4
Notes and references document for ferrous fumarate www.medium.com/@learngirl 1 Ferrous fumarate 1. Clinical trials referenced for bioavailability and side effects (Zariwala 2013) study outlined in gluconate section In vitro caco2 method. RVB of 78% sulfate (Brise and Hallberg 1962) study outlined in gluconate section They calculated fumarate to have a RBV of 101% when compared to sulfate with both in solution. Comparison wasn’t made in tablet. (Harrington et al. 2011) A study of 60 nonanemic woman, children and infants (20 of each), comparing ferrous fumarate and ferrous sulfate. Each given a small dose (4mg adults and 2.5mg children) of either sulfate of fumarate in a sweetened maizemilk drink. The iron was labeled and measured as a percent incorporation into Hb after 14 days (Hemoglobin incorporation method) Results: My summary Ferrous fumarate was shown to have a bioavailability similar to sulfate in this study. They say that that this higher than expected result could be due to fumarate not up regulating as well as sulfate for people with low Iron. Most other studies where fumarate had a lower RBV has been in studies with anemic subjects. It kind of fits the data, as in this study although none were anemic, 39% of the women had iron deficiency, 6% of infants and 5% of children, and the women had a lower RBV compared to the children. Another possible reason they give for the higher RBV, is maybe sulfate is more sensitive to food inhibitors and enhancers than fumarate.

Clinical’trials’referenced’forbioavailabilityand’side’effects’tincdesign.com.au/iron/3_fumarate.pdfClinical’trials’referenced’forbioavailabilityand’side’effects’

Embed Size (px)

Citation preview

 Notes  and  references  document  for  ferrous  fumarate  www.medium.com/@learngirl  

1  

Ferrous  fumarate  1. Clinical  trials  referenced  for  bioavailability  and  side  effects  

(Zariwala  2013)  -­‐  study  outlined  in  gluconate  section  In  vitro  caco-­‐2  method.  RVB  of  78%  sulfate    (Brise  and  Hallberg  1962)    -­‐  study  outlined  in  gluconate  section  They  calculated  fumarate  to  have  a  RBV  of  101%  when  compared  to  sulfate  with  both  in  solution.  Comparison  wasn’t  made  in  tablet.    (Harrington  et  al.  2011)  A  study  of  60  non-­‐anemic  woman,  children  and  infants  (20  of  each),  comparing  ferrous  fumarate  and  ferrous  sulfate.  Each  given  a  small  dose  (4mg  adults  and  2.5mg  children)  of  either  sulfate  of  fumarate  in  a  sweetened  maize-­‐milk  drink.  The  iron  was  labeled  and  measured  as  a  percent  incorporation  into  Hb  after  14  days  (Hemoglobin  incorporation  method)  

Results:  

 

My  summary  

Ferrous  fumarate  was  shown  to  have  a  bioavailability  similar  to  sulfate  in  this  study.  They  say  that  that  this  higher  than  expected  result  could  be  due  to  fumarate  not  up  regulating  as  well  as  sulfate  for  people  with  low  Iron.  Most  other  studies  where  fumarate  had  a  lower  RBV  has  been  in  studies  with  anemic  subjects.  It  kind  of  fits  the  data,  as  in  this  study  although  none  were  anemic,  39%  of  the  women  had  iron  deficiency,  6%  of  infants  and  5%  of  children,  and  the  women  had  a  lower  RBV  compared  to  the  children.  Another  possible  reason  they  give  for  the  higher  RBV,  is  maybe  sulfate  is  more  sensitive  to  food  inhibitors  and  enhancers  than  fumarate.  

 Notes  and  references  document  for  ferrous  fumarate  www.medium.com/@learngirl  

2  

 It’s  interesting  seeing  the  difference  in  overall  absorption  between  the  adults  and  the  children.  Again  this  could  be  due  to  the  variance  in  iron  status  between  the  adults  and  children.  

(Fidler  2003)  20  women,  given  either  a  meal  with  either  sulfate  or  fumarate  on  alternate  days.  Meals  contained  5mg  of  either  iron  and  contained  wheat  and  milk.  The  iron  was  labelled  and  measured  as  a  percent  incorporation  into  Hb  after  14  days  (Hemoglobin  incorporation  method).  None  of  the  women  were  anemic  although  some  had  low  iron  stores.  They  were  divided  into  two  studies,  in  one  Na2EDTA  was  added  at  a  molar  ratio  of  1:1  (26.7  mg  Na2EDTA),  and  in  study  2  ascorbic  acid  was  added  at  a  molar  ratio  of  4:1  (63  mg  ascorbic  acid).  

Results  

 

My  summary  

Showed  that  the  adults  absorbed  iron  from  fumarate  as  well  as  from  sulphate.    Na2EDTA  enhances  sulphate  but  not  fumarate.  Ascorbic  acid  significantly  enhances  fumarate.  The  good  results  for  fumarate  were  probably  assisted  by  the  fairly  small  dose,  so  the  gastric  juices  were  able  to  dissolve  the  fumarate.  Also  by  the  fairly  high  ratio  (4:1)of  ascorbic  acid.  

(Hurrell  2002)  -­‐  study  outlined  in  gluconate  Don’t  have  much  details  about  the  study,  but  the  bioavailability  of  fumarate  was  the  same  as  sulfate.  

SIDE  EFFECT  STUDIES:  

(Cancelo-­‐Hidalgo  et  al.  2013)  -­‐  study  outlined  in  gluconate  section  big  dataset  but  no  details  like  dosage,  food  or  if  double  blind.  

Overall  AE's  (adverse  events)  

Ferrous  sulfate  with  mucoproteose  (SR)  -­‐    4.1%  ferrous  sulfate  without  mucuproteose  32.3%  (11.21  relative  to  SR)  ferrous  fumarate  -­‐  43.4%  (19.87  relative  to  SR)  

 Notes  and  references  document  for  ferrous  fumarate  www.medium.com/@learngirl  

3  

My  summary  

Side  effects  were  a  little  more  than  normal  sulfate  and  a  lot  more  than  Slow  Release  sulfate  

(Patil  2013)  -­‐  outlined  in  carbonyl  section  The  bioavailability  part  isn’t  that  useful  for  fumarate  as  it  wasn’t  against  sulfate.  High  nausea  side  effect  though,  at  50%,  3-­‐5  times  higher  than  carbonyl  and  bisglycinate  

(Melamed  et  al.  2007)  -­‐  study  outlined  in  bisglycinate  section  unknown  dose,  take  with  caution  

%  with  any  side  effects  

Ferrous  fumarate  -­‐  56%  Ferrous  sulfate  immediate  release-­‐  53%  Ferrous  sulfate  slow  release  -­‐  43%    

2. Info  and  sources  regarding  inhibitors  and  enhancers  It’s  poorly  water-­‐soluble,  and  gastric  acid  is  necessary  to  dissolve  ferrous  fumarate  before  absorption.  Na2EDTA  to  have  no  effect,  but  ascorbic  at  a  4:1  ratio  increased  absorption  by  around  60%.  

(Fidler  2003)  As  mentioned  above  it  showed  Na2EDTA  to  have  no  effect,  but  ascorbic  at  a  4:1  ratio  increased  absorption  by  around  60%.  Na2EDTA  can  be  a  reducing  agent  when  it  forms  EDTA-­‐iron  complexes.  This  is  probably  why  Na2EDTA  doesn’t  enhance  absorption  of  fumarate  as  by  the  time  the  gastric  acid  has  dissolved  it  and  it’s  ready  for  reduction,  Na2EDTA  has  formed  complexes  with  other  minerals  and  trace  elements.    

(Davidsson  et  al.  2002)  Study  of  33  non  anemic  girls  aged  12-­‐13.  Three  different  studies  with  3  different  meals  testing  fumarate,  ferrous  sulfate,  and  the  enhancing  effect  of  Na2EDTA.  Meals  were  a  south  american  dish  of  tortilla  and  black  bean,  so  high  in  phytate  and  low  in  ascorbic.  

Results  

Again  showed  that  Na2EDTA  doesn’t  enhance  fumarate.  The  meal  inhibitors  affected  both.  Although  the  comparison  against  fumarate  and  sulfate  wasn’t  directly  made,  they  said    "data  indicate  that  fractional  iron  bioavailability  from  the  test  meal  fortified  with  ferrous  fumarate  was  similar  to  that  from  the  meal  fortified  with  ferrous  sulfate"    

   

 Notes  and  references  document  for  ferrous  fumarate  www.medium.com/@learngirl  

4  

3. References  used  in  this  section    Brise,  Hans,  and  Leif  Hallberg.  1962.  ‘Absorbability  of  Different  Iron  Compounds’.  Acta  Medica  Scandinavica  171  (S376):  23–37.  doi:10.1111/j.0954-­‐6820.1962.tb18680.x.    Cancelo-­‐Hidalgo,  María  Jesús,  Camil  Castelo-­‐Branco,  Santiago  Palacios,  Javier  Haya-­‐Palazuelos,  Manel  Ciria-­‐Recasens,  José  Manasanch,  and  Lluís  Pérez-­‐Edo.  2013.  ‘Tolerability  of  Different  Oral  Iron  Supplements:  A  Systematic  Review’.  Current  Medical  Research  and  Opinion  29  (4):  291–303.  doi:10.1185/03007995.2012.761599.    Davidsson,  Lena,  Triantafillia  Dimitriou,  Erick  Boy,  Thomas  Walczyk,  and  Richard  F.  Hurrell.  2002.  ‘Iron  Bioavailability  from  Iron-­‐Fortified  Guatemalan  Meals  Based  on  Corn  Tortillas  and  Black  Bean  Paste’.  The  American  Journal  of  Clinical  Nutrition  75  (3):  535–39.    Fidler,  Meredith  Claire.  2003.  ‘Optimizing  the  Absorption  of  Fortification  Iron.’  http://dx.doi.org/10.3929/ethz-­‐a-­‐004552543.    Harrington,  M.,  C.  Hotz,  C.  Zeder,  G.  O.  Polvo,  S.  Villalpando,  M.  B.  Zimmermann,  T.  Walczyk,  J.  A.  Rivera,  and  R.  F.  Hurrell.  2011.  ‘A  Comparison  of  the  Bioavailability  of  Ferrous  Fumarate  and  Ferrous  Sulfate  in  Non-­‐Anemic  Mexican  Women  and  Children  Consuming  a  Sweetened  Maize  and  Milk  Drink’.  European  Journal  of  Clinical  Nutrition  65  (1):  20–25.  doi:http://dx.doi.org.ezaccess.libraries.psu.edu/10.1038/ejcn.2010.185.    Hurrell,  Richard.  2002.  ‘How  to  Ensure  Adequate  Iron  Absorption  from  Iron-­‐Fortified  Food  /  Discussion’.  Nutrition  Reviews  60  (7):  S7–15;  discussion  S43.  Melamed,  Nir,  Avi  Ben-­‐Haroush,  Boris  Kaplan,  and  Yariv  Yogev.  2007.  ‘Iron  Supplementation  in  Pregnancy—does  the  Preparation  Matter?’.  Archives  of  Gynecology  and  Obstetrics  276  (6):  601–4.  doi:10.1007/s00404-­‐007-­‐0388-­‐3.    Patil,  S.  2013.  ‘Comparison  of  Efficacy,  Tolerability,  and  Cost  of  Newer  with  Conventional  Oral  Iron  Preparation’.  Al  Ameen  Journal  of  Medical  Sciences  (0974-­‐1143),  6,  P.  29.  http://ajms.alameenmedical.org/ArticlePDFs/AJMS%20V6.N1.2013%20p%2029-­‐33.pdf.    Zariwala,  Mohammed  Gulrez.  2013.  ‘Comparison  Study  of  Oral  Iron  Preparations  Using  a  Human  Intestinal  Model’.  Scientia  Pharmaceutica  81  (4):  1123–39.  doi:10.3797/scipharm.1304-­‐03.