22
1 ng cal Pot . Scat t er in Classic W. Udo Schröder, 2008

Cl C W. Udo Schröder, 2008 - University of Rochester · 2018. 6. 21. · 2b 2EL 1 1 0 d A 7 Cl a s s i c a l P o t. S c a t t e r i n g 0 0 2bdtan (r) 22 A 2bdcot cot 22E2 C cm 2

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    gC

    lass

    ical

    Pot

    . Sca

    tter

    ing

    W. Udo Schröder, 2008

  • Classical Potential Scattering Deflection Function

    To infinity

    Angular Momentum

    p

    L 1 2 Conservative potentialconserves energy E.

    Central potential

    V(r )

    V(r ) V(r )

    From infinity

    Distance of closest approach

    p

    r

    Central potentialconserves angular momentum L.

    V(r ) V(r )

    2

    Coul Nucl 2

    ( 1)V(r , ) V (r ) V (r )

    2 r

    2C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    infinity

    Scatter Angle Classical deflection function

    maps radial dependence

    Coul Nucl 2V(r , ) V (r ) V (r ) 2 r

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    Scatter Centerb = Impact Parameter

    Symmetric trajectoryr = classical turning point ( E (r )=0 )

    maps radial dependenceof potential in elastic scattering to an angular dependence of the

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    0r2 d dr dr

    r0 = classical turning point ( Er(r0 )=0 ) dependence of the scattering cross section d d ( )

    W. Udo Schröder, 2008

    0r

  • Classical Potential Scattering Deflection Function

    To infinity

    Angular Momentum

    p

    L 1 2 2Coul Nucl 2

    ( 1)V(r , ) V (r ) V (r )

    2 r

    From infinity

    Distance of closest approach

    p

    r2

    r cm

    2 2

    drE ( ) E V(r , )

    2 dt

    d ( 1)E ( ) r

    radial

    tangential

    3C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    infinity

    Scatter Angle

    t 2

    2 2

    t cm2

    2 2 2

    d ( 1)E ( ) r

    2 dt 2 r

    d 2 dr 2E ( ); E V(r , )

    dt dtr

    tangential

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    Scatter Centerb = Impact Parameter

    Langer modification :r2 d dr dr

    Symmetric trajectoryr0 = classical turning point ( E (r )=0 )

    2 2 2t

    2cm

    E ( )d d drdt dtdr r E V(r , )

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2( 1) ( 1 2)

    Langer modificatio

    d 1 ( 1 2)

    n :0r

    2 d dr dr 0point ( Er(r0 )=0 )

    dr ( 1 2)2

    W. Udo Schröder, 2008

    2

    cm

    d 1 ( 1 2)dr r 2 E V(r , )0

    2rcm

    dr ( 1 2)2

    r 2 E V(r , )

  • Classical Cross Section and Deflection Function

    All projectiles impinging on area 2 bdb are scattered to solid angle element daround angle

    dF=2 R’dR’

    around angle

    bd ( ) 2 b db

    dF R dR

    b db R’

    dR’

    R

    2 R’dR’

    4C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    2 2

    1

    b

    dF R dRd 2 2 sin d

    R R

    d ( ) 2 b db b( ) dd 2 sin d sin db

    2 bdb

    dR’

    R’=RsindR’=Rd

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g d 2 sin d sin dbdR’=Rd

    1

    bd ( ) b( ) d1 2L

    Langer : bp

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    b

    d sin db

    12 1d ( ) d

    p

    Strength of deflection of trajectories ( ) determines

    W. Udo Schröder, 2008

    12 1d ( ) dd sin d

    trajectories ( ) determines differential cross section d /d

  • Coulomb Trajectories

    2 2

    2 21 2

    2

    V(r , ) :r r2 r 2 r

    e ( 1 LA)Z Z

    Hyperbolic trajectories in 1/r potential

    0 cm

    2cm

    r r2 r 2 r

    L b d 2E b const.

    E 2

    Distance of closest approach d(b) r0

    5C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    0

    0 cm

    Distance of closest approach d(b) r

    Central collision: b 0d d(b 0) A E

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2

    0 cm r 020 0

    22

    A Lr r E E (r ) 0

    r 2 r

    A Lr r 0

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    20 0

    cm cm

    2 2

    0cm cm cm

    r r 0E 2 E

    A A Lr

    2E 2E 2 E

    W. Udo Schröder, 2008

    cm cm cm

    2 20 0 0

    2E 2E 2 E

    d(b) r d 2 d 2 b

  • Coulomb Trajectories

    Distance of closest approach2 2

    0Lcm cm cm

    Distance of closest approach

    A A Lr

    2E 2E 2 E

    1 22cm2EL 2A Ldr

    cm cm cm

    2 20 0

    2E 2E 2 E

    d d 2 d 2 b

    0

    6C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    0L

    cm2 2 2r

    2

    2EL 2A Ldr

    rr r

    variable transform

    x : L r dx dr L r

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    0L

    1 20 2cm

    x

    0

    2E 2Adx x x

    L

    x A L

    x : L r dx dr L r

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    0

    2cm x

    0

    x A Larc sin

    2E (A L)

    x L A 1

    W. Udo Schröder, 2008

    0

    20 x

    x L A 1arc sin

    1 (2b d )

  • Coulomb Deflection Functions

    0

    0

    20 x

    x L A 1arc sin

    1 (2b d )

    2 2

    0

    1 1cos

    2E L2b 11Ad0

    7C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    0

    0

    0

    2b d tan (r )2 2A

    2b d cot cot2 2E 2

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    0cm

    2b d cot cot2 2E 2

    21 2e Z Z 1b 2 arctan

    2E b

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    cm

    b 2 arctan2E b

    2 21 2 1 2

    Sommerfeld Parameter

    e Z Z e Z Z2 arctan

    W. Udo Schröder, 2008

    1 2 1 2

    2cm

    e Z Z e Z Z

    2E2 arctan

    1 2

  • The Rutherford Formula

    2 1d ( ) dd sin d

    2 2

    2

    1 1 dtan

    2 1 2 2 dcos ( 2) ( 1 2)d

    2 cos ( 2)

    8C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    22

    2 2 2

    d2 cos ( 2)

    d ( 1 2)2 2

    tan cos ( 2) sin ( 2)2

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2

    2

    1d ( ) 1d 2 sin sin ( 2)

    22d ( )

    Rutherford Cross Section

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2 2

    2

    2 2

    2

    cos( 2) 12 sin sin( 2) sin ( 2)

    cos( 2) 14 sin( 2)cos( 2) sin( 2) sin ( 2)

    4d sin ( 2)

    221 2d ( ) e Z Z 1

    W. Udo Schröder, 2008

    24sin( 2)cos( 2) sin( 2) sin ( 2)1 24

    cm

    d ( ) e Z Z 1d 4E sin ( 2)

  • Finite Size Coulomb Potentials

    Coulomb potential between point Point Nucleus

    1 cr r R

    Coulomb potential between point charge and homogenous sharp sphere

    Finite Size Nucleus

    221 2

    1

    ( ) 13 ,

    2

    c

    hsCoul

    cc c

    r r R

    V r e Z Z rr R

    R R

    9C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    More realistic (if non-adiabatic)

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    More realistic (if non-adiabatic) Coulomb potential:2 overlapping diffuse charge distributions (Fermi)

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    VCoul: similar at large distances, large differences for large projectile/target overlaps

    W. Udo Schröder, 2008

    overlaps

  • Coulomb Deflection Function

    Monotonic for monotonic dependence V(r)

    Smaller b (l) larger

    Non-monotonic for non-monotonic potentials

    10C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    monotonic potentials

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    gC

    lass

    ical

    Pot

    . Sca

    tter

    ing

    1

    n

    n

    b ( )d ( ) dd sin db

    Multi-valued deflection functions:Different b same

    W. Udo Schröder, 2008

    nn bd sin dbDifferent b same

  • “Rainbow” Scattering

    d ( ) b( ) dbd sin d

    Large d /db small cross sections L Large d /db small cross sections

    Peak cross section for d /db ˜0

    2( ) r rb b b

    L

    11C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    ( )

    ( )

    1

    r r

    r r

    b b b

    b b

    db

    Orb

    itin

    g

    Use semi-

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2b rrd

    d ( )d

    Coulomb Rainbow

    Orb

    itin

    g

    Use semi-classical WKB

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    L

  • Molecular Rainbow Scattering

    12 6

    Lennard-Jones (6-12) Potential

    12 6( ) 4V r r r

    Differential Cross Section E/ =2

    12C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Differential Cross Section E/ =2

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    gC

    lass

    ical

    Pot

    . Sca

    tter

    ing

    b

    W. Udo Schröder, 2008

    Oscillations due to quantum wave effects

  • Effective Potentials & Elastic Deflection FunctionsDifferent relative magnitudes of interaction potentials Vcoul+VN+VDifferent relative magnitudes of interaction potentials Vcoul+VN+V

    13C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Very heavy ions: No capture, no fusion “nuclear rainbow”

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    Asymmetric heavy (or light) system

    Symmetric heavy system does not

    Very heavy ions: No capture, no fusion “nuclear rainbow”

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    (or light) system shows orbiting:Perfect balance of Coulomb, centrifugal and nuclear forces

    system does notshow orbiting:Perfect balance of Coulomb, centrifugal and nuclear forces

    W. Udo Schröder, 2008

    and nuclear forces (at o= 50)

    and nuclear forces impossible

  • Fluctuations in Scattering

    Nucleus-nucleus interactions = superposition of nucleonic interactions fluctuating forces

    1P , exp

    interactions fluctuating forces probability distribution in

    14C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    22

    1P , exp

    2 ( )2

    Vanishing fluctuations :

    lim P , d d

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    0lim P , d d

    Washes out artificial singularitiesFolded cross section:

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    22

    22

    d 1exp d

    d sin 2 ( )2

    Folded cross section:

    W. Udo Schröder, 2008

    d sin 2 ( )2

    Riedel et al., 1979

  • Mapping the Potential

    16 208O Pb16 208O Pb107 MeV

    Ecm=200MeV

    15C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Ecm=107MeV

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    gC

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Elastic scattering: Increasing bombarding energy

    “pocket” in effective potential disappears

    W. Udo Schröder, 2008

    “pocket” in effective potential disappears orbiting and nuclear rainbow disappear peaks in cross section disappear

  • Reactive Scattering Deflection FunctionsConcept of deflection function extended to inelastic (dissipative) scattering, E

  • Partial Wave Sum

    2(2 1)

    dd sin d

    d1 2L

    Langer : b 1 2p

    17

    2

    Langer : b 1 2p

    db d d 2 bdb 2 1

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    l

    0 lmax

    max2 2

    max max0

    max

    (2 1) ( 1)

    1:

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2 2 2max max max( 1)Geometric Cross Section

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    max max max( 1)

    kR R22 2 2 2

    max max max

    2maxR

    Geometric Cross Section

    W. Udo Schröder, 2008

  • Partial (l) Wave Decomposition of

    l-windows2 2 2

    max max max( 1)

    2 2R R

    l-windows2(2 1)

    2 2

    2 1 1

    ij j i

    j j i i

    R R

    l

    2312

    01

    18C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    l

    l0 l1 l2 lmax

    ???

    , ?

    ,

    is measureable for a given event class

    how to infer

    ambiguousE*(l)

    M (l)

    Excitation energyParticle

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g ??? ,

    ,

    ambiguous

    Need independentMonotonic functi

    observable fon of

    Mn(l)

    Zmax(l)

    Particle MultiplicityZ of largest product

    Different possible functions f(l )

    2 2

    ( )

    j i

    Monoton function f

    df

    ic

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    2

    1( )

    21

    f ff

    Experimental tool to estimate l»1

    Different possible functions f(l )

    22j i

    ij

    dff d

    W. Udo Schröder, 2008

    exp2

    1( ) ( )

    2estf

  • Conservation of Flux/Cross Section Sum Rule

    d ( ) Only long-range d ( )d

    PNPoint NuclRuthd

    Only long-range interaction: Coulomb point-nucleus beyond short range of nuclear forcePoint NuclRuth

    Coul

    dd

    nuclear force

    PNtot Ruth el R

    19C

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Measured elastic el

    el Rmax max 180

    000

    No elastic events measured R

    tot Ruth el R

    observableTheoretical sum observable

    Reaction cross sectionR

    R2 2

    max

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    dd

    Ela

    stic

    Sca

    tter

    ing

    PN exptRuth el

    R0

    d d2 d sin

    d d

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    Reactions Tran

    sfer

    Ela

    stic

    Sca

    tter

    ing

    Determine reaction cross section from the value for the quarter-point angle

    expteld 1

    expte

    NR

    lPuthd

    d dd

    1Elastic

    Rea

    ctio

    ns

    W. Udo Schröder, 2008

    0 F R

    Reactions/Fusion

    Tran

    sfer

    Ela

    stic

    Sca

    tter

    ing

    1 4

    elPNRuth

    d 14d

    0

    14

    R1 4 max

    Rea

    ctio

    ns

  • Energy and Angular Distributions

    Determine elastic energy = f( ), fit standard line shape, determine elastic cross section el( )

    20 exptel

    PNRuth

    d 14d

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    gC

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    1 4

    W. Udo Schröder, 2008

    Plot ratio elastic/Rutherford cross section = f( ), determine quarter-point

    reaction total integrated cross section R.

    84 209 036 83 1 4

    max max R

    Kr(600MeV ) Bi : 66.7

    268.5 R 14.17fm 1.9belmax 1 4

    1 4

  • Distance of Strong Absorption RSAe Z Z2

    cm

    e Z Zd E b e Z Z

    E

    b d

    221 2

    1 2

    0

    ( ) 1 1 2 ( )2

    1( ) cot

    2 216O 2 2

    1 3 1 3SA Int 1 2R R 1.7 A A

    16O Beam

    Strong Surface Separation

    21

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    Strong Surface Separation

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    12C Beam

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    SA 1 2s R C C

    Different parameterizations

    W. Udo Schröder, 2008

    SA P T P T

    1R C C 4.49 C C

    6.35

    Different parameterizationslarge uncertainties (Ecm , A/Z dependencies?)

  • 22

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    gC

    lass

    ical

    Pot

    . Sca

    tter

    ing

    Cla

    ssic

    al P

    ot. S

    catt

    erin

    g

    W. Udo Schröder, 2008