparativelysmall inner-shelf systems with bioconstructions (corals, skeletalsponges, rudists, red algae), bioclastic sand bodies, and more pro-tected backreef areas with typical biota (e.g., calcareous greenalgae, milioline foraminifera) (Sanders and H€ofling, 2000).

KePg transitions known so far from the Gosau Group are indeep-water successions or, where located in neritic sections,comprise significant hiatuses (Wagreich and Faupl, 1994).Pl€ochinger (1967) first identified the Paleocene shallow-waterlimestones, yet nearly all of these are present as pebbles to olisto-liths in event deposits (debrites to finer-grained turbidite beds) ofdeep-water successions (Lein, 1982). The presence of these clasts inseveral Gosau erosional remnants suggests a former Paleocenecarbonate platform, or platforms, along the internal sector of theEastern Alpine edifice (Tollmann, 1976; Tragelehn, 1996). TheKambühel location seems to be the only shallow neritic successionof the Alps with a KePg transition stratigraphically completeenough to warrant closer investigation. There is no evidence thatthe Kambühel KePg boundary is part of an olistolith: a gentleeastward dip of a few degrees of an overall intact, unconformity-

bearing Lower Triassic/Maastrichtian to Thanetian succession pro-vides no evidence for marked syndepositional tilting or internaldeformation, as might be expected for an olistolith. In any case,even if it were an olistolith, this does not affect the KePg boundarywithin.

Kambühel is a flat-topped hill approximately 500 � 500 m inplan-view area (Fig.1B). The hill's pedestal is a truncated successionof Lower Triassic siltstones to claystones (Werfen Formation) thathere pertain to the structurally highest nappe stack of the NCA(Juvavic nappes). Most of Kambühel, however, is part of the GosauGroup that onlaps and overlies the truncated rocks of the WerfenFormation. The lower part of the Gosau here is a gently east-dipping succession of medium- to fine-grained, bioturbated are-nites of siliciclastic/bioclastic/carbonate-lithic composition (Piest-ing Formation; PF). These arenites contain a late Maastrichtianforaminiferal assemblage (e.g., Orbitoides, Lepidorbitoides, Sidero-lites calcitrapoides), as well as fragments of rudists, colonial corals,branched bryozoans, red algae, brachiopods, and echinoids. ThePiesting Formation, in turn, is followed up-section by a package ofsimilarly gently E-dipping upper Maastrichtian to Paleoceneshallow-water limestones (Kambühel Limestone; KL). Unfortu-nately, the boundary between the PF and the KL is nowhereexposed.

Over most of its vertical extent, the KL consists of faintly thick-bedded to medium-bedded, dark-red to grey weathering, litho-bioclastic grainstones to packstones. The KePg boundary wasspotted in a section along the southeastern flank of Kambühel; the

Page 3: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

Fig. 2. Microfacies of the topmost Maastrichtian strata containing Clypeorbis? ultima n. sp. from the type-locality Kambühel hill, and aspect of the CretaceousePaleogene (KePg)boundary hardground (¼ white arrows in AeC). A, Upper Maastrichtian wackestone (see Fig. 3 for biochronostratigraphy) with larger benthic foraminifera (e.g., Siderolites ¼ S), andriddled with borings (centre of photo). The KePg boundary is overlain by lowest Danian packstone with sandstone extraclasts (presumably of Lower Triassic Werfen beds). Thin-section 2015/9. BeC, Lower Danian grainstone to rudstone with red algae, bryozoans, and sandstone extraclasts, sharply overlying uppermost Maastrichtian wackestones withClypeorbis? ultima n. sp. (white rectangles in B). The KePg boundary is an irregular surface with thin remains of a ferruginized crust. Thin-sections 2015/25 and 2015/26. D, Detail offerruginized crusts at KePg boundary. Note mixture of upper Maastrichtian larger benthic foraminifera (orbitoidids, Siderolites) and planktonic foraminifera [whiterectangle ¼ Heterohelix globulosa (Ehrenberg); and two arrows]. Thin-section 2015/27.

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170 165

boundary is a hardground with a highly differentiated small-scalerelief, and riddled with macro- and microborings (Figs. 1BeC, 2).The KePg boundary was bracketed by, both, benthic and plankticforaminiferal assemblages (Schlagintweit et al., 2015). The bound-ary hardground separates upper Maastrichtian bioturbated pack-stones rich in larger benthic foraminifera e including Clypeorbis?ultima, n. sp. e from overlying lowest Danian grainstones. For thelimestones directly below the boundary, the planktonic foraminif-eral assemblage indicates the upper Maastrichtian p.p. biozone CF3Pseudoguembelina hariaensis (cf. Keller, 2014) (Fig. 3). In the Danianlimestones above, many of the fossil fragments and lithoclasts arestained red, abraded, and are riddled with microborings and/or areencrusted by benthic foraminifera or red algae. The topmost fewmetres of the KL, in turn, consist of floatstones to rudstones andbafflestones with colonial corals and red algae; this topmost part isdated into the Thanetian (Schlagintweit et al., 2015). The sedi-mentological setting of the KL as well as evidence for subaerialexposure and intra-formational unconformity cutting will bedescribed in detail in a separate paper.

3. Material and repository

All illustrated specimens of the new taxon (Figs. 2B pars, 4e5)are from 13 thin sections numbered 2015/5 to 2015/18, anddeposited at the Upper Austrian Federal Museum in the city of Linz.Themicrofacies is documented with three thin-sections (repositorynumbers 2015/25 to 2015/27) shown in Fig. 2.

4. Systematic description

The high-rank classification follows Pawlowski et al. (2013). Forthe low-rank classification see Loeblich and Tappan (1987). Forglossary, report to Hottinger (2006) and Hottinger and Caus (2007).

Phylum Foraminiferida d'Orbigny, 1826Class Tubothalamea Pawlowski et al., 2013Order Rotaliina Delage & H�erouard, 1896Superfamily Orbitoidacea Schwager, 1876Family Lepidorbitoididae Vaughan, 1933

Page 4: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

Su

GeTyp

ClyFig

EtyrepHosecStaParoriTypthiHoTralocsloDiawiventerDeplaememrouabexfol(eqdesidad0.0

Fig. 3. Biostratigraphy of samples with Clypeorbis? ultima n. sp., based on planktonic foraminifera (examples). A, Pseudoguembelina hariaensis Nederbragt, B, Planoglobulina bra-zoensis Martin, C, G, Planoglobulina carseyae (Plummer), F, Contusotruncana contusa (Cushman), D, Globotruncana arca Cushman, E, Globotruncana depeublei (Caron et al., 1984), H,Gansserina gansseri (Bolli). Thin-sections 2015/11 (A), 2915/12 (B), 2015/7 (C), 2015/16 (D), 2015/7 (E) (Li and Keller, 1998).

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170166

bfamily Clypeorbinae Sigal, 1952

nus Clypeorbis Douvill�e, 1915e species: Orbitoides mammillata Schlumberger, 1902

peorbis? ultima n sp.s. 2B pars, 4e5

mology. ultima¼ Latin: last, final; referring to the youngest (last)resentative of the Clypeorbinae.lotype. Axial section, slightly oblique, illustrated in Fig. 4K, thin-tion with the number 2015/7 deposited at the Upper Austriante Museum, Linz.atypes. Sections illustrated in Figs. 4AeJ, 5AeI, with differingentations.e material. About 30 randomly oriented specimens inn-sections.rizon and locality. Upper Maastrichtian Kambühel Formation (seegelehn, 1996). The location with Clypeorbis? ultima n. sp. isated at 47�44045,43600N/16�01046,50000E at the southwesternpe of Kambühel hill (Fig. 1B).gnosis. Small to medium-sized asymmetrical orbitoidiform testth the architectural characteristics of Clypeorbis, thin reducedtral umbo, voluminous protoconch embraced by a larger deu-oconch positioned close to the ventral surface.scription. Test asymmetrical in outline, subconical, andnoconvex, formed bymain chamberlet layer. The megalosphericbryonic apparatus is bilocular: a subspherical protoconchbraced by a larger second chamber (deuteroconch) both sur-nded by individual thin walls. The deuteroconch encompassesout half of the protoconch. The embryonic apparatus is situatedcentrically, close to the ventral test periphery. The embryo islowed by low-trochospiral early chamberlets and a thin medianuatorial) layer of chamberlets situated in a plane below theuteroconch. The equatorial layer is surrounded laterally on bothes by numerous main chamberlets connected by stolons. Inult test part these chamberlets display radial diameters from6 to 0.09mm. Umbilicus reduced, and filled with umbilical piles,

displaying indistinct vertical canals, and starting from the proto-conch. Wall calcareous, perforate.Dimensions (in brackets data for C. mammillata from Hottinger andCaus, 2007).

Test diameter: up to 2.3 mm (up to 8 mm)Test height: up to 0.9 mmDiameter protoconch: 0.11e0.24 mm (0.08e0.1 mm)Diameter deuteroconch: 0.14e0.4 mm (“almost as voluminous asprotoconch”)The relationship of test diameter against test height is shown inFig. 6.

Remarks. The orbitoidiform specimens described here from theupper Maastrichtian of the Northern Calcareous Alps clearlyrepresent a taxon so far undescribed. The differences of the newform to Clypeorbis mammillata are here considered to be species-relevant at least, but might even be related to a new genus. Dueto some recrystallization of the shell and lack of well-preservedequatorial sections, as well as insufficient detail of embryonicchambers and arrangement (see also Comparison below), theintroduction of a new genus is avoided. The described specimenshence are tentatively assigned to the genus Clypeorbis Douvill�e.

The general increase in the size of the embryonic chamber is awell-known phylogenetic trend in orbitoidids, such as Orbitoides,Omphalocyclus, or Lepidorbitoides and these size-differences areused beside others to discriminate different species (e.g., Caus et al.,1996; €Ozcan and Altiner, 1999; €Ozcan, 2007; Albrich et al., 2014); asimilar trend is suggested for Clypeorbis (C. mammillata versus C.?ultima). The morphology of the megalospheric embryonic appa-ratus of Clypeorbis? ultima structurally compares to the semi-nephrolepidine orthophragmine embryo type of Paleogene Dis-cocyclinidae (e.g., €Ozcan et al., 2007, their fig. 2A).

Comparison. The differences of C.? ultima to the type-speciesClypeorbis mammillata can be summarized as follows. (1)

Page 5: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

C.diaarefortog(FiC. mC.?row

C. marrthe38chamorecnobry

Fig. 4. Clypeorbis? ultima n. sp., uppermost Maastrichtian Kambühel Formation of Austria. AeB, Abbreviations: d ¼ deuteroconch, dpil ¼ dorsal pile, mcl ¼ median (main)chamberlet lumen, p ¼ proloculus, spch ¼ spiral chamber lumen, upil ¼ umbilical pile. Thin-sections 2015/5 (A), 2015/6 (BeC), 2015/7 (D, K), 2015/8 (E, H), 2015/9 (F), 2015/10 (G),2015/11 (IeJ).

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170 167

mammillata attained a larger size of the entire test, e.g., ameter more than three times that of C.? ultima. Otherwise, weaware that many of our specimens might belong to juvenile

ms. (2) Conversely, the proto and deuteroconch of C.? ultimaether are more than twice the width than that of C. mammillatag. 7). (3) The embryonic chambers of the type-species ofammillata are located in a more central position of the test. Inultima, these are positioned ventrally, thereby distinctly nar-ing the umbilical piles, which form a protruding umbo in

ammillata (cf. Hottinger and Caus, 2007). In C. mammillata, theangement of the initial embryonic chambers is not fully clear. Inir revision of the Clypeorbinae, Hottinger and Caus (2007, p.9) state that the embryo is “non-spiral or reduced to a few spiralmbers, consisting of protoconch and deuteroconch, with two,re-or-less symmetrically arranged auxiliary chamberlets”. Ourrystallized material and lack of adequate equatorial sections dot allow for the observation of any of these auxiliary (peri-em-onic) chamberlets and their arrangement, but just of the

Page 6: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

prodeser

Fig. 5. Clypeorbis ultima? n. sp., uppermost Maastrichtian Kambühel Formation of Austria. Thin-sections 2015/12 (A), 2015/13 (B), 2015/14 (C), 2015/15 (D), 2015/5 (E, F), 2015/16(G), 2015/17 (H), 2015/18 (I).

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170168

toconch and deuteroconch. Also details on the canal system aresired information that should be obtainable from better pre-ved material.

Fig. 6. Clypeorbis? ultima n. sp., test diameter against test height.

5. Conclusive remarks

The Kambühel Formation at its type-locality in Lower Austria(Eastern Alps) contains one of the rare KePg boundary sections inshallow-water carbonate facies. For several lineages and taxa, theKePg extinction marks the end of the Late Cretaceous GlobalCommunity Maturity (GCM) cycle of larger benthic foraminifera(Turonian to KePg boundary event) (Hottinger, 2001; Hottingerand Caus, 2007, 2009). The described Clypeorbis? ultima in upper-most Maastrichtian rocks is the youngest representative of theClypeorbinae known so far that became extinct only at the end ofthe Late Cretaceous GCM cycle. Larger benthic foraminifera with

Page 7: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

Fig. 7. Drawings from Clypeorbis mammillata (Schlumberger). A, Transverse section showing spiral early ontogenetic chambers (excerpt from fig. 18 of Douvill�e, 1915). B, Centered,axial section showing thick umbilical pile (“button”) (excerpt from fig. 18 of Douvill�e, 1915). C, Centered, axial section (excerpt from figure 8 of Hottinger and Caus, 2007). Ter-minology from Hottinger and Caus (2007): dpil ¼ dorsal pile, mcl ¼ median (main) chamberlet lumen, pr ¼ proloculus, spch spiral chamber lumen, upil ¼ umbilical pile,vpil ¼ ventral pile.

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170 169

megalospheric spherical protoconch embraced by a larger secondchamber (deuteroconch), however, are again represented by theDiscocyclinidae Galloway during the following PaleoceneeEoceneGCM cycle (e.g., €Ozcan et al., 2007).

Acknowledgements

Financial support from grant “Nachwuchsf€orderung der Uni-versit€at Innsbruck”, project W715505 (to Martin Studeny) isgratefully acknowledged. Sincere thanks to Gerta Keller (Universityof Princeton, United States) for the determination of the planktonicforaminifera and helpful comments on stratigraphy. Thanks to twoanonymous reviewers for constructive remarks.

References

Albrich, S., Frijia, G., Parente, M., Caus, E., 2014. The evolution of the earliest rep-resentatives of the genus Orbitoides: implications for Upper Cretaceousbiostratigraphy. Cretaceous Research 51, 22e34.

Caffau, M., Plenicar, M., Pugliese, N., Drobne, K., 1998. Late Maastrichtian rudists andmicrofossils in the Karst Region (NE Italy and Slovenia). Geobios 22, 37e46.

Caus, E., Bernaus, J.M., Gomez-Garrido, A., 1996. Biostratigraphic utility of speciesoft he genus Orbitoides. Journal of Foraminiferal Research 13, 124e136.

Douvill�e, H., 1915. Les Orbitoides: developpement et phase embryonnaire, leur�evolution pendant le Cr�etac�e. Comptes Rendus Acad�emie de France 161,664e669.

Drobne, K., Ogorelec, B., Dolenec, T., Marton, E., Palinka�s, L., 1996. Biota and abiota atthe K/T boundary in the Dolenja Vas sections, Slovenia. In: Drobne, K.,Gori�can, �S., Kotnik, B. (Eds.), International Workshop Postojna 96: The Role ofImpact Processes in the Geological and Biological Evolution of Planet Earth,pp. 163e181.

Dulai, A., Bittner, M.A., Müller, P., 2008. A monospecific assemblage of a newrhynchonellid brachiopod from the Paleocene of Austria. Fossils & Strata 54,193e201.

Hottinger, L., 2001. Learning from the past. In: Levi-Montacalcini, R. (Ed.), Frontiersof Life 4/2, Discovery and Spoliation of the Biosphere, pp. 449e477.

Hottinger, L., 2006. Illustrated glossary of terms used in foraminiferal research.Carnets de G�eologie/Notebooks on Geology e Memoir 2006/02 126.

Hottinger, L., Caus, E., 2007. Shell architecture in the Late Cretaceous foraminiferalsubfamily Clypeorbinae Sigal, 1952. The Journal of Foraminiferal Research 37(4), 372e392.

Hottinger, L., Caus, E., 2009. Meandropsinidae, an ophtalmidid family of LateCretaceous K-strategist foraminifera endemic in the Pyrenean Gulf. NeuesJahrbuch für Geologie und Pal€apntologie Abhandlungen 253, 249e269.

Inan, N., Inan, S., 2014. Stratigraphic ranges of the benthic foraminifera andmicrofacies of the upper Maastrichtian-Paleocene shallow marine carbonatesuccessions in the Eastern Pontides (NE Turkey). Yerbilimleri 35 (1), 79e86.

Keller, G., 2014. Deccan volcanism, the Chicxulub impact, and the end-Cretaceousmass extinction: coincidence? Cause and effect? The Geological Society ofAmerica, Special Paper 205, 29e55.

Keller, G., Li, L., MacLeod, N., 1995. The Cretaceous/Tertiary boundary stratotypesection at El Kef, Tunisia: how catastrophic was the mass extinction? Palae-ogeography, Palaeoclimatology, Palaeoecology 119, 221e254.

Korbar, T., Montanari, A., Fu�cek, V.P., Fu�cek, L., Coccioni, R., McDonald, I., Claeys, P.,Schult, T., Koeberl, C., 2015. Potential Cretaceous-Paleogene boundary tsunamideposit in the intra-Tethyan Adriatic carbonate platform section of Hvar(Croatia). Geological Society of America Bulletin 127 (11), 1666e1680.

Koutsoukos, E.A.M., 2005. The KeT boundary. In: Koutsoukos, E.A.M. (Ed.), AppliedStratigraphy. Springer, pp. 147e161.

Lein, R., 1982. Vorl€aufige Mitteilung über ein Vorkommen von flyschoider Gosaumit Komponenten paleoz€aner Riffkalke in den Mürztaler Alpen. Mitteilungender Gesellschaft der Geologie e und Bergbaustudenten €Osterreichs 28,121e132.

Li, L., Keller, G., 1998. Maastrichtian climate, productivity and faunal turnovers inplanktic foraminifera in South Atlantic DSDP Sites 525A and 21. MarineMicropaleontology 33, 55e86.

Loeblich Jr., A.R., Tappan, H., 1987. Foraminiferal Genera and Their Classification.Van Nostrand Reinhold, New York, 2 vol., 970 pp., 847 pls.

Molina, E., 2015. Evidence and causes of the main extinction events in the Paleo-gene based on extinction and survival patterns of foraminifera. Earth-ScienceReviews 140, 166e181.

€Ozcan, E., 2007. Morphometric analysis of the genus Omphalocyclus from the LateCretaceous of Turkey: new data on its stratigraphic distribution in Mediterra-nean Tethys and description of two new taxa. Cretaceous Research 28, 621e641.

Page 8: Clypeorbis? ultima n. sp. from the uppermost Maastrichtian ... · In successions of shallow neritic carbonate rocks, the biotic turnoveracross the CretaceousePaleogene (KePg) transition

F. Schlagintweit et al. / Cretaceous Research 66 (2016) 163e170170

€Ozcan, E., Altiner, D., 1999. The genus Lepidorbitoides: evolution and stratigraphicsignificance in some Anatolian basins (Turkey). Revue de Micropal�eontologie 42(2), 111e131.

€Ozcan, E., Less, G., B�aldi-Beke, M., Koll�anyi, K., Kert�esz, B., 2007. Biometric analysis ofmiddle and upper Eocene Discocyclinidae and Orbitoclypeidae (Foraminifera)from Turkey and updated orthophragmine zonation in the western Tethys.Micropaleontology 52/6, 485e520.

Pawlowski, J., Holzmann, M., Tyszka, J., 2013. New supraordinal classification ofForaminifera: molecules meet morphology. Marine Micropaleontology 100,1e10.

Piller, W.E., Egger, H., Gross, M., Harzhauser, M., Hubman, B., Husen Van, D.,Krenmayr, H.-G., Krystyn, L., Lein, R., Mandl, G., R€ogl, F., Roetzel, R., Rupp, Ch.,Schnabel, W., Sch€onlaub, H.P., Summesberger, M., Wagreich, M., 2004. Diestratigraphische Tabelle von €Osterreich (Sediment€are Schichtfolgen). Berichtedes Institutes für Erdwissenschaften der K.-F.-Universit€at Graz 9, 329e330.

Pl€ochinger, B., 1967. Erl€auterungen zur Geologischen Karte des Hohe-Wand-Gebietes (Nieder€osterreich) 1:25.000, 142 pp. (Geologische BundesanstaltWien).

Robles-Salcedo, R., Rivas, G., Vicedo, V., Caus, E., 2013. Paleoenvironmental distri-bution of larger foraminifera in Upper Cretaceous siliciclastic-carbonate de-posits (Ar�en Sandstone Formation, south Pyrenees, northeastern Spain). Palaios28, 637e648.

Sanders, D., 1998. Tectonically controlled Late Cretaceous terrestrial to neriticdeposition, Gosau Group, Northern Calcareous Alps (Tyrol, Austria). Facies 39,139e178.

Sanders, D., H€ofling, R., 2000. Carbonate deposition in mixed siliciclastic-carbonateenvironments on top of an orogenic wedge (Late Cretaceous, Northern Calcar-eous Alps, Austria). Sedimentary Geology 137, 127e146.

Schlagintweit, F., Studeny, M., Sanders, D., 2015. Shallow-water benthic foraminiferaacross the CretaceousePaleogene boundary (Kambühel Limestone, Lower

Austria): preliminary results. In: Bucur, I.I., Lazar, I., Sasaran, E. (Eds.), TenthRomanian Symposium on Paleontology. Cluj Napoca, 16e17 October 2015, Ab-stracts and Field Trip Guide. Cluj University Press, pp. 99e100.

Schlumberger, C., 1902. Deuxi�eme note sur les Orbitoides. Bulletin de la Soci�et�eG�eologique de France 4 (2), 255e261.

Sirel, E., 1998. Foraminiferal description and biostratigraphy of the Paleocene-lowerEocene shallow-water limestones and discussion on the Cretaceous-Tertiaryboundary in Turkey. General Directorate of the mineral research and explora-tion, Ankara. Monograph Series, 2 1e117.

Sirel, E., 2015. Reference sections and key localities of the Paleogene stage anddiscussion C-T, P-E and E-O Boundaries by the very shallow-shallow waterforaminifera in Turkey. Ankara University Yayinlari 461 1e171.

Tollmann, A., 1976. Analyse des klassischen nordalpinen Mesozoikums, 580 pp..Franz Deuticke, Wien.

Tragelehn, H., 1996. Maastricht und Pal€aoz€an am Südrand der N€ordlichen Kalkalpen(Nieder€osterreich, Steiermark) e Fazies, Stratigraphie Pal€aogeographie undFossilführung des “Kambühelkalkes” und assoziierter Sedimente. PhD ThesisUniversity Erlangen, 216 pp..

Vecsei, A., Sanders, D., Bernoulli, D., Eberli, G.P., Pignatti, J.S., 1998. Cretaceous toMiocene sequence stratigraphy and evolution of the Maiella carbonate platformmargin, Italy. In: Masse, J.P., Jacquin, P., De Graciansky, P., Vail, P.R. (Eds.),Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society ofEconomic Paleontologists and Mineralogists, Special Publication, 60, pp. 53e74.

Verhoff, J.R., Müller, P.M., Feldmann, P.R., Schweitzer, C.E., 2008. A new species ofTumidocarcinidae (Decapoda, Carpilioidea) from the Kambühel Formation(Paleocene) of Austria. AnnalenNaturhistorischesMuseumWien111A, 225e232.

Wagreich, M., Faupl, P., 1994. Palaeogeography and geodynamic evolution of theGosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps,Austria). Palaeogeography, Palaeoclimatology, Palaeoecology 110, 235e254.