53
SUBMITTAL NUMBER: 260573-01.00 OCPS CLAY SPRINGS ES SUBMITTAL TRANSMITTAL SUBMITTAL DETAILS: REVIEWERS: SUBJECT: POWER STUDY DATE RECIEVED: Nov 07, 2014 DISCIPLINE: Electrical PRIMARY: TAD RIVENBARK [email protected] KEVIN KING [email protected] MATERN ENGINEERING PHN: (407) 740-5020 FAX: (407) 740-0365 MATERN ENGINEERING PHN: (407) 740-5020 FAX: (407) 740-0365 SECONDARY: PRIORITY STATUS: 2-STANDARD REVIEWER DUE DATE: 11/19/2014 SPECIFICATION REF: 26 05 73 DWG REF. NONE DWG TITLE: NO OF ITEMS: ITEM DESCRIPTI REVIEW STATUS: COMMENTS: CONTRACTOR/CM: : WILLIAMS COMPANY : BRAD KUBIN 2301 SILVER STAR RD. ORLANDO, FL, 32809 (407) 295-2530 FAX:(407) 297-0459 REVIEWED RETURNED ITEMS: DATE RETURNED TO CM: 11/10/2014 BUILDING REFERENCE: 1 Product Literature(s) PAGE 1 OF 1 RHODES + BRITO ARCHITECTS INC. : 605 E. ROBINSON STREET, SUITE 750 : ORLANDO, FL. : 32801 : 407.648.7288 : FAX.648.7289 cc: OWNER : CALVIN WOOLFOLK 6501 MAGIC WAY, BLDG. 200 ORLANDO, FL, 32809 (407) 317-3700 FAX:(407) 317-3768 R+B FILE: : 13017-0001.X6

Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

SUBMITTAL NUMBER: 260573-01.00

OCPS CLAY SPRINGS ES SUBMITTAL TRANSMITTAL

SUBMITTAL DETAILS:

REVIEWERS:

SUBJECT: POWER STUDY

DATE RECIEVED: Nov 07, 2014

DISCIPLINE: Electrical

PRIMARY: TAD RIVENBARK

[email protected]

KEVIN KING

[email protected]

MATERN ENGINEERING

PHN: (407) 740-5020

FAX: (407) 740-0365

MATERN ENGINEERING

PHN: (407) 740-5020

FAX: (407) 740-0365

SECONDARY:

PRIORITY STATUS: 2-STANDARD

REVIEWER DUE DATE: 11/19/2014

SPECIFICATION REF: 26 05 73

DWG REF. NONE

DWG TITLE:

NO OF ITEMS: ITEM DESCRIPTI

REVIEW STATUS:

COMMENTS:

CONTRACTOR/CM:

: WILLIAMS COMPANY: BRAD KUBIN 2301 SILVER STAR RD. ORLANDO, FL, 32809 (407) 295-2530 FAX:(407) 297-0459

REVIEWED

RETURNED ITEMS:

DATE RETURNED TO CM: 11/10/2014

BUILDING REFERENCE:

1 Product Literature(s)

PAGE 1 OF 1RHODES + BRITO ARCHITECTS INC. : 605 E. ROBINSON STREET, SUITE 750 : ORLANDO, FL. : 32801 : 407.648.7288 : FAX.648.7289

cc:

OWNER : CALVIN WOOLFOLK 6501 MAGIC WAY, BLDG. 200 ORLANDO, FL, 32809 (407) 317-3700

FAX:(407) 317-3768

R+B FILE: : 13017-0001.X6

michele
Rick
Page 2: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Page 1 of 1

Corporate Office: 130 Candace Drive, Maitland, Florida 32751-3331 Phone: 407.740.5020 Orlando | Fort Myers | Jacksonville | Tampa | www.matern.net

SHOP DRAWING COMMENTS

Date: October 10, 2014 By: Tad Rivenbark Submittal: 26 05 73 – Power System Study

Project: OCPS – Clay Springs E.S. Proj. No: 2013-224

THE FOLLOWING COMMENTS SHALL BE CONSIDERED AN INTEGRAL PART OF THE SHOP DRAWING AND/OR PRODUCT DATA SUBMITTAL.

26 05 73: No Exceptions Noted.

END OF SHOP DRAWING COMMENTS

ACTION CODE KEY

A No exceptions taken. B Make corrections noted. C Revise and Resubmit. D Submit Specified Item. E Rejected. N Review not required.

Page 3: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

SUBMITTAL NUMBER: 26057301.00

OCPS CLAY SPRINGS ES SUBMITTAL ASSIGNMENT MEMO

SUBMITTAL DETAILS: REVIEWERS:

SUBJECT: POWER STUDY

DATE RFI RECIEVED: Nov 07, 2014

DISCIPLINE: Electrical

PRIMARY: TAD RIVENBARK

[email protected]

KEVIN KING

[email protected]

MATERN ENGINEERING

PHN: (407) 740-5020FAX: (407) 740-0365

MATERN ENGINEERING

PHN: (407) 740-5020

FAX: (407) 740-0365

SECONDARY:

PRIORITY STATUS: 2-STANDARD

REVIEWER DUE DATE: 11/19/2014

SPECIFICATION REF: 26 05 73

DWG REF. NONE

DWG TITLE:

REVIEW STATUS:

THIS SUBMITTAL IS ISSUED TO YOU FOR YOUR REVIEW. PLEASE RESPOND AND RETURN...WITH THIS COMPLETED SAM TRANSMITTAL...TO MICHELE BUDAY-URDANETA NO LATER THAN: 11/19/2014. PLEASE COMPLETE REVIEW STATUS AT RIGHT

SUBMITTAL CONTENTS:

NO OF ITEMS: ITEM DESCRIPTION

(please print)THIS SUBMITTAL WAS REVIEWED BY :

RE-SUBMIT WITH ITEMS

NOT REVIEWED

REJECTED

REVISE AND RESUBMIT

FURNISHED AS MARKED

REVIEWED

COMMENTS:

1 PRODUCT LITERATURE(S)

cc:

OWNER : CALVIN WOOLFOLK

6501 MAGIC WAY, BLDG. 200

ORLANDO, FL, 32809

R+B FILE: : 13017-0001.X6CONTR/CM: : WILLIAMS COMPANY

: BRAD KUBIN

2301 SILVER STAR RD.

Page 4: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Submittal Approval Form

PROJECT: CLAY SPRINGS ELEMENTARY SCHOOL

DATE: __________________________ ______

SUBCONTRACTOR NAME: __

SUBCONTRATOR ADDRESS: ______________________________ ____

NUMBER AND TITLE OF SPECIFICATION SECTION:

Contractor’s Submittal Stamp Architect/ Engineer’s Submittal Stamp

11/6/14

Tri City Electric

26 05 73 - Power Study

11/6/14

katrinae
WCBD - Trent
katrinae
Accepted
trivenbark
Shop Drawings
Page 5: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Submittal Cover .doc ABC ACCREDITED QUALITY CONTRACTOR EC-0000981

430 West Drive Altamonte Springs, Florida 32714 EC-0000981 Phone: (407) 788-3500

CLAY SPRINGS ELEMENTARY SCHOOL

TCE JOB #100707 OWNER: Orange County Public Schools

Design & Construction Bldg. 200, 6501 Magic Way Orlando, FL 32809 GENERAL CONTRACTOR: Williams Company

2301 Silver Star Road Orlando, FL 32804

ARCHITECT: Rhodes + Brito Architects

605 E. Robinson Street, Suite 750 Orlando, FL 32801

ENGINEER: Matern Professional Engineering, Inc.

130 Candace Drive Maitland, FL 32751

SUBCONTRACTOR: Tri-City Electrical Contractors, Inc. 430 West Drive

Altamonte Springs, FL 32714 Specification Section: 26 05 73 Power System Study

Page 6: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

ELECTRICAL SERVICES & SYSTEMS 9436 Southridge Park, Ct #100

Orlando, FL 32819 407-264-9301

GENERAL ORDER NUMBER: IMI140564 REPORT NUMBER: TQSIMI140564.1

SUBMITTED BY: W. NULL, P.E.

SHORT CIRCUIT STUDY PROTECTIVE DEVICE COORDINATION STUDY

FOR CLAY SPRINGS ELEMENTARY SCHOOL

ORLANDO, FL

OCTOBER, 2014

Page 7: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

REVISION HISTORY

Rev # Issued Update Description - 10/2014 Initial Study Issue

Page 8: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES i

1.0 EXECUTIVE SUMMARY ............................................................................. 1-1

1.1 Objectives .......................................................................................... 1-1 1.2 Results .............................................................................................. 1-2 1.3 Recommendations............................................................................. 1-2

2.0 SHORT-CIRCUIT ANALYSIS ...................................................................... 2-1

2.1 Short-Circuit Objectives ..................................................................... 2-1 2.2 System Modeling ............................................................................... 2-1 2.3 Short-Circuit Results .......................................................................... 2-2 2.4 Equipment Evaluation ........................................................................ 2-2

3.0 PROTECTIVE DEVICE COORDINATION STUDY ...................................... 3-1

3.1 General Description and Protection Philosophy ................................ 3-1 3.2 Coordination Results ......................................................................... 3-1 3.3 Coordination Recommendations ....................................................... 3-2 3.4 Time-Current Characteristic Plots...................................................... 3-2

4.0 RECOMMENDED PROTECTIVE DEVICE SETTINGS ............................... 4-1

A. APPENDIX A – SHORT-CIRCUIT INPUT REPORT .................................. A-1

B. APPENDIX B – SHORT-CIRCUIT RESULTS ............................................ B-1

C. APPENDIX C – UTILITY DATA .................................................................. C-1

D. APPENDIX D – ONE-LINE DIAGRAM AND LEGEND............................... D-1

Page 9: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 1-1

1.0 EXECUTIVE SUMMARY This report contains the results of analysis performed on the electrical distribution system for the Clay Springs Elementary School in Apopka, FL. The purpose of this study is to evaluate new electrical equipment provided by Eaton, as detailed below. The executive summary contains the description and guide to the rest of the report. In addition, it also contains the recommendations of the entire study.

1.1 Objectives

1. Short-Circuit Study Perform a short-circuit study on the electrical distribution system shown in order to determine the available fault current at pertinent locations throughout the distribution system. The scope of the study includes:

• Analysis begining at the Duke Energy utility service transformer, through the new distribution service entrance switchboard MDP to downstream distribution equipment. The study continued through the new low voltage panelboards and step-down transformers to the end of line panelboards as depicted on Drawing E501, dated 06/11/2014.

• Input data used in this study was obtained from the following: Eaton Bill of Material, Electrical Riser Diagram from drawing E501, motor data from contract drawings, with cable and feeder data provided by the Electrical Contractor.

The available fault currents determined by the short-circuit study are used in the coordination and device evaluation analysis.

2. Equipment Evaluation Evaluate the short-circuit ratings of new protective devices and other distribution equipment supplied by Eaton under this contract.

3. Coordination Study Develop time-current coordination plots to derive coordinated settings for new equipment and protective devices supplied by Eaton.

4. Recommendations Provide specific recommendations for improving the electrical distribution system performance and correcting any deficiencies found by the studies.

Page 10: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 1-2

1.2 Results

1. Short-Circuit Study Short-circuit currents were calculated for each bus shown on the one-line diagram in Appendix D The upstream transformer size and impedance was provided by the local utility. The following short-circuit study case provided worst-case fault values:

• Study Case No. 1 – Utility Normal Service See Section 2, Appendix A and Appendix B for more information.

2. Equipment Evaluation The Equipment Evaluation is based on the power system worst-case short-circuit current configuration. The short-circuit ratings of protective devices and other distribution equipment provided under the project scope are evaluated in Section 2, Table 2.1.

• In summary of Table 2.1, all equipment included in this study has passed the equipment evaluation.

The short-circuit withstand ratings of low voltage disconnect switches are not evaluated in this study. Care should be taken in order to ensure that these devices are applied within their UL listed short-circuit withstand ratings. The typical withstand ratings for Eaton disconnect switches (safety switches) range from 10,000 A un-fused to 200,000 A for certain fused types.

3. Coordination Study The time-current coordination plots of the protective overcurrent devices are shown in Section 3. In developing the device settings, consideration was given to both isolation of faults and protection of cables. Efforts were made to provide the best coordination possible with the protective devices supplied under this contract. The referenced plot illustrates the coordination of the listed device with the relevant “upstream” and “downstream” protective devices. See Section 3 for more information and Section 4 for adjustable device settings.

4. Suggested Protective Device Settings Settings for the adjustable protective devices supplied by Eaton are shown in Section 4.

1.3 Recommendations

1. Recommended Settings Adjustable protective device settings should be set according to the settings tables provided in Section 5.

Page 11: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 1-3

2. Testing and Preventative Maintenance It is recommended that regularly scheduled testing and preventative maintenance be performed to ensure that the electrical distribution equipment continues to perform at an optimum level. Testing should entail primary injection testing of all power circuit breakers to verify proper tripping ranges, contact resistance testing, insulation resistance testing and complete switchgear and transformer cleaning and inspection.

3. Periodic Arc Flash Analysis Review It is recommended to provide an arc-flash analysis of this facility in accordance with OSHA and NFPA 70E. The 2012 edition of NFPA 70E includes several new requirements regarding arc flash hazard analysis. One new requirement found in Article 130 is that an arc flash hazard analysis must be updated:

• Every five years (at minimum)

• When the electrical system is modified or renovated in any way, including renovations, additions, or subtractions to the system

It is recommended that a plan is implemented to schedule a review of the arc flash hazard analysis in a period not to exceed five years, and that a review is performed whenever substantial modifications or renovations take place.

Page 12: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 2-1

2.0 SHORT-CIRCUIT ANALYSIS The short-circuit study determines the fault currents that flow in the system during various fault conditions. The calculated fault currents are used in the device evaluation and coordination studies. See Appendix A and Appendix B for the computer generated input data and output data. The short-circuit calculations were done using A_FAULT, a computer software package by SKM Systems Analysis. The short-circuit analysis performed by A_FAULT is based on IEEE Std C37.010™-1999, IEEE Std C37.5™-1979, and IEEE Std C37.13™-2008. The fault currents reported in the “Fault Report” are applicable to low voltage devices and components. The fault currents calculated in this report are based on the contribution data derived from IEEE Std C37.13-2008. The fault currents are calculated as follows:

• Motor and generator subtransient reactance values (Xd”) are adjusted per the first cycle duty multipliers described in IEEE Std 141™-1993 (Red Book).

• The complex equivalent circuit impedance, Z, is calculated by network reduction of the “Z” (complex) network.

• The momentary symmetrical current = E/Z.

• The X/R ratio is equal to the equivalent circuit reactance, X, divided by the equivalent circuit resistance, R. The circuit reactance, X is calculated by the reduction of the “X” (reactive) network and R is calculated by the reduction of the “R” (resistive) network.

Multiplying factors are determined, and used to adjust the calculated symmetrical fault current. The adjusted current is used to evaluate low voltage protective devices. Low voltage output algorithms and output reports reflect NEMA AB-1 molded case breaker de-rating multipliers. Breakers are de-rated for circuits where the power factor is lower than the NEMA test circuit (higher X/R ratio). The multipliers adjust the symmetrical fault current to the value associated with the systems fault point X/R ratio. The adjusted value listed on the report may then be compared directly with the manufacturer's published interrupting rating.

2.1 Short-Circuit Objectives The objective of the short-circuit analysis is to calculate the maximum short-circuit currents produced by balanced three-phase and unbalanced faults at each bus shown on the one-line diagram in Appendix D.

2.2 System Modeling Short-circuit currents were calculated for a three-phase bolted fault and single-line-to-ground fault at each bus shown on the one-line diagram. The system was modeled for worst-case fault currents.

Page 13: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 2-2

1. Cases: The following short-circuit study case was determined to provide worst-case fault currents:

• Study Case No. 1 – Utility Normal Service, all motors running

2. Utility Information: The upstream fault current information provided by the Utility was used on the 12,470V primary side of the utility transformer:

• Utility #1 (1000kVA transformer), %Z: 5.32 • Three-phase primary fault current: 4,419 A • Single-phase primary fault current: 2,936 A • Primary system nominal X/R: 6.61

3. Assumptions: The following assumptions were used in modeling the power system, and ensure conservative, worst-case results:

• System voltage is modeled at 100% nominal. Fault values based upon installed transformer and utility system configuration at time of study and is subject to change with utility system additions and modifications.

• Motors not depicted on the overall one-line and rated less than 50 hp were modeled as lumped groups. All motors were assumed to be running.

• Cable length to Portables disconnect was assumed at 50’ copper material as no type or length was provided.

• Unless otherwise provided, transformer X/R ratios are obtained from IEEE Std C37.010-1999. Typical design impedances and practical max inrush factors published by Eaton were used to model the Eaton dry-type transformers.

Complete information regarding the system model used for the computer simulation is included in Appendix A.

2.3 Short-Circuit Results The results of the short-circuit analysis, including calculated branch contributions, are provided in Appendix B. The one-line diagram with referenced bus identification is included in Appendix D.

2.4 Equipment Evaluation The purpose of the equipment evaluation is to compare the maximum calculated short-circuit currents to the short-circuit ratings of protective devices. The comparison is made in order to determine if the device can interrupt or withstand the available fault currents of the electrical system to which the device is applied, as required by NEC-2011, Article 110.9 and NEC-2011, Article 110.10. The

Page 14: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 2-3

device evaluation follows the evaluation procedures outlined in IEEE Std C37.13-2008, IEEE Std C37.010-1999, IEEE Std C37.5-1979, IEEE Std C37.41™-2008, IEEE Std 1015™-2006 (Blue Book), and applicable ANSI, NEMA, and UL standards. The results of the short-circuit equipment evaluation are summarized in Table 2.1. The table indicates “Bus I.D.” (corresponds to bus designations used in the one-line diagram of Appendix D), “Manufacturer”, “Status” (Pass, fail, unknown, or marginal), “Type” (equipment category), “Equip Volts”, calculated short-circuit duty, the equipment short-circuit rating, the series rating (if applicable), and the maximum duty rating. The maximum duty rating is calculated by:

100..

..×

RatingCDeviceSdutyCS

If the short-circuit rating of a device is listed as “Unknown”, a MINIMUM REQUIRED short-circuit rating is listed. All short-circuit current values are reported in units of kA.

Low voltage devices: The calculated short-circuit duty is reported under “Calc Isc (kA)" and the device short-circuit rating is reported under "Equip Isc (kA)". The calculated duty has been adjusted accordingly per the system X/R and device test X/R.

Page 15: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 2-4

Table 2.1 - Equipment Evaluation Bus I.D. Manufacturer Status Type Bus Calc Equip Series Rating (V) Isc (kA) Isc (kA) Isc (kA) %

SWBD-MDP CUTLER-HAMMER Pass LV Switchboard 480 21.16 (*N1)

65.00 32.55

PNL-1H1A1 CUTLER-HAMMER Pass LV Panelboard 480 10.79 65.00 65.00 16.61 PNL-1H1B1 CUTLER-HAMMER Pass LV Panelboard 480 13.29 65.00 65.00 20.44 PNL-1H1C1 CUTLER-HAMMER Pass LV Panelboard 480 11.14 65.00 65.00 17.15 PNL-1H2A1 CUTLER-HAMMER Pass LV Panelboard 480 9.28 65.00 65.00 14.28 PNL-1H2B1 CUTLER-HAMMER Pass LV Panelboard 480 10.61 65.00 65.00 16.32 PNL-1HDP1B1 CUTLER-HAMMER Pass LV Panelboard 480 16.05 65.00 24.70 PNL-1HDP1C1 CUTLER-HAMMER Pass LV Panelboard 480 14.47 65.00 22.26 PNL-1HDP2A1 CUTLER-HAMMER Pass LV Panelboard 480 14.49 65.00 22.30 PNL-1HDP2B1 CUTLER-HAMMER Pass LV Panelboard 480 16.52 65.00 25.42 PNL-1HM1A1 CUTLER-HAMMER Pass LV Panelboard 480 18.47 65.00 65.00 28.41 PNL-1HM1B1 CUTLER-HAMMER Pass LV Panelboard 480 14.69 65.00 65.00 22.60 PNL-1HM1C1 CUTLER-HAMMER Pass LV Panelboard 480 11.45 65.00 65.00 17.62 PNL-1HM2A1 CUTLER-HAMMER Pass LV Panelboard 480 12.21 65.00 65.00 18.78 PNL-1HM2B1 CUTLER-HAMMER Pass LV Panelboard 480 15.32 65.00 23.58 PNL-1L1A1 CUTLER-HAMMER Pass LV Panelboard 208 4.38 65.00 65.00 6.73 PNL-1L1B1 CUTLER-HAMMER Pass LV Panelboard 208 4.26 65.00 65.00 6.55 PNL-1L1C1 CUTLER-HAMMER Pass LV Panelboard 208 2.40 65.00 65.00 3.69 PNL-1L1CEP CUTLER-HAMMER Pass LV Panelboard 208 2.47 65.00 65.00 3.80 PNL-1L2A1 CUTLER-HAMMER Pass LV Panelboard 208 1.52 65.00 65.00 2.34 PNL-1L2B1 CUTLER-HAMMER Pass LV Panelboard 208 1.52 65.00 65.00 2.34 PNL-1LC1A1 CUTLER-HAMMER Pass LV Panelboard 208 2.22 65.00 65.00 3.41 PNL-1LC1B1 CUTLER-HAMMER Pass LV Panelboard 208 7.34 65.00 65.00 11.29 PNL-1LC1C1 CUTLER-HAMMER Pass LV Panelboard 208 4.07 65.00 65.00 6.26 PNL-1LC2A1 CUTLER-HAMMER Pass LV Panelboard 208 7.39 65.00 65.00 11.37 PNL-1LC2B1 CUTLER-HAMMER Pass LV Panelboard 208 4.11 65.00 65.00 6.32 PNL-1LK1A1 CUTLER-HAMMER Pass LV Panelboard 208 4.79 42.00 42.00 11.40

Note (*N1) System X/R higher than Test X/R, Calc INT kA modified based on low voltage factor.

Page 16: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 3-1

3.0 PROTECTIVE DEVICE COORDINATION STUDY The protective device coordination study determines overcurrent protective relay and circuit breaker settings in order to provide an optimal compromise between protection and selectivity. The coordination plots were developed using SKM System Analysis’ CAPTOR software.

3.1 General Description and Protection Philosophy Using the appropriate maximum fault currents, the time-current coordination curves were plotted as operating time versus current magnitudes to show protective device tripping and/or clearing characteristics and coordination among these devices. Consideration was given to provide both selective isolation of faults and maximum protection of equipment such as cables, transformers, motors, etc. To achieve the optimum protection and selectivity, the following guidelines were followed throughout the study:

• Ideally, the settings of any overcurrent device should be high enough to permit the continuous full-load operating capacity of the cables and the equipment they supply, and to ride through system temporary disturbances such as in-rush current. On the other hand, the settings should be low enough to provide overload and short-circuit protection under minimum fault conditions.

Considering any two protective devices in series:

• The maximum available fault current at the downstream device determines the upper limit of the coordination range between these two devices.

• The minimum available fault current at the downstream device or the pick-up setting of the upstream device determines the lower limit of the coordination range.

• Series instantaneous devices do not coordinate unless there is sufficient impedance between the two devices.

• When plotting coordination curves, certain time intervals must be maintained between the curves in order to ensure correct selectivity. These time intervals vary, depending on the device types. In general, however, the following must be taken into consideration when determining the appropriate time separation interval: Breaker clearing time, relay tolerances, induction disk over-travel, and a reasonable safety margin for error.

3.2 Coordination Results As shown on the time-current plots, each device curve is tagged with an arrow and label referencing its location on the plot's individual representative one-line diagram. This label also references the device to its’ specific manufacturer information, including ratings and settings, as indicated in the text box on each

Page 17: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 3-2

plot. The device time-current characteristics are truncated at maximum through-fault current for a downstream fault. In cases involving redundant protective devices, regardless of which device opens, the same system outage occurs. Often, in order to improve overall system protection and coordination, redundant devices are intentionally set to overlap (i.e. non-selectively coordinate with) one another.

3.3 Coordination Recommendations All of the adjustable low voltage electronic trip and thermal magnetic circuit breakers should be tested and adjusted according to the recommended settings given in Section 4.

• 02_MDP_PNL-1HM2B1: It is noted that breakers BKR-1HDP2B1 and BKR-1HM2B1 overlapping in the long time region. This is due to the instantaneous on adjustable charachteristics of the breakers. Although the coordination is acceptable given that the conflict occurs after 2 seconds which is a long time for recommended to revise breaker BKR-1HDP2B1 to include an adjustable LS electronic trip unit.fault to be continuous. In order to improve coordianation, it is

3.4 Time-Current Characteristic Plots Refer to the following pages for the plotted coordination curves, which graphically indicate the degree of selectivity and protection obtained. In some cases, a single time-current curve may be applicable to several locations in the system, where each location utilizes substantially similar devices, and serves similar loads. The following list references the attached time-current curves for this report.

Table 3.1 – TCC Plots Index

01_MDP_MTR-CH-2.tcc Page 3-3

02_MDP_PNL-1HM2B1.tcc Page 3-4

03_1HDP2A1_1LC2A1.tcc Page 3-5

04_MDP_PNL-1HM1C1.tcc Page 3-6

05_1HDP1B1_1HM1B1.tcc Page 3-7

06_PNL-1L1C1.tcc Page 3-8

Page 18: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

CBL-MDP

0.5 1 10 100

1K 10K

0.01

0.10

1

10

100

1000

CURRENT IN AMPERESTIM

E IN SEC

ON

DS

BKR-MDP-MN CUTLER-HAMMER LSI, 1600-2500, UL TYPE: RG, 310+ Sensor/Trip: 2500A, Phase Ir for In = 2500A H (2500A) LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A)

BKR-CH-2 CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 300A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 8.25 (2475A)

MTR-CH-2 224 hp

CBL-MDP Size: 600 AWG/kcmilQty/Ph: 6

BKR-MDP-MN CUTLER-HAMMER LSI, 1600-2500, UL TYPE: RG, 310+ Sensor/Trip: 2500A, Phase Ir for In = 2500A H (2500A) LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A)

BKR-CH-2 CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 300A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 8.25 (2475A)

MTR-CH-2 224 hp

CBL-MDP Size: 600 AWG/kcmilQty/Ph: 6

Plot name: 01_MDP_MTR-CH-2 Ref. Voltage: 480V Current Scale: x 10

BKR-MDP-MN

SWBD-MDP

BKR-CH-2

MTR-CH-2

CBL-MDP

S

P TX-UTIL CLAY SPRINGS

Eaton Electrical Services and Systems October 24, 2014

Clay Springs ES 3-3

Page 19: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

CBL-1HDP2B1CBL-1HM2B1

0.5 1 10 100

1K 10K

0.01

0.10

1

10

100

1000

CURRENT IN AMPERESTIM

E IN SEC

ON

DS

BKR-MDP-MN CUTLER-HAMMER LSI, 1600-2500, UL TYPE: RG, 310+ Sensor/Trip: 2500A, Phase Ir for In = 2500A H (2500A) LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A)

BKR-1HDP2B1 CUTLER-HAMMER 300-800A TYPE: HMDL Sensor/Trip: 700A, Phase Thermal Curve (Fixed) INST (4-8 x Trip) 8 (5600A)

BKR-1HM2B1 CUTLER-HAMMER 300-600A TYPE: LGH/LGE Sensor/Trip: 500A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 7.5 (3750A)

BKR-1HM2B1-CKT CUTLER-HAMMER 15-225A TYPE: HFD Sensor/Trip: 225A, Phase Fixed

CBL-1HDP2B1 Size: 300 AWG/kcmilQty/Ph: 3

CBL-1HM2B1 Size: 350 AWG/kcmilQty/Ph: 2

BKR-MDP-MN CUTLER-HAMMER LSI, 1600-2500, UL TYPE: RG, 310+ Sensor/Trip: 2500A, Phase Ir for In = 2500A H (2500A) LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A)

BKR-1HDP2B1 CUTLER-HAMMER 300-800A TYPE: HMDL Sensor/Trip: 700A, Phase Thermal Curve (Fixed) INST (4-8 x Trip) 8 (5600A)

BKR-1HM2B1 CUTLER-HAMMER 300-600A TYPE: LGH/LGE Sensor/Trip: 500A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 7.5 (3750A)

BKR-1HM2B1-CKT CUTLER-HAMMER 15-225A TYPE: HFD Sensor/Trip: 225A, Phase Fixed

CBL-1HDP2B1 Size: 300 AWG/kcmilQty/Ph: 3

CBL-1HM2B1 Size: 350 AWG/kcmilQty/Ph: 2

Plot name: 02_MDP_PNL-1HM2B1 Ref. Voltage: 480V Current Scale: x 10

BKR-MDP-MN

BKR-1HDP2B1

CBL-1HDP2B1

BKR-1HM2B1

CBL-1HM2B1

BKR-1HM2B1-CKT

PNL-1HM2B1

PNL-1HDP2B1

SWBD-MDP

Eaton Electrical Services and Systems October 24, 2014

Clay Springs ES 3-4

Page 20: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

CBL-1HDP2A1CBL-TX-1LC2A1

TX Inrush

TX-1LC2A1CBL-1LC2A1

0.5 1 10 100

1K 10K

0.01

0.10

1

10

100

1000

CURRENT IN AMPERESTIM

E IN SEC

ON

DS

BKR-1HDP2A1 CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 350A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 10 (3500A)

BKR-TX-1LC2A1 CUTLER-HAMMER 15-225A TYPE: HFD Sensor/Trip: 150A, Phase Fixed

BKR-1LC2A1-MN CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 350A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 5 (1750A)

BKR-1LC2A1-CKT CUTLER-HAMMER 15-100A TYPE: BAB, 3-Pole Sensor/Trip: 30A, Phase Fixed

CBL-1HDP2A1 Size: 400 AWG/kcmilQty/Ph: 2

CBL-TX-1LC2A1 Size: 1/0 AWG/kcmilQty/Ph: 1

TX-1LC2A1 113 kVA480 / 208 V

CBL-1LC2A1 Size: 250 AWG/kcmilQty/Ph: 2

BKR-1HDP2A1 CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 350A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 10 (3500A)

BKR-TX-1LC2A1 CUTLER-HAMMER 15-225A TYPE: HFD Sensor/Trip: 150A, Phase Fixed

BKR-1LC2A1-MN CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 350A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 5 (1750A)

BKR-1LC2A1-CKT CUTLER-HAMMER 15-100A TYPE: BAB, 3-Pole Sensor/Trip: 30A, Phase Fixed

CBL-1HDP2A1 Size: 400 AWG/kcmilQty/Ph: 2

CBL-TX-1LC2A1 Size: 1/0 AWG/kcmilQty/Ph: 1

TX-1LC2A1 113 kVA480 / 208 V

CBL-1LC2A1 Size: 250 AWG/kcmilQty/Ph: 2

Plot name: 03_1HDP2A1_1LC2A1 Ref. Voltage: 480V Current Scale: x 10

BKR-1HDP2A1

CBL-1HDP2A1

BKR-TX-1LC2A1

CBL-TX-1LC2A1

S

P TX-1LC2A1

CBL-1LC2A1

BKR-1LC2A1-MN

PNL-1LC2A1

BKR-1LC2A1-CKT

PNL-1HDP2A1

Eaton Electrical Services and Systems October 24, 2014

Clay Springs ES 3-5

Page 21: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

CBL-1HM1C1CBL-1HDP1C1

0.5 1 10 100

1K 10K

0.01

0.10

1

10

100

1000

CURRENT IN AMPERESTIM

E IN SEC

ON

DS

BKR-MDP-MN CUTLER-HAMMER LSI, 1600-2500, UL TYPE: RG, 310+ Sensor/Trip: 2500A, Phase Ir for In = 2500A H (2500A) LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A)

BKR-1HDP1C1 CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 300A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 10 (3000A)

BKR-1HM1C1 CUTLER-HAMMER 15-225A TYPE: HFD Sensor/Trip: 100A, Phase Fixed

CBL-1HM1C1 Size: 3 AWG/kcmilQty/Ph: 1

CBL-1HDP1C1 Size: 4/0 AWG/kcmilQty/Ph: 2

BKR-MDP-MN CUTLER-HAMMER LSI, 1600-2500, UL TYPE: RG, 310+ Sensor/Trip: 2500A, Phase Ir for In = 2500A H (2500A) LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A)

BKR-1HDP1C1 CUTLER-HAMMER 100-400A TYPE: HKD Sensor/Trip: 300A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 10 (3000A)

BKR-1HM1C1 CUTLER-HAMMER 15-225A TYPE: HFD Sensor/Trip: 100A, Phase Fixed

CBL-1HM1C1 Size: 3 AWG/kcmilQty/Ph: 1

CBL-1HDP1C1 Size: 4/0 AWG/kcmilQty/Ph: 2

Plot name: 04_MDP_PNL-1HM1C1 Ref. Voltage: 480V Current Scale: x 10

BKR-MDP-MN

BKR-1HDP1C1

BKR-1HM1C1

CBL-1HM1C1

PNL-1HM1C1

CBL-1HDP1C1

SWBD-MDP

PNL-1HDP1C1

Eaton Electrical Services and Systems October 24, 2014

Clay Springs ES 3-6

Page 22: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

CBL-1HDP1B1CBL-1HM1B1

0.5 1 10 100

1K 10K

0.01

0.10

1

10

100

1000

CURRENT IN AMPERESTIM

E IN SEC

ON

DS

BKR-1HDP1B1 CUTLER-HAMMER 300-800A TYPE: HMDL Sensor/Trip: 800A, Phase Thermal Curve (Fixed) INST (4-8 x Trip) 8 (6400A)

BKR-1HM1B1 CUTLER-HAMMER 70-250A TYPE: HJD Sensor/Trip: 250A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 10 (2500A)

BKR-1HM1B1-CKT CUTLER-HAMMER 15-100A TYPE: EHD Sensor/Trip: 70A, Phase Fixed

CBL-1HDP1B1 Size: 400 AWG/kcmilQty/Ph: 3

CBL-1HM1B1 Size: 350 AWG/kcmilQty/Ph: 1

BKR-1HDP1B1 CUTLER-HAMMER 300-800A TYPE: HMDL Sensor/Trip: 800A, Phase Thermal Curve (Fixed) INST (4-8 x Trip) 8 (6400A)

BKR-1HM1B1 CUTLER-HAMMER 70-250A TYPE: HJD Sensor/Trip: 250A, Phase Thermal Curve (Fixed) INST (5-10 x Trip) 10 (2500A)

BKR-1HM1B1-CKT CUTLER-HAMMER 15-100A TYPE: EHD Sensor/Trip: 70A, Phase Fixed

CBL-1HDP1B1 Size: 400 AWG/kcmilQty/Ph: 3

CBL-1HM1B1 Size: 350 AWG/kcmilQty/Ph: 1

Plot name: 05_1HDP1B1_1HM1B1 Ref. Voltage: 480V Current Scale: x 10

BKR-1HDP1B1

CBL-1HDP1B1

BKR-1HM1B1

CBL-1HM1B1

PNL-1HM1B1

BKR-1HM1B1-CKT

PNL-1HDP1B1

Eaton Electrical Services and Systems October 24, 2014

Clay Springs ES 3-7

Page 23: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

0.5 1 10 100

1K 10K

0.01

0.10

1

10

100

1000

CURRENT IN AMPERESTIM

E IN SEC

ON

DS

BKR-1L1C1-MN CUTLER-HAMMER 100-225A TYPE: ED Sensor/Trip: 125A, Phase Fixed

BKR-1L1C1-CKT CUTLER-HAMMER 15-100A TYPE: BAB, 3-Pole Sensor/Trip: 60A, Phase Fixed

BKR-1L1C1-MN CUTLER-HAMMER 100-225A TYPE: ED Sensor/Trip: 125A, Phase Fixed

BKR-1L1C1-CKT CUTLER-HAMMER 15-100A TYPE: BAB, 3-Pole Sensor/Trip: 60A, Phase Fixed

Plot name: 06_PNL-1L1C1 Ref. Voltage: 208V Current Scale: x 10

BKR-1L1C1-MN

PNL-1L1C1

BKR-1L1C1-CKT

Eaton Electrical Services and Systems October 24, 2014

Clay Springs ES 3-8

Page 24: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 4-1

4.0 RECOMMENDED PROTECTIVE DEVICE SETTINGS The following table shows a comprehensive summary of the recommended settings for the adjustable protective devices. Refer to Appendix D for the system one-line diagram.

Table 4.1 - Recommended Low-Voltage Protective Device Settings LV Breakers Frame /

Sensor Recommended

Name/Type Description / Plug Settings BKR-1HDP1B1 CUTLER-HAMMER 800A Phase Thermal Magnetic HMDL 800A Thermal Curve (Fixed) 300-800A INST (4-8 x Trip) 8 (6400A) Revised Thermal Curve (Fixed) INST (5-10 x Trip) 10 (4000A) BKR-1HDP1C1 CUTLER-HAMMER 300A Thermal Curve (Fixed) Thermal Magnetic HKD 300A INST (5-10 x Trip) 10 (3000A) 100-400A BKR-1HDP2A1 CUTLER-HAMMER 350A Thermal Curve (Fixed) Thermal Magnetic HKD 350A INST (5-10 x Trip) 10 (3500A) 100-400A BKR-1HDP2B1 CUTLER-HAMMER 800A Phase Thermal Magnetic HMDL 700A Thermal Curve (Fixed) 300-800A INST (4-8 x Trip) 8 (5600A) Revised Thermal Curve (Fixed) INST (5-10 x Trip) 10 (4000A) BKR-1HM1A1-CKT CUTLER-HAMMER 100A Thermal Curve Thermal Magnetic GHB/GHC/GD 80A INST (Fixed) Fixed (1000A) 15-100A, 3 Poles BKR-1HM1B1 CUTLER-HAMMER 250A Thermal Curve (Fixed) Thermal Magnetic HJD 250A INST (5-10 x Trip) 10 (2500A) 70-250A BKR-1HM2B1 CUTLER-HAMMER 600A Thermal Curve (Fixed) Thermal Magnetic LGH/LGE 500A INST (5-10 x Trip) 7.5 (3750A) 300-600A

Page 25: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES 4-2

LV Breakers Frame / Sensor

Recommended

Name/Type Description / Plug Settings BKR-1LC1B1-MN CUTLER-HAMMER 350A Thermal Curve (Fixed) Thermal Magnetic HKD 350A INST (5-10 x Trip) 5 (1750A) 100-400A BKR-1LC2A1-MN CUTLER-HAMMER 350A Thermal Curve (Fixed) Thermal Magnetic HKD 350A INST (5-10 x Trip) 5 (1750A) 100-400A BKR-1LK1A1-MN CUTLER-HAMMER 350A Thermal Curve (Fixed) Thermal Magnetic DK 350A INST (5-10 x Trip) 5 (1750A) 250-400A BKR-CH-1 CUTLER-HAMMER 300A Thermal Curve (Fixed) Thermal Magnetic HKD 300A INST (5-10 x Trip) 10 (3000A) 100-400A BKR-CH-2 CUTLER-HAMMER 300A Thermal Curve (Fixed) Thermal Magnetic HKD 300A INST (5-10 x Trip) 8.25 (2475A) 100-400A BKR-MDP-MN CUTLER-HAMMER 2500A Phase Static Trip RG, 310+ 2500A Ir for In = 2500A H (2500A) LSI, 1600-2500, UL LTD (2-24 Sec.) 10 STPU 2500AS (2-6 x Ir) 3 (7500A) STD (Inst-300ms) 300ms INST OR Fixed (17.5kA) (17500A) Ground GFPU, (0.2 - 1 x In) .6X (600A) GFD, (Inst-300ms) 300ms BKR-PORTABLES CUTLER-HAMMER 400A Thermal Curve (Fixed) Thermal Magnetic HKD 400A INST (5-10 x Trip) 10 (4000A) 100-400A ,

Page 26: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-1

A. APPENDIX A – Short-Circuit Input Report

Input Report Interpretation Input Data Tables are provided on the following pages. The following is a guide for interpreting the input data. 1. Generation Contribution Data Utility contribution data includes the available fault current in MVA and amps, per unit impedance on a 100 MVA base, X/R, and the line-to-line bus voltage. 2. Motor Contribution Data Motor Contribution Data includes the horsepower rating (base kVA rating), speed, subtransient reactance adjusted per the First Cycle Duty multipliers described in IEEE Std 141-1993 (Red Book), per-unit impedance on a 100 MVA base, and the bus voltage. X/R ratios for induction motors are obtained from IEEE Std C37.010-1999. 3. Feeder Data Feeder data includes the following cable and bus data: length, impedance in ohms per 1,000 feet, and per-unit impedance on a 100 MVA base. Impedance values for conductors were obtained from Tables 4A-7 and 4A-8 of IEEE Std 141-1993 (Red Book). 4. Transformer Data Transformer data includes the transformer kVA rating and per-unit impedance on a 100 MVA base. Unless otherwise provided, transformer X/R ratios are obtained from IEEE Std C37.010-1999.

Page 27: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-2

Clay Springs ES Oct 24, 2014 14:00:16 Page 1 ------------------------------------------------------------------------------ ALL INFORMATION PRESENTED IS FOR REVIEW, APPROVAL INTERPRETATION AND APPLICATION BY A REGISTERED ENGINEER ONLY SKM DISCLAIMS ANY RESPONSIBILITY AND LIABILITY RESULTING FROM THE USE AND INTERPRETATION OF THIS SOFTWARE. ------------------------------------------------------------------------------ SKM POWER*TOOLS FOR WINDOWS INPUT DATA REPORT COPYRIGHT SKM SYSTEMS ANALYSIS, INC. 1995-2013 ------------------------------------------------------------------------------ ALL PU VALUES ARE EXPRESSED ON A 100 MVA BASE.

Page 28: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-3

Oct 24, 2014 14:00:16 Page 2 FEEDER INPUT DATA =============================================================================================================== CABLE FEEDER FROM FEEDER TO QTY VOLTS LENGTH FEEDER NAME NAME NAME /PH L-L SIZE TYPE =============================================================================================================== CBL-1H1A1 SWBD-MDP PNL-1H1A1 1 480 35.0 FEET 6 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.5100 + J 0.0685 Ohms/1000 ft 7.75 + J 1.04 PU Z0 Impedance: 1.61 + J 0.1687 Ohms/1000 ft 24.41 + J 2.56 PU CBL-1H1B1 PNL-1HDP1B1 PNL-1H1B1 1 480 30.0 FEET 2/0 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: TW +/- Impedance: 0.1670 + J 0.0410 Ohms/1000 ft 2.17 + J 0.5339 PU Z0 Impedance: 0.5263 + J 0.1010 Ohms/1000 ft 6.85 + J 1.32 PU CBL-1H1C1 PNL-1HDP1C1 PNL-1H1C1 1 480 27.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 2.99 + J 0.7102 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 9.42 + J 1.75 PU CBL-1H2A1 PNL-1HDP2A1 PNL-1H2A1 1 480 42.0 FEET 4 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.3210 + J 0.0632 Ohms/1000 ft 5.85 + J 1.15 PU Z0 Impedance: 1.01 + J 0.1556 Ohms/1000 ft 18.44 + J 2.84 PU CBL-1H2B1 PNL-1HDP2B1 PNL-1H2B1 1 480 38.0 FEET 4 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.3210 + J 0.0632 Ohms/1000 ft 5.29 + J 1.04 PU Z0 Impedance: 1.01 + J 0.1556 Ohms/1000 ft 16.68 + J 2.57 PU CBL-1HDP1B1 SWBD-MDP PNL-1HDP1B1 3 480 250.0 FEET 400 Aluminum Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0563 + J 0.0291 Ohms/1000 ft 2.04 + J 1.05 PU Z0 Impedance: 0.0895 + J 0.0740 Ohms/1000 ft 3.24 + J 2.68 PU CBL-1HDP1C1 SWBD-MDP PNL-1HDP1C1 2 480 160.0 FEET 4/0 Aluminum Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.1050 + J 0.0310 Ohms/1000 ft 3.65 + J 1.08 PU Z0 Impedance: 0.1669 + J 0.0789 Ohms/1000 ft 5.80 + J 2.74 PU CBL-1HDP2A1 SWBD-MDP PNL-1HDP2A1 2 480 240.0 FEET 400 Aluminum Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0563 + J 0.0291 Ohms/1000 ft 2.93 + J 1.52 PU Z0 Impedance: 0.0895 + J 0.0740 Ohms/1000 ft 4.66 + J 3.85 PU CBL-1HDP2B1 SWBD-MDP PNL-1HDP2B1 3 480 190.0 FEET 300 Aluminum Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0746 + J 0.0300 Ohms/1000 ft 2.05 + J 0.8247 PU Z0 Impedance: 0.1186 + J 0.0763 Ohms/1000 ft 3.26 + J 2.10 PU

Page 29: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-4

Oct 24, 2014 14:00:16 Page 3 FEEDER INPUT DATA =============================================================================================================== CABLE FEEDER FROM FEEDER TO QTY VOLTS LENGTH FEEDER NAME NAME NAME /PH L-L SIZE TYPE =============================================================================================================== CBL-1HM1A1 SWBD-MDP PNL-1HM1A1 1 480 25.0 FEET 250 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0896 + J 0.0384 Ohms/1000 ft 0.9722 + J 0.4167 PU Z0 Impedance: 0.2824 + J 0.0946 Ohms/1000 ft 3.06 + J 1.03 PU CBL-1HM1B1 PNL-1HDP1B1 PNL-1HM1B1 1 480 26.0 FEET 350 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0644 + J 0.0369 Ohms/1000 ft 0.7267 + J 0.4164 PU Z0 Impedance: 0.2030 + J 0.0909 Ohms/1000 ft 2.29 + J 1.03 PU CBL-1HM1C1 PNL-1HDP1C1 PNL-1HM1C1 1 480 24.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 2.66 + J 0.6313 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 8.37 + J 1.55 PU CBL-1HM2A1 PNL-1HDP2A1 PNL-1HM2A1 1 480 40.0 FEET 4/0 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.1060 + J 0.0390 Ohms/1000 ft 1.84 + J 0.6771 PU Z0 Impedance: 0.3341 + J 0.0961 Ohms/1000 ft 5.80 + J 1.67 PU CBL-1HM2B1 PNL-1HDP2B1 PNL-1HM2B1 2 480 43.0 FEET 350 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0644 + J 0.0369 Ohms/1000 ft 0.6010 + J 0.3443 PU Z0 Impedance: 0.2030 + J 0.0909 Ohms/1000 ft 1.89 + J 0.8482 PU CBL-1L1A1 BUS-0009 PNL-1L1A1 1 208 19.0 FEET 300 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0750 + J 0.0375 Ohms/1000 ft 3.29 + J 1.65 PU Z0 Impedance: 0.2364 + J 0.0923 Ohms/1000 ft 10.38 + J 4.05 PU CBL-1L1B1 BUS-0041 PNL-1L1B1 1 208 19.0 FEET 300 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0750 + J 0.0375 Ohms/1000 ft 3.29 + J 1.65 PU Z0 Impedance: 0.2364 + J 0.0923 Ohms/1000 ft 10.38 + J 4.05 PU CBL-1L1C1 BUS-0029 PNL-1L1C1 1 208 19.0 FEET 2/0 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.1670 + J 0.0410 Ohms/1000 ft 7.33 + J 1.80 PU Z0 Impedance: 0.5263 + J 0.1010 Ohms/1000 ft 23.11 + J 4.44 PU CBL-1L1CEP PNL-1L1A1 PNL-1L1CEP 1 208 85.0 FEET 3 Copper Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 50.10 + J 11.91 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 157.88 + J 29.31 PU

Page 30: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-5

Oct 24, 2014 14:00:16 Page 4 FEEDER INPUT DATA =============================================================================================================== CABLE FEEDER FROM FEEDER TO QTY VOLTS LENGTH FEEDER NAME NAME NAME /PH L-L SIZE TYPE =============================================================================================================== CBL-1L2A1 BUS-0019 PNL-1L2A1 1 208 19.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 11.20 + J 2.66 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 35.29 + J 6.55 PU CBL-1L2B1 BUS-0073 PNL-1L2B1 1 208 23.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 13.56 + J 3.22 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 42.72 + J 7.93 PU CBL-1LC1A1 BUS-0065 PNL-1LC1A1 1 208 19.0 FEET 2 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.2020 + J 0.0585 Ohms/1000 ft 8.87 + J 2.57 PU Z0 Impedance: 0.6366 + J 0.1440 Ohms/1000 ft 27.96 + J 6.32 PU CBL-1LC1B1 BUS-0044 PNL-1LC1B1 2 208 19.0 FEET 250 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0896 + J 0.0384 Ohms/1000 ft 1.97 + J 0.8432 PU Z0 Impedance: 0.2824 + J 0.0946 Ohms/1000 ft 6.20 + J 2.08 PU CBL-1LC1C1 BUS-0032 PNL-1LC1C1 1 208 19.0 FEET 400 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0568 + J 0.0364 Ohms/1000 ft 2.49 + J 1.60 PU Z0 Impedance: 0.1790 + J 0.0896 Ohms/1000 ft 7.86 + J 3.93 PU CBL-1LC2A1 BUS-0016 PNL-1LC2A1 2 208 19.0 FEET 250 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0552 + J 0.0495 Ohms/1000 ft 1.21 + J 1.09 PU Z0 Impedance: 0.1739 + J 0.1219 Ohms/1000 ft 3.82 + J 2.68 PU CBL-1LC2B1 BUS-0076 PNL-1LC2B1 1 208 23.0 FEET 400 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0568 + J 0.0364 Ohms/1000 ft 3.02 + J 1.94 PU Z0 Impedance: 0.1790 + J 0.0896 Ohms/1000 ft 9.52 + J 4.76 PU CBL-1LK1A1 DSC-1LK1A1 PNL-1LK1A1 2 208 75.0 FEET 4/0 Copper Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0633 + J 0.0398 Ohms/1000 ft 5.49 + J 3.45 PU Z0 Impedance: 0.1006 + J 0.1012 Ohms/1000 ft 8.72 + J 8.77 PU CBL-DSC 1LK1A1BUS-0061 DSC-1LK1A1 2 208 29.0 FEET 4/0 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.1060 + J 0.0390 Ohms/1000 ft 3.55 + J 1.31 PU Z0 Impedance: 0.3341 + J 0.0961 Ohms/1000 ft 11.20 + J 3.22 PU

Page 31: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-6

Oct 24, 2014 14:00:16 Page 5 FEEDER INPUT DATA =============================================================================================================== CABLE FEEDER FROM FEEDER TO QTY VOLTS LENGTH FEEDER NAME NAME NAME /PH L-L SIZE TYPE =============================================================================================================== CBL-MDP BUS-0002 SWBD-MDP 6 480 155.0 FEET 600 Copper Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0237 + J 0.0371 Ohms/1000 ft 0.2657 + J 0.4160 PU Z0 Impedance: 0.0376 + J 0.0943 Ohms/1000 ft 0.4216 + J 1.06 PU CBL-PORTABLES PNL-1HDP1B1 DISC-PORTABLES 1 480 50.0 FEET 500 Copper Duct Material: Non-Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.0276 + J 0.0373 Ohms/1000 ft 0.5990 + J 0.8095 PU Z0 Impedance: 0.0438 + J 0.0999 Ohms/1000 ft 0.9505 + J 2.17 PU CBL-TX-1L1A1 SWBD-MDP BUS-0008 1 480 31.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 3.43 + J 0.8154 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 10.81 + J 2.01 PU CBL-TX-1L1B1 PNL-1HDP1B1 BUS-0040 1 480 34.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 3.76 + J 0.8943 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 11.86 + J 2.20 PU CBL-TX-1L1C1 PNL-1HDP1C1 BUS-0028 1 480 35.0 FEET 6 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.5100 + J 0.0685 Ohms/1000 ft 7.75 + J 1.04 PU Z0 Impedance: 1.61 + J 0.1687 Ohms/1000 ft 24.41 + J 2.56 PU CBL-TX-1L1K1 SWBD-MDP BUS-0062 1 480 31.0 FEET 3/0 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.1330 + J 0.0400 Ohms/1000 ft 1.79 + J 0.5382 PU Z0 Impedance: 0.4192 + J 0.0985 Ohms/1000 ft 5.64 + J 1.33 PU CBL-TX-1L2A1 PNL-1HDP2A1 BUS-0018 1 480 22.0 FEET 8 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.8110 + J 0.0754 Ohms/1000 ft 7.74 + J 0.7200 PU Z0 Impedance: 2.56 + J 0.1856 Ohms/1000 ft 24.41 + J 1.77 PU CBL-TX-1L2B1 PNL-1HDP2B1 BUS-0072 1 480 20.0 FEET 8 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.8110 + J 0.0754 Ohms/1000 ft 7.04 + J 0.6545 PU Z0 Impedance: 2.56 + J 0.1856 Ohms/1000 ft 22.19 + J 1.61 PU CBL-TX-1LC1A1 SWBD-MDP BUS-0064 1 480 33.0 FEET 8 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.8110 + J 0.0754 Ohms/1000 ft 11.62 + J 1.08 PU Z0 Impedance: 2.56 + J 0.1856 Ohms/1000 ft 36.61 + J 2.66 PU

Page 32: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-7

Oct 24, 2014 14:00:16 Page 6 FEEDER INPUT DATA =============================================================================================================== CABLE FEEDER FROM FEEDER TO QTY VOLTS LENGTH FEEDER NAME NAME NAME /PH L-L SIZE TYPE =============================================================================================================== CBL-TX-1LC1B1 PNL-1HDP1B1 BUS-0043 1 480 32.0 FEET 3/0 Aluminum Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.1330 + J 0.0400 Ohms/1000 ft 1.85 + J 0.5556 PU Z0 Impedance: 0.4192 + J 0.0985 Ohms/1000 ft 5.82 + J 1.37 PU CBL-TX-1LC1C1 PNL-1HDP1C1 BUS-0031 1 480 38.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 4.21 + J 0.9995 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 13.25 + J 2.46 PU CBL-TX-1LC2A1 PNL-1HDP2A1 BUS-0015 1 480 22.0 FEET 1/0 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THWN +/- Impedance: 0.1280 + J 0.0540 Ohms/1000 ft 1.22 + J 0.5156 PU Z0 Impedance: 0.4034 + J 0.1329 Ohms/1000 ft 3.85 + J 1.27 PU CBL-TX-1LC2B1 PNL-1HDP2B1 BUS-0075 1 480 26.0 FEET 3 Copper Duct Material: Magnetic Insulation Type: PVC Insulation Class: THHN +/- Impedance: 0.2550 + J 0.0606 Ohms/1000 ft 2.88 + J 0.6839 PU Z0 Impedance: 0.8036 + J 0.1492 Ohms/1000 ft 9.07 + J 1.68 PU

Page 33: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-8

Oct 24, 2014 14:00:16 Page 7 TRANSFORMER INPUT DATA ============================================================================================= TRANSFORMER PRIMARY RECORD VOLTS * SECONDARY RECORD VOLTS FULL-LOAD NOMINAL NAME NO NAME L-L NO NAME L-L KVA KVA ============================================================================================= TX-1L1A1 BUS-0008 D 480.00 BUS-0009 YG 208.00 75.00 75.00 Pos. Seq. Z%: 3.19 + J 2.30 (Zpu 42.48 + j 30.71 ) Shell Type Zero Seq. Z%: 3.19 + J 2.30 (Sec 42.48 + j 30.71 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1L1B1 BUS-0040 D 480.00 BUS-0041 YG 208.00 75.00 75.00 Pos. Seq. Z%: 3.19 + J 2.30 (Zpu 42.48 + j 30.71 ) Shell Type Zero Seq. Z%: 3.19 + J 2.30 (Sec 42.48 + j 30.71 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1L1C1 BUS-0028 D 480.00 BUS-0029 YG 208.00 45.00 45.00 Pos. Seq. Z%: 3.23 + J 2.77 (Zpu 71.75 + j 61.59 ) Shell Type Zero Seq. Z%: 3.23 + J 2.77 (Sec 71.75 + j 61.59 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1L1K1 BUS-0062 D 480.00 BUS-0061 YG 208.00 112.50 112.50 Pos. Seq. Z%: 2.70 + J 3.88 (Zpu 23.97 + j 34.51 ) Shell Type Zero Seq. Z%: 2.70 + J 3.88 (Sec 23.97 + j 34.51 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1L2A1 BUS-0018 D 480.00 BUS-0019 YG 208.00 30.00 30.00 Pos. Seq. Z%: 2.88 + J 3.83 (Zpu 96.14 + j 127.5 ) Shell Type Zero Seq. Z%: 2.88 + J 3.83 (Sec 96.14 + j 127.5 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1L2B1 BUS-0072 D 480.00 BUS-0073 YG 208.00 30.00 30.00 Pos. Seq. Z%: 2.88 + J 3.83 (Zpu 96.14 + j 127.5 ) Shell Type Zero Seq. Z%: 2.88 + J 3.83 (Sec 96.14 + j 127.5 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg.

Page 34: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-9

Oct 24, 2014 14:00:16 Page 8 TRANSFORMER INPUT DATA ============================================================================================= TRANSFORMER PRIMARY RECORD VOLTS * SECONDARY RECORD VOLTS FULL-LOAD NOMINAL NAME NO NAME L-L NO NAME L-L KVA KVA ============================================================================================= TX-1LC1A1 BUS-0064 D 480.00 BUS-0065 YG 208.00 30.00 30.00 Pos. Seq. Z%: 2.21 + J 2.15 (Zpu 73.80 + j 71.82 ) Shell Type Zero Seq. Z%: 2.21 + J 2.15 (Sec 73.80 + j 71.82 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1LC1B1 BUS-0043 D 480.00 BUS-0044 YG 208.00 112.50 112.50 Pos. Seq. Z%: 2.09 + J 2.48 (Zpu 18.54 + j 22.01 ) Shell Type Zero Seq. Z%: 2.09 + J 2.48 (Sec 18.54 + j 22.01 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1LC1C1 BUS-0031 D 480.00 BUS-0032 YG 208.00 75.00 75.00 Pos. Seq. Z%: 2.51 + J 3.36 (Zpu 33.42 + j 44.78 ) Shell Type Zero Seq. Z%: 2.51 + J 3.36 (Sec 33.42 + j 44.78 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1LC2A1 BUS-0015 D 480.00 BUS-0016 YG 208.00 112.50 112.50 Pos. Seq. Z%: 2.09 + J 2.48 (Zpu 18.54 + j 22.01 ) Shell Type Zero Seq. Z%: 2.09 + J 2.48 (Sec 18.54 + j 22.01 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-1LC2B1 BUS-0075 D 480.00 BUS-0076 YG 208.00 75.00 75.00 Pos. Seq. Z%: 2.51 + J 3.36 (Zpu 33.42 + j 44.78 ) Shell Type Zero Seq. Z%: 2.51 + J 3.36 (Sec 33.42 + j 44.78 Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 30.00 Deg. TX-UTIL CLAY S BUS-0001 Y 12470.0 BUS-0002 YG 480.00 1000.00 1000.00 Pos. Seq. Z%: 0.917 + J 5.24 (Zpu 0.917 + j 5.24 ) Shell Type Zero Seq. Z%: 9999. + J 9999. (Sec 9999. + j 9999. Pri Open) Taps Pri. 0.000 % Sec. 0.000 % Phase Shift (Pri. Leading Sec.): 0.000 Deg.

Page 35: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-10

Oct 24, 2014 14:00:16 Page 9 GENERATION CONTRIBUTION DATA ===================================================================================== BUS CONTRIBUTION VOLTAGE NAME NAME L-L MVA X"d X/R ===================================================================================== BUS-0001 UTIL-CLAY SPRI 12470.0 95.44 Three Phase Contribution: 4419.00 AMPS 6.61 Single Line to Ground Contribution: 2936.00 AMPS 6.61 Pos Sequence Impedance (100 MVA Base) 0.1567 + J 1.04 PU Zero Sequence Impedance (100 MVA Base) 0.3942 + J 2.61 PU

Page 36: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES A-11

Oct 24, 2014 14:00:16 Page 10 MOTOR CONTRIBUTION DATA ===================================================================================== BUS CONTRIBUTION VOLTAGE BASE Motor NAME NAME L-L kVA X"d X/R Number ===================================================================================== PNL-1HM1A1 MTR-1HM1A1 480 7.52 0.1692 10.0 1.00 Pos Sequence Impedance (100 MVA Base) 224.93 + j 2249.35 PU PNL-1HM1B1 MTR-1HM1B1 480 5.01 0.1692 10.0 1.00 Pos Sequence Impedance (100 MVA Base) 337.39 + j 3374.03 PU PNL-1HM2A1 MTR-1HM2A1 480 12.53 0.1692 10.0 1.00 Pos Sequence Impedance (100 MVA Base) 134.96 + j 1349.61 PU PNL-1HM2B1 MTR-1HM2B1 480 7.52 0.1692 10.0 4.00 Pos Sequence Impedance (100 MVA Base) 56.23 + j 562.34 PU SWBD-MDP MTR-CH-2 480 225.00 0.1692 10.0 1.00 Pos Sequence Impedance (100 MVA Base) 7.52 + j 75.18 PU SWBD-MDP MTR-CH-1 480 225.00 0.1692 10.0 1.00 Pos Sequence Impedance (100 MVA Base) 7.52 + j 75.18 PU

Page 37: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-1

B. APPENDIX B – Short-Circuit Results Oct 24, 2014 14:00:16B-1 ------------------------------------------------------------------------------ ALL INFORMATION PRESENTED IS FOR REVIEW, APPROVAL INTERPRETATION AND APPLICATION BY A REGISTERED ENGINEER ONLY SKM DISCLAIMS ANY RESPONSIBILITY AND LIABILITY RESULTING FROM THE USE AND INTERPRETATION OF THIS SOFTWARE. ------------------------------------------------------------------------------ SKM POWER*TOOLS FOR WINDOWS A_FAULT SHORT CIRCUIT ANALYSIS REPORT COPYRIGHT SKM SYSTEMS ANALYSIS, INC. 1996-2013 ------------------------------------------------------------------------------

Page 38: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-2

Oct 24, 2014 14:00:16 THREE PHASE LOW VOLTAGE DUTY PAGE 1 T H R E E P H A S E F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== DISC-PORTABLES 3P Duty: 14.183 KA AT -64.11 DEG ( 11.79 MVA) X/R: 2.10 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0085 + J 0.0176 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 14.183 KA MOLDED CASE CIRCUIT BREAKER < 20KA 14.183 KA MOLDED CASE CIRCUIT BREAKER > 20KA 14.183 KA CBL-PORTABLES PNL-1HDP1B1 14.183 KA ANG: -64.11 DSC-1LK1A1 3P Duty: 5.344 KA AT -54.20 DEG ( 1.93 MVA) X/R: 1.39 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0131 + J 0.0182 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 5.344 KA MOLDED CASE CIRCUIT BREAKER < 10KA 5.344 KA MOLDED CASE CIRCUIT BREAKER < 20KA 5.344 KA MOLDED CASE CIRCUIT BREAKER > 20KA 5.344 KA CBL-DSC 1LK1A1 BUS-0061 5.344 KA ANG: -54.20 PNL-1H1A1 3P Duty: 10.794 KA AT -37.67 DEG ( 8.97 MVA) X/R: 0.78 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0203 + J 0.0157 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 10.794 KA MOLDED CASE CIRCUIT BREAKER < 20KA 10.794 KA MOLDED CASE CIRCUIT BREAKER > 20KA 10.794 KA CBL-1H1A1 SWBD-MDP 10.794 KA ANG: -37.67 PNL-1H1B1 3P Duty: 13.288 KA AT -54.33 DEG ( 11.05 MVA) X/R: 1.41 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0122 + J 0.0169 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 13.288 KA MOLDED CASE CIRCUIT BREAKER < 20KA 13.288 KA MOLDED CASE CIRCUIT BREAKER > 20KA 13.288 KA CBL-1H1B1 PNL-1HDP1B1 13.288 KA ANG: 125.67 PNL-1H1C1 3P Duty: 11.145 KA AT -44.43 DEG ( 9.27 MVA) X/R: 0.99 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0178 + J 0.0174 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 11.145 KA MOLDED CASE CIRCUIT BREAKER < 20KA 11.145 KA MOLDED CASE CIRCUIT BREAKER > 20KA 11.145 KA CBL-1H1C1 PNL-1HDP1C1 11.145 KA ANG: -44.43 PNL-1H2A1 3P Duty: 9.284 KA AT -40.60 DEG ( 7.72 MVA) X/R: 0.87 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0227 + J 0.0194 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 9.284 KA MOLDED CASE CIRCUIT BREAKER < 10KA 9.284 KA MOLDED CASE CIRCUIT BREAKER < 20KA 9.284 KA MOLDED CASE CIRCUIT BREAKER > 20KA 9.284 KA CBL-1H2A1 PNL-1HDP2A1 9.284 KA ANG: -40.60

Page 39: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-3

Oct 24, 2014 14:00:16 THREE PHASE LOW VOLTAGE DUTY PAGE 2 T H R E E P H A S E F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== PNL-1H2B1 3P Duty: 10.607 KA AT -42.30 DEG ( 8.82 MVA) X/R: 0.92 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0193 + J 0.0176 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 10.607 KA MOLDED CASE CIRCUIT BREAKER < 20KA 10.607 KA MOLDED CASE CIRCUIT BREAKER > 20KA 10.607 KA CBL-1H2B1 PNL-1HDP2B1 10.607 KA ANG: -222.30 PNL-1HDP1B1 3P Duty: 16.052 KA AT -65.53 DEG ( 13.35 MVA) X/R: 2.24 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0072 + J 0.0157 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 16.052 KA MOLDED CASE CIRCUIT BREAKER < 20KA 16.052 KA MOLDED CASE CIRCUIT BREAKER > 20KA 16.052 KA CBL-1HM1B1 PNL-1HM1B1 0.021 KA ANG: -84.28 CBL-1HDP1B1 SWBD-MDP 16.032 KA ANG: -65.50 PNL-1HDP1C1 3P Duty: 14.467 KA AT -55.42 DEG ( 12.03 MVA) X/R: 1.47 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0109 + J 0.0158 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 14.467 KA MOLDED CASE CIRCUIT BREAKER < 20KA 14.467 KA MOLDED CASE CIRCUIT BREAKER > 20KA 14.467 KA CBL-1HDP1C1 SWBD-MDP 14.467 KA ANG: -55.42 PNL-1HDP2A1 3P Duty: 14.492 KA AT -61.30 DEG ( 12.05 MVA) X/R: 1.87 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0092 + J 0.0168 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 14.492 KA MOLDED CASE CIRCUIT BREAKER < 20KA 14.492 KA MOLDED CASE CIRCUIT BREAKER > 20KA 14.492 KA CBL-1HM2A1 PNL-1HM2A1 0.053 KA ANG: 95.75 CBL-1HDP2A1 SWBD-MDP 14.443 KA ANG: -61.22 PNL-1HDP2B1 3P Duty: 16.525 KA AT -64.85 DEG ( 13.74 MVA) X/R: 2.21 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0071 + J 0.0152 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 16.525 KA MOLDED CASE CIRCUIT BREAKER < 20KA 16.525 KA MOLDED CASE CIRCUIT BREAKER > 20KA 16.525 KA CBL-1HM2B1 PNL-1HM2B1 0.127 KA ANG: -84.26 CBL-1HDP2B1 SWBD-MDP 16.405 KA ANG: -64.70 PNL-1HM1A1 3P Duty: 18.468 KA AT -71.73 DEG ( 15.35 MVA) X/R: 3.12 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0047 + J 0.0142 OHMS

Page 40: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-4

Oct 24, 2014 14:00:16 THREE PHASE LOW VOLTAGE DUTY PAGE 3 T H R E E P H A S E F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== LOW VOLTAGE POWER CIRCUIT BREAKER 18.468 KA MOLDED CASE CIRCUIT BREAKER < 20KA 18.468 KA MOLDED CASE CIRCUIT BREAKER > 20KA 18.468 KA CONTRIBUTIONS: MTR-1HM1A1 0.032 KA ANG: -84.29 CBL-1HM1A1 SWBD-MDP 18.437 KA ANG: -71.71 PNL-1HM1B1 3P Duty: 14.693 KA AT -62.12 DEG ( 12.22 MVA) X/R: 1.93 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0088 + J 0.0167 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 14.693 KA MOLDED CASE CIRCUIT BREAKER < 20KA 14.693 KA MOLDED CASE CIRCUIT BREAKER > 20KA 14.693 KA CONTRIBUTIONS: MTR-1HM1B1 0.021 KA ANG: -84.29 CBL-1HM1B1 PNL-1HDP1B1 14.673 KA ANG: -242.09 PNL-1HM1C1 3P Duty: 11.453 KA AT -45.39 DEG ( 9.52 MVA) X/R: 1.02 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0170 + J 0.0172 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 11.453 KA MOLDED CASE CIRCUIT BREAKER < 20KA 11.453 KA MOLDED CASE CIRCUIT BREAKER > 20KA 11.453 KA CBL-1HM1C1 PNL-1HDP1C1 11.453 KA ANG: -45.39 PNL-1HM2A1 3P Duty: 12.206 KA AT -53.87 DEG ( 10.15 MVA) X/R: 1.41 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0134 + J 0.0183 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 12.206 KA MOLDED CASE CIRCUIT BREAKER < 20KA 12.206 KA MOLDED CASE CIRCUIT BREAKER > 20KA 12.206 KA CONTRIBUTIONS: MTR-1HM2A1 0.053 KA ANG: -84.29 CBL-1HM2A1 PNL-1HDP2A1 12.160 KA ANG: -53.75 PNL-1HM2B1 3P Duty: 15.324 KA AT -62.01 DEG ( 12.74 MVA) X/R: 1.96 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0085 + J 0.0160 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 15.324 KA MOLDED CASE CIRCUIT BREAKER < 20KA 15.324 KA MOLDED CASE CIRCUIT BREAKER > 20KA 15.324 KA CONTRIBUTIONS: MTR-1HM2B1 0.127 KA ANG: -84.29 CBL-1HM2B1 PNL-1HDP2B1 15.206 KA ANG: -241.83 PNL-1L1A1 3P Duty: 4.365 KA AT -37.76 DEG ( 1.57 MVA) X/R: 0.78 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0218 + J 0.0168 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 4.365 KA MOLDED CASE CIRCUIT BREAKER < 10KA 4.365 KA MOLDED CASE CIRCUIT BREAKER < 20KA 4.365 KA MOLDED CASE CIRCUIT BREAKER > 20KA 4.365 KA CBL-1L1A1 BUS-0009 4.365 KA ANG: -37.76

Page 41: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-5

Oct 24, 2014 14:00:16 THREE PHASE LOW VOLTAGE DUTY PAGE 4 T H R E E P H A S E F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== PNL-1L1B1 3P Duty: 4.196 KA AT -37.28 DEG ( 1.51 MVA) X/R: 0.76 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0228 + J 0.0173 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 4.196 KA MOLDED CASE CIRCUIT BREAKER < 10KA 4.196 KA MOLDED CASE CIRCUIT BREAKER < 20KA 4.196 KA MOLDED CASE CIRCUIT BREAKER > 20KA 4.196 KA CBL-1L1B1 BUS-0041 4.196 KA ANG: -37.28 PNL-1L1C1 3P Duty: 2.392 KA AT -37.90 DEG ( 0.86 MVA) X/R: 0.78 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0396 + J 0.0308 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 2.392 KA MOLDED CASE CIRCUIT BREAKER < 10KA 2.392 KA MOLDED CASE CIRCUIT BREAKER < 20KA 2.392 KA MOLDED CASE CIRCUIT BREAKER > 20KA 2.392 KA CBL-1L1C1 BUS-0029 2.392 KA ANG: -37.90 PNL-1L1CEP 3P Duty: 2.467 KA AT -26.87 DEG ( 0.89 MVA) X/R: 0.51 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0434 + J 0.0220 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 2.467 KA MOLDED CASE CIRCUIT BREAKER < 10KA 2.467 KA MOLDED CASE CIRCUIT BREAKER < 20KA 2.467 KA MOLDED CASE CIRCUIT BREAKER > 20KA 2.467 KA CBL-1L1CEP PNL-1L1A1 2.467 KA ANG: -26.87 PNL-1L2A1 3P Duty: 1.522 KA AT -49.25 DEG ( 0.55 MVA) X/R: 1.16 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0515 + J 0.0598 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 1.522 KA MOLDED CASE CIRCUIT BREAKER < 10KA 1.522 KA MOLDED CASE CIRCUIT BREAKER < 20KA 1.522 KA MOLDED CASE CIRCUIT BREAKER > 20KA 1.522 KA CBL-1L2A1 BUS-0019 1.522 KA ANG: -49.25 PNL-1L2B1 3P Duty: 1.519 KA AT -49.03 DEG ( 0.55 MVA) X/R: 1.15 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0518 + J 0.0597 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 1.519 KA MOLDED CASE CIRCUIT BREAKER < 10KA 1.519 KA MOLDED CASE CIRCUIT BREAKER < 20KA 1.519 KA MOLDED CASE CIRCUIT BREAKER > 20KA 1.519 KA CBL-1L2B1 BUS-0073 1.519 KA ANG: -49.03 PNL-1LC1A1 3P Duty: 2.216 KA AT -40.43 DEG ( 0.80 MVA) X/R: 0.85 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0413 + J 0.0351 OHMS

Page 42: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-6

Oct 24, 2014 14:00:16 THREE PHASE LOW VOLTAGE DUTY PAGE 5 T H R E E P H A S E F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== LOW VOLTAGE POWER CIRCUIT BREAKER 2.216 KA MOLDED CASE CIRCUIT BREAKER < 10KA 2.216 KA MOLDED CASE CIRCUIT BREAKER < 20KA 2.216 KA MOLDED CASE CIRCUIT BREAKER > 20KA 2.216 KA CBL-1LC1A1 BUS-0065 2.216 KA ANG: -40.43 PNL-1LC1B1 3P Duty: 7.023 KA AT -49.90 DEG ( 2.53 MVA) X/R: 1.19 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0110 + J 0.0131 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 7.023 KA MOLDED CASE CIRCUIT BREAKER < 10KA 7.023 KA MOLDED CASE CIRCUIT BREAKER < 20KA 7.023 KA MOLDED CASE CIRCUIT BREAKER > 20KA 7.023 KA CBL-1LC1B1 BUS-0044 7.023 KA ANG: -49.90 PNL-1LC1C1 3P Duty: 3.945 KA AT -50.41 DEG ( 1.42 MVA) X/R: 1.21 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0194 + J 0.0235 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 3.945 KA MOLDED CASE CIRCUIT BREAKER < 10KA 3.945 KA MOLDED CASE CIRCUIT BREAKER < 20KA 3.945 KA MOLDED CASE CIRCUIT BREAKER > 20KA 3.945 KA CBL-1LC1C1 BUS-0032 3.945 KA ANG: -50.41 PNL-1LC2A1 3P Duty: 6.989 KA AT -51.07 DEG ( 2.52 MVA) X/R: 1.24 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0108 + J 0.0134 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 6.989 KA MOLDED CASE CIRCUIT BREAKER < 10KA 6.989 KA MOLDED CASE CIRCUIT BREAKER < 20KA 6.989 KA MOLDED CASE CIRCUIT BREAKER > 20KA 6.989 KA CBL-1LC2A1 BUS-0016 6.989 KA ANG: -51.07 PNL-1LC2B1 3P Duty: 4.043 KA AT -51.85 DEG ( 1.46 MVA) X/R: 1.28 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0183 + J 0.0234 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 4.043 KA MOLDED CASE CIRCUIT BREAKER < 10KA 4.043 KA MOLDED CASE CIRCUIT BREAKER < 20KA 4.043 KA MOLDED CASE CIRCUIT BREAKER > 20KA 4.043 KA CBL-1LC2B1 BUS-0076 4.043 KA ANG: -51.85 PNL-1LK1A1 3P Duty: 4.786 KA AT -51.80 DEG ( 1.72 MVA) X/R: 1.27 VOLTAGE: 208. EQUIV. IMPEDANCE= 0.0155 + J 0.0197 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 4.786 KA MOLDED CASE CIRCUIT BREAKER < 10KA 4.786 KA MOLDED CASE CIRCUIT BREAKER < 20KA 4.786 KA MOLDED CASE CIRCUIT BREAKER > 20KA 4.786 KA

Page 43: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-7

Oct 24, 2014 14:00:16 THREE PHASE LOW VOLTAGE DUTY PAGE 6 T H R E E P H A S E F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== CONTRIBUTIONS TO PNL-1LK1A1 (CONTINUED) CBL-1LK1A1 DSC-1LK1A1 4.786 KA ANG: 128.20 SWBD-MDP 3P Duty: 20.498 KA AT -79.47 DEG ( 17.04 MVA) X/R: 5.69 VOLTAGE: 480. EQUIV. IMPEDANCE= 0.0025 + J 0.0133 OHMS LOW VOLTAGE POWER CIRCUIT BREAKER 20.498 KA MOLDED CASE CIRCUIT BREAKER > 20KA 21.156 KA CONTRIBUTIONS: MTR-CH-2 1.327 KA ANG: -84.29 MTR-CH-1 1.327 KA ANG: -84.29 CBL-1HM1A1 PNL-1HM1A1 0.032 KA ANG: 95.72 CBL-MDP BUS-0002 17.624 KA ANG: -78.68 CBL-1HDP2B1 PNL-1HDP2B1 0.127 KA ANG: 95.86 CBL-1HDP2A1 PNL-1HDP2A1 0.053 KA ANG: 95.82 CBL-1HDP1B1 PNL-1HDP1B1 0.021 KA ANG: 95.74

Page 44: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-8

Oct 24, 2014 14:00:16 UNBALANCED LOW VOLTAGE DUTY PAGE 1 U N B A L A N C E D F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== LOCATION FAULT KA X/R EQUIVALENT (PU) ASYM. KA AT 0.5 CYCLES VOLTAGE DUTIES (RMS) FAULT IMPEDANCE * MAX. RMS AVG. RMS * ============================================================================== DISC-PORTABLES 3P Duty: 14.183 2. Z1= 8.4807 14.875 14.531 SLG DUTY: 0.000 1. Z2= 8.4807 0.000 480. VOLTS LN/LN: 12.283 Z0= INFINITE LN/LN/GND: 12.283 ( 0.000 GND RETURN KA) DSC-1LK1A1 3P Duty: 5.344 1. Z1= 51.9368 5.402 5.373 SLG DUTY: 5.366 1. Z2= 51.9368 5.405 208. VOLTS LN/LN: 4.628 Z0= 51.5757 LN/LN/GND: 5.543 ( 5.379 GND RETURN KA) PNL-1H1A1 3P Duty: 10.794 1. Z1= 11.1430 10.798 10.796 SLG DUTY: 0.000 1. Z2= 11.1430 0.000 480. VOLTS LN/LN: 9.348 Z0= INFINITE LN/LN/GND: 9.348 ( 0.000 GND RETURN KA) PNL-1H1B1 3P Duty: 13.288 1. Z1= 9.0522 13.441 13.364 SLG DUTY: 0.000 1. Z2= 9.0522 0.000 480. VOLTS LN/LN: 11.507 Z0= INFINITE LN/LN/GND: 11.507 ( 0.000 GND RETURN KA) PNL-1H1C1 3P Duty: 11.145 1. Z1= 10.7927 11.164 11.154 SLG DUTY: 0.000 1. Z2= 10.7927 0.000 480. VOLTS LN/LN: 9.652 Z0= INFINITE LN/LN/GND: 9.652 ( 0.000 GND RETURN KA) PNL-1H2A1 3P Duty: 9.284 1. Z1= 12.9564 9.290 9.287 SLG DUTY: 0.000 1. Z2= 12.9564 0.000 480. VOLTS LN/LN: 8.040 Z0= INFINITE LN/LN/GND: 8.040 ( 0.000 GND RETURN KA) PNL-1H2B1 3P Duty: 10.607 1. Z1= 11.3396 10.619 10.613 SLG DUTY: 0.000 1. Z2= 11.3396 0.000 480. VOLTS LN/LN: 9.186 Z0= INFINITE LN/LN/GND: 9.186 ( 0.000 GND RETURN KA) PNL-1HDP1B1 3P Duty: 16.052 2. Z1= 7.4932 17.001 16.530 SLG DUTY: 0.000 1. Z2= 7.4932 0.000 480. VOLTS LN/LN: 13.901 Z0= INFINITE LN/LN/GND: 13.901 ( 0.000 GND RETURN KA)

Page 45: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-9

Oct 24, 2014 14:00:16 UNBALANCED LOW VOLTAGE DUTY PAGE 2 U N B A L A N C E D F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== LOCATION FAULT KA X/R EQUIVALENT (PU) ASYM. KA AT 0.5 CYCLES VOLTAGE DUTIES (RMS) FAULT IMPEDANCE * MAX. RMS AVG. RMS * ============================================================================== PNL-1HDP1C1 3P Duty: 14.467 1. Z1= 8.3141 14.666 14.567 SLG DUTY: 0.000 1. Z2= 8.3141 0.000 480. VOLTS LN/LN: 12.529 Z0= INFINITE LN/LN/GND: 12.529 ( 0.000 GND RETURN KA) PNL-1HDP2A1 3P Duty: 14.492 2. Z1= 8.2997 14.989 14.742 SLG DUTY: 0.000 1. Z2= 8.2997 0.000 480. VOLTS LN/LN: 12.551 Z0= INFINITE LN/LN/GND: 12.551 ( 0.000 GND RETURN KA) PNL-1HDP2B1 3P Duty: 16.525 2. Z1= 7.2788 17.459 16.995 SLG DUTY: 0.000 1. Z2= 7.2788 0.000 480. VOLTS LN/LN: 14.311 Z0= INFINITE LN/LN/GND: 14.311 ( 0.000 GND RETURN KA) PNL-1HM1A1 3P Duty: 18.468 3. Z1= 6.5131 20.792 19.648 SLG DUTY: 0.000 1. Z2= 6.5131 0.000 480. VOLTS LN/LN: 15.994 Z0= INFINITE LN/LN/GND: 15.994 ( 0.000 GND RETURN KA) PNL-1HM1B1 3P Duty: 14.693 2. Z1= 8.1865 15.245 14.970 SLG DUTY: 0.000 1. Z2= 8.1865 0.000 480. VOLTS LN/LN: 12.724 Z0= INFINITE LN/LN/GND: 12.724 ( 0.000 GND RETURN KA) PNL-1HM1C1 3P Duty: 11.453 1. Z1= 10.5018 11.478 11.466 SLG DUTY: 0.000 1. Z2= 10.5018 0.000 480. VOLTS LN/LN: 9.919 Z0= INFINITE LN/LN/GND: 9.919 ( 0.000 GND RETURN KA) PNL-1HM2A1 3P Duty: 12.206 1. Z1= 9.8542 12.346 12.276 SLG DUTY: 0.000 1. Z2= 9.8542 0.000 480. VOLTS LN/LN: 10.571 Z0= INFINITE LN/LN/GND: 10.571 ( 0.000 GND RETURN KA) PNL-1HM2B1 3P Duty: 15.324 2. Z1= 7.8493 15.928 15.627 SLG DUTY: 0.000 1. Z2= 7.8493 0.000 480. VOLTS LN/LN: 13.271 Z0= INFINITE LN/LN/GND: 13.271 ( 0.000 GND RETURN KA)

Page 46: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-10

Oct 24, 2014 14:00:16 UNBALANCED LOW VOLTAGE DUTY PAGE 3 U N B A L A N C E D F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== LOCATION FAULT KA X/R EQUIVALENT (PU) ASYM. KA AT 0.5 CYCLES VOLTAGE DUTIES (RMS) FAULT IMPEDANCE * MAX. RMS AVG. RMS * ============================================================================== PNL-1L1A1 3P Duty: 4.365 1. Z1= 63.5933 4.366 4.365 SLG DUTY: 4.375 1. Z2= 63.5933 4.376 208. VOLTS LN/LN: 3.780 Z0= 63.2668 LN/LN/GND: 4.466 ( 4.383 GND RETURN KA) PNL-1L1B1 3P Duty: 4.196 1. Z1= 66.1558 4.197 4.196 SLG DUTY: 4.260 1. Z2= 66.1558 4.261 208. VOLTS LN/LN: 3.634 Z0= 63.2668 LN/LN/GND: 4.311 ( 4.324 GND RETURN KA) PNL-1L1C1 3P Duty: 2.392 1. Z1= 116.0215 2.393 2.393 SLG DUTY: 2.396 1. Z2= 116.0215 2.397 208. VOLTS LN/LN: 2.072 Z0= 115.5752 LN/LN/GND: 2.431 ( 2.399 GND RETURN KA) PNL-1L1CEP 3P Duty: 2.467 1. Z1= 112.5189 2.467 2.467 SLG DUTY: 1.877 0. Z2= 112.5189 1.877 208. VOLTS LN/LN: 2.136 Z0= 220.2668 LN/LN/GND: 2.362 ( 1.509 GND RETURN KA) PNL-1L2A1 3P Duty: 1.522 1. Z1= 182.4194 1.528 1.525 SLG DUTY: 1.508 1. Z2= 182.4194 1.513 208. VOLTS LN/LN: 1.318 Z0= 187.7629 LN/LN/GND: 1.542 ( 1.493 GND RETURN KA) PNL-1L2B1 3P Duty: 1.519 1. Z1= 182.7689 1.525 1.522 SLG DUTY: 1.489 1. Z2= 182.7689 1.494 208. VOLTS LN/LN: 1.315 Z0= 193.9973 LN/LN/GND: 1.540 ( 1.460 GND RETURN KA) PNL-1LC1A1 3P Duty: 2.216 1. Z1= 125.2772 2.217 2.216 SLG DUTY: 2.199 1. Z2= 125.2772 2.200 208. VOLTS LN/LN: 1.919 Z0= 128.3055 LN/LN/GND: 2.239 ( 2.181 GND RETURN KA) PNL-1LC1B1 3P Duty: 7.023 1. Z1= 39.5210 7.059 7.041 SLG DUTY: 7.340 1. Z2= 39.5210 7.366 208. VOLTS LN/LN: 6.082 Z0= 34.5291 LN/LN/GND: 7.394 ( 7.678 GND RETURN KA)

Page 47: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-11

Oct 24, 2014 14:00:16 UNBALANCED LOW VOLTAGE DUTY PAGE 4 U N B A L A N C E D F A U L T R E P O R T (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO ============================================================================== LOCATION FAULT KA X/R EQUIVALENT (PU) ASYM. KA AT 0.5 CYCLES VOLTAGE DUTIES (RMS) FAULT IMPEDANCE * MAX. RMS AVG. RMS * ============================================================================== PNL-1LC1C1 3P Duty: 3.945 1. Z1= 70.3550 3.967 3.956 SLG DUTY: 4.071 1. Z2= 70.3550 4.093 208. VOLTS LN/LN: 3.417 Z0= 63.8472 LN/LN/GND: 4.026 ( 4.205 GND RETURN KA) PNL-1LC2A1 3P Duty: 6.989 1. Z1= 39.7158 7.033 7.011 SLG DUTY: 7.389 1. Z2= 39.7158 7.428 208. VOLTS LN/LN: 6.053 Z0= 33.3063 LN/LN/GND: 7.325 ( 7.834 GND RETURN KA) PNL-1LC2B1 3P Duty: 4.043 1. Z1= 68.6475 4.073 4.058 SLG DUTY: 4.106 1. Z2= 68.6475 4.131 208. VOLTS LN/LN: 3.502 Z0= 65.5532 LN/LN/GND: 4.132 ( 4.170 GND RETURN KA) PNL-1LK1A1 3P Duty: 4.786 1. Z1= 57.9952 4.820 4.803 SLG DUTY: 4.632 1. Z2= 57.9952 4.656 208. VOLTS LN/LN: 4.145 Z0= 63.9389 LN/LN/GND: 4.832 ( 4.484 GND RETURN KA) SWBD-MDP 3P Duty: 20.498 6. Z1= 5.8679 26.431 23.565 SLG DUTY: 0.000 1. Z2= 5.8679 0.000 480. VOLTS LN/LN: 17.752 Z0= INFINITE LN/LN/GND: 17.752 ( 0.000 GND RETURN KA)

Page 48: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES B-12

Oct 24, 2014 14:00:16 UNBALANCED LOW VOLTAGE DUTY PAGE 5 F A U L T S T U D Y S U M M A R Y (FOR APPLICATION OF LOW VOLTAGE BREAKERS) PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO BUS RECORD VOLTAGE A V A I L A B L E F A U L T D U T I E S (KA) NO NAME L-L 3 PHASE X/R LINE/GRND X/R ============================================================================== DISC-PORTABLES 480. 14.183 2.10 0.000 1.00 DSC-1LK1A1 208. 5.344 1.39 5.366 1.27 PNL-1H1A1 480. 10.794 0.78 0.000 1.00 PNL-1H1B1 480. 13.288 1.41 0.000 1.00 PNL-1H1C1 480. 11.145 0.99 0.000 1.00 PNL-1H2A1 480. 9.284 0.87 0.000 1.00 PNL-1H2B1 480. 10.607 0.92 0.000 1.00 PNL-1HDP1B1 480. 16.052 2.24 0.000 1.00 PNL-1HDP1C1 480. 14.467 1.47 0.000 1.00 PNL-1HDP2A1 480. 14.492 1.87 0.000 1.00 PNL-1HDP2B1 480. 16.525 2.21 0.000 1.00 PNL-1HM1A1 480. 18.468 3.12 0.000 1.00 PNL-1HM1B1 480. 14.693 1.93 0.000 1.00 PNL-1HM1C1 480. 11.453 1.02 0.000 1.00 PNL-1HM2A1 480. 12.206 1.41 0.000 1.00 PNL-1HM2B1 480. 15.324 1.96 0.000 1.00 PNL-1L1A1 208. 4.365 0.78 4.375 0.73 PNL-1L1B1 208. 4.196 0.76 4.260 0.73 PNL-1L1C1 208. 2.392 0.78 2.396 0.75 PNL-1L1CEP 208. 2.467 0.51 1.877 0.40 PNL-1L2A1 208. 1.522 1.16 1.508 1.11 PNL-1L2B1 208. 1.519 1.15 1.489 1.09 PNL-1LC1A1 208. 2.216 0.85 2.199 0.82 PNL-1LC1B1 208. 7.023 1.19 7.340 1.12 PNL-1LC1C1 208. 3.945 1.21 4.071 1.20 PNL-1LC2A1 208. 6.989 1.24 7.389 1.20 PNL-1LC2B1 208. 4.043 1.28 4.106 1.24 PNL-1LK1A1 208. 4.786 1.27 4.632 1.19 SWBD-MDP 480. 20.498 5.69 0.000 1.00 52 FAULTED BUSES, 59 BRANCHES, 7 CONTRIBUTIONS UNBALANCED FAULTS REQUESTED *** SHORT CIRCUIT STUDY COMPLETE ***

Page 49: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES C-1

C. APPENDIX C – Utility Data See Utility Source Data on the attached sheet(s).

Page 50: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

1

Null, Wilma K

From: Harper, Jeffrey J <[email protected]>Sent: Thursday, October 09, 2014 10:10 AMTo: Null, Wilma KSubject: RE: Clay Springs Elementary School - Power System Study - Fault Data Requested

Per your request…  •             Primary 3‐Phase Fault (LLL actual fault value) _4419_____ amps •             Primary Line‐Ground Fault (LG) = __2936____amps •             Associated Max‐Min  X/R ratios at the Primary side:  ___6.61_______X/R •             Nearest upstream phase and ground overcurrent device trip information (if fuse, provide manufacturer, type, amp rating, speed, and nominal system voltage; if relay, provide manufacturer, style, CT ratios, and adjustable settings):  100 A fuse “very slow” speed – Kearney KS ‐at terminal pole.  (12.47 KV)  •             Site Utility transformer:  ____1000________ kVA.  •             Voltage kV Rating (Primary : Secondary): 12.47 KV. 480/277 V. •             Nameplate/Design Impedance %Z: _5.32___ (I understand that this can change if the transformer is replaced) . •             Transformer X/R Ration: __5.5____ •             Winding Configuration: __Wye‐Wye___  

From: [email protected] [mailto:[email protected]] Sent: Wednesday, October 08, 2014 2:42 PM To: Harper, Jeffrey J Subject: Clay Springs Elementary School - Power System Study - Fault Data Requested  

*** This is an EXTERNAL email. Exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email. *** Good afternoon Jeff,  I just left a voicemail on your phone, but would like to follow‐up regarding the items needed below.  As mentioned, I am performing the Short Circuit and Coordination power study for the Clay Springs Elementary School project.  As I have not seen any data on the utility transformer or service to be provided, would you please confirm the following items needed from the primary and secondary side of the utility transformer for the study, or forward on to the applicable department?  

Primary 3‐Phase Fault (LLL actual fault value) ______ amps 

Primary Line‐Ground Fault (LG) = ______amps 

Associated Max‐Min  X/R ratios at the Primary side:  __________X/R 

Nearest upstream phase and ground overcurrent device trip information (if fuse, provide manufacturer, type, amp rating, speed, and nominal system voltage; if relay, provide manufacturer, style, CT ratios, and adjustable settings) 

 

Site Utility transformer:  ____________ kVA.  

Voltage kV Rating (Primary : Secondary): ____kV : 480/277V 

Nameplate/Design Impedance %Z: ____ (I understand that this can change if the transformer is replaced) .  

Transformer X/R Ration: ______ 

Page 51: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

2

Winding Configuration: _____  Please contact me if you have any questions regarding the request above.  Thank you! Wilma  Wilma Null, P.E. LEED® AP, QCxP  EESS Power Systems Engineering 408 West University Avenue, Suite 402 Gainesville, FL 32601 Ph: +1 352 672‐2886 [email protected] www.eaton.com 

  

Page 52: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

Clay Springs ES D-1

D. APPENDIX D – One-Line Diagram and Legend See power system study one-line diagram on the attached sheet.

Table D.1 – One-Line Diagram Index

One-Line Diagram Page Number

Description

EEB-IMI140564-E1 1 of 1 MAIN ELETRICAL DISTRIBUTION – SC AND COORD

One-line diagram on the attached sheet may include the following abbreviations and symbols.

Abbreviations Description Symbol CBL Cable / Feeder MN Main Circuit Breaker BKR Feeder / Circuit Breaker CB / CKT Circuit Breaker BPS Fused Bolted Pressure Switch FU Fused Disconnect / Breaker GEN Generator PNL Panel / Distribution Panel SWBD Switchboard SWGR Switchgear DISC Disconnect MTR Motor TX / XFMR Transformer UTIL Utility Source

S

P

Page 53: Clay Springs ES · on the contribution data derived from StdIEEE C37.13 -2008. The fault currents are calculated as follows: • Motor and generator subtransient reactance values

THE INFORMATION ON THIS DOCUMENT WAS CREATED BY EATON ELECTRICAL. IT WAS DISCLOSED IN CONFIDENCE AND IS ONLY TO BE USED FOR THE PURPOSE IN WHICH IT WAS SUPPLIED.

REV ISSUED DESCRIPTION CLAY SPRINGS ELEMENTARY SCHOOL POWER SYSTEM STUDY

MAIN ELECTRICAL DISTRIBUTION SC AND COORD - ONE-LIINE DIAGRAM 00 10/xx/2014 STUDY REV 00

EATON ELECTRICAL SERVICES & SYSTEMS BY: WKN

G.O.: IMI140564

DWG: EEB- IMI140564-E1

SIZE: B

SHEET: 1 OF 1

UTIL-CLAY SPRINGS ES12470.0 VSC 3P 4419.0 AmpsSC SLG 2936.0 Amps

S

P

TX-UTIL CLAY SPRINGS1000.0 kVA12470 / 480V5.32% Z

CBL-MDP6 - #600, 155 ft

BKR-MDP-MNRG, 310+2500A SWBD-MDP

480V3P LV 20.498 kABKR-1HM1A1

HFD200A

CBL-1HM1A11 - #250, 25 ft

BKR-TX-1L1A1HFD100A

CBL-TX-1L1A11 - #3, 31 ft

S

P TX-1L1A175.0 kVA480 / 208V3.93% Z

CBL-1L1A11 - #300, 19 ft

BKR-1L1A1-MNED225A

PNL-1L1A1208V3P LV 4.365 kA

BKR-TX-1L1K1HFD150A

CBL-TX-1L1K11 - #3/0, 31 ft

BKR-1HDP2A1HKD350A

CBL-1HDP2A12 - #400, 240 ft

PNL-1HDP2A1480V3P LV 14.492 kA

BKR-TX-1LC2A1HFD150A

CBL-TX-1LC2A11 - #1/0, 22 ft

S

P TX-1LC2A1112.5 kVA480 / 208V3.24% Z

CBL-1LC2A12 - #250, 19 ft

BKR-1LC2A1-MNHKD350A

PNL-1LC2A1208V3P LV 6.989 kA

BKR-TX-1L2A1HFD40A

CBL-TX-1L2A11 - #8, 22 ft

S

P TX-1L2A130.0 kVA480 / 208V4.79% Z

CBL-1L2A11 - #3, 19 ft

BKR-1L2A1-MNFD90A

PNL-1L2A1208V3P LV 1.522 kA

BKR-1LC2A1-CKTBAB, 3-Pole30A

BKR-1L2A1-CKTBAB, 1-Pole20A

BKR-1HM2A1HFD175A

CBL-1HM2A11 - #4/0, 40 ft

PNL-1HM2A1480V3P LV 12.206 kA

BKR-1H2A1HFD70A

CBL-1H2A11 - #4, 42 ft

PNL-1H2A1480V3P LV 9.284 kA

BKR-1HDP1C1HKD300A

CBL-1HDP1C12 - #4/0, 160 ft

PNL-1HDP1C1480V3P LV 14.467 kA

BKR-TX-1L1C1HFD60A

CBL-TX-1L1C11 - #6, 35 ft

S

P TX-1L1C145.0 kVA480 / 208V4.26% Z

CBL-1L1C11 - #2/0, 19 ft

BKR-1L1C1-MNED125A

PNL-1L1C1208V3P LV 2.392 kA

BKR-TX-1LC1C1HFD100A

CBL-TX-1LC1C11 - #3, 38 ft

S

P TX-1LC1C175.0 kVA480 / 208V4.19% Z

CBL-1LC1C11 - #400, 19 ft

BKR-1LC1C1-MNED225A

PNL-1LC1C1208V3P LV 3.945 kA

BKR-1H1C1HFD90A

CBL-1H1C11 - #3, 27 ft

PNL-1H1C1480V3P LV 11.145 kA

BKR-1HM1C1HFD100A

CBL-1HM1C11 - #3, 24 ft

PNL-1HM1C1480V3P LV 11.453 kA

BKR-1HDP1B1HMDL800A

CBL-1HDP1B13 - #400, 250 ft

BKR-TX-1L1B1HFD100A

CBL-TX-1L1B11 - #3, 34 ft

S

P TX-1L1B175.0 kVA480 / 208V3.93% Z

CBL-1L1B11 - #300, 19 ft

BKR-1L1B1-MNED225A

PNL-1L1B1208V3P LV 4.196 kA

BKR-TX-1LC1B1HFD150A

CBL-TX-1LC1B11 - #3/0, 32 ft

S

P TX-1LC1B1112.5 kVA480 / 208V3.24% Z

CBL-1LC1B12 - #250, 19 ft

BKR-1LC1B1-MNHKD350A

PNL-1LC1B1208V3P LV 7.023 kA

BKR-1H1B1HFD110A

CBL-1H1B11 - #2/0, 30 ft

BKR-1HM1B1HJD250A

CBL-1HM1B11 - #350, 26 ft

PNL-1HM1B1480V3P LV 14.693 kA

PNL-1H1B1480V3P LV 13.288 kA

PNL-1HDP1B1480V3P LV 16.052 kA

PNL-1HM1A1480V3P LV 18.468 kA

BKR-1L1C1-CKTBAB, 3-Pole60A

BKR-CH-1HKD300A

MTR-CH-11 - 225.0 kVA

BKR-CH-2HKD300A

MTR-CH-21 - 225.0 kVA

BKR-1L1CEPFD70A

S

P TX-1L1K1112.5 kVA480 / 208V4.73% Z

CBL-DSC 1LK1A12 - #4/0, 29 ft

FU-1LK1A1DH Heavy Duty

CBL-1LK1A12 - #4/0, 75 ft

PNL-1LK1A1208V3P LV 4.786 kA

BKR-1LK1A1-CKTBAB, 3-Pole60A

BKR-TX-1LC1A1HFD40A

CBL-TX-1LC1A11 - #8, 33 ft

S

P TX-1LC1A130.0 kVA480 / 208V3.09% Z

CBL-1LC1A11 - #2, 19 ft

BKR-1LC1A1-MNFD90A

PNL-1LC1A1208V3P LV 2.216 kA

BKR-1LC1A1-CKTBAB, 1-Pole20A

BKR-1H1A1HFD60A

CBL-1H1A11 - #6, 35 ft

PNL-1H1A1480V3P LV 10.794 kA

BKR-1HDP2B1HMDL700A

CBL-1HDP2B13 - #300, 190 ft

BKR-TX-1L2B1HFD40A

CBL-TX-1L2B11 - #8, 20 ft

S

P TX-1L2B130.0 kVA480 / 208V4.79% Z

CBL-1L2B11 - #3, 23 ft

BKR-1L2B1-MNFD90A

PNL-1L2B1208V3P LV 1.519 kA

BKR-TX-1LC2B1HFD100A

CBL-TX-1LC2B11 - #3, 26 ft

S

P TX-1LC2B175.0 kVA480 / 208V4.19% Z

CBL-1LC2B11 - #400, 23 ft

BKR-1LC2B1-MNED225A

PNL-1LC2B1208V3P LV 4.043 kA

BKR-1H2B1HFD70A

CBL-1H2B11 - #4, 38 ft

BKR-1HM2B1LGH/LGE500A

CBL-1HM2B12 - #350, 43 ft

PNL-1HM2B1480V3P LV 15.324 kA

PNL-1H2B1480V3P LV 10.607 kA

PNL-1HDP2B1480V3P LV 16.525 kA

BKR-1H2A1-CKTGHQ20A

BKR-1HM2B1-CKTHFD225A

BKR-1H1A1-CKTGHB/GHC/GD30ABKR-1HM1A1-CKT

GHB/GHC/GD80A

BKR-1HM1B1-CKTEHD70A

BKR-PORTABLESHKD400A

BKR-1LK1A1-MNDK350A

DSC-1LK1A1208V3P LV 5.344 kA

CBL-1L1CEP1 - #3, 85 ft

PNL-1L1CEP208V3P LV 2.467 kA

CBL-PORTABLES1 - #500, 50 ft

DISC-PORTABLES480V3P LV 14.183 kA

MTR-1HM1B11 - 5.0 hp

MTR-1HM1A11 - 7.5 hp

MTR-1HM2B14 - 7.5 hp

MTR-1HM2A11 - 12.5 hp

BKR-SPDHFD30A

BKR-1LC1B1-CKTBAB, 3-Pole30A

FU-UTILK Fuse Links100A